
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L23
HDFS, Virtual Machines

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2 2

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Big Data: HDFS
and map-reduce

• Various sources, mostly external

3

Hadoop: Distributed Framework for Big Data

Big Data attributes:
• Large volume: TB -> PB varies with Kryder’s law: disk density doubles / 13 months

• Geographically Distributed: minimize data movement
• Needs: reliability, analytic approaches

History:
• Google file system 2003 and Map Reduce 2004 programming

lang

• Hadoop to support distribution for the Yahoo search
engine project ‘05, given to Apache Software
Foundation ‘06

• Hadoop ecosystem evolves with Yarn ’13 resource management,
Pig ’10 scripting, Spark ‘14 distributed computing engine. etc.

• The Google file system by Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (2003)
• MapReduce: Simplified Data Processing on Large Clusters. by Jeffrey Dean and Sanjay Ghemawat (2004)

4

Hadoop: Distributed Framework for Big Data

Recent development.

• Big data: multi-terabyte or more data for an app

• Distributed file system

– Reliability through replication (Fault tolerance)

• Distributed execution
– Parallel execution for higher performance

5

Hadoop: Core components

Hadoop (originally): HDFS + MapReduce

• HDFS: A distributed file system designed to
efficiently allocate data across multiple
commodity machines, and provide self-healing
functions when some of them go down

• MapReduce: A programming framework for
processing parallelizable problems across huge
datasets using a large number of commodity
machines.
• Commodity machines: lower performance per machine, lower cost, perhaps lower reliability compared with

special high-performance machines.

6

Challenges in Distributed Big Data

Common Challenges in Distributed Systems
• Node Failure: Individual computer nodes may

overheat, crash, have hard drive failures, or run out
of memory or disk space.

• Network issues: Congestion/delays (large data volumes),
Communication Failures.

• Bad data: Data may be corrupted, or maliciously or
improperly transmitted.

• Other issues: Multiple versions of client software
may use slightly different protocols from one
another.

• Security

7

HDFS Architecture

Hadoop Distributed File System (HDFS):

• HDFS Block size: 64-128 MB ext4: 4KB

• HDFS file size: “Big”

• Single HDFS FS cluster can span many nodes possibly
geographically distributed. datacenters-racks-blades

• Node: system with CPU and memory

Metadata (corresponding to superblocks, Inodes)

• Name Node: metadata giving where blocks are
physically located

Data (files blocks)

• Data Nodes: hold blocks of files (files are distributed)

8

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Name Node: metadata giving
where blocks are physically located
Data Nodes: hold blocks of files
(files are distributed

Q. What do I need to know? motivation, approaches, concepts

Secondary Name node
If primary fails.

Data is distributed and
replicated.

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg
http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

9

HDFS Write operation

CERN

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

Supplies data
block locations

https://indico.cern.ch/event/404527/contributions/968835/attachments/1123385/1603232/Introduction_to_HDFS.pdf

10

HDFS Fault-tolerance

• Disks use error detecting codes to detect
corruption.

• Individual node/rack may fail.

• Data Nodes (on slave nodes):

– data is replicated. Default is 3 times. Keep a copy far
away.

– Send periodic heartbeat (I’m OK) to Name Nodes.
Perhaps once every 10 minutes.

– Name node creates another copy if no heartbeat.

11

HDFS Fault-tolerance

Name Node (on master node) Protection:

• Transaction log for file deletes/adds, etc. Creation
of more replica blocks, when necessary, after a
Data Node failure

• Standby name node: namespace backup
– In the event of a failover, the Standby will ensure that it has read all of

the edits from the Journal Nodes and then promotes itself to the Active
state

– Implementation/delay version dependent

Name Node metadata is in RAM as well as checkpointed on disk.
On disk the state is stored in two files:
• fsimage: Snapshot of file system metadata
• editlog: Changes since last snapshot

12

HDFS Command line interface

• hadoop fs –help

• hadoop fs –ls : List a directory

• hadoop fs mkdir : makes a directory in HDFS

• hadoop fs –rm : Deletes a file in HDFS

• copyFromLocal : Copies data to HDFS from local
filesystem

• copyToLocal : Copies data to local filesystem

• Java code can read or write HDFS files (URI) directly

 https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

HDFS is on top of a local
file system

https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/FileSystemShell.html

13

Distributing Tasks

MapReduce Engine:

• JobTracker splits up the job into smaller
tasks(“Map”) and sends it to the TaskTracker
process in each node.

• TaskTracker reports back to the JobTracker node
and reports on job progress, sends partial results
(“Reduce”) or requests new jobs.

• Tasks are run on local data, thus avoiding
movement of bulk data.

• Originally developed for search engine
implementation.

14

Fault-tolerance in Computers

• Computers are inherently prone to faults

– Soft errors are very common

– Bit flipping its binary value

– Corruption due to noise

– Corruption in transmission or recording

• Large amounts of data: requires various fault-
tolerance approaches

• Music players, Internet, Banking, Flight control, etc.

15

Hadoop Ecosystem Evolution

• Hadoop YARN: A framework for job scheduling and cluster resource management , can
run on top of Windows Azure or Amazon S3.

• Apache spark is more general, faster and easier to program than MapReduce .
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,
Berkeley, 2012

16 16

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Virtual Machines

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

17

Virtualization

• Why we need virtualization?

• The concepts and terms

• Brief history of virtualization

• Types of virtualization

• Implementation Issues

• Containers

Ch 18 + external

We will skip implementation specific details. Please consult the
documentation and watch related videos.

18

Isolation and resource allocation
Isolation levels:

• Process: Isolated address space

• Container: Isolated set of processes, files and network

• Virtual Machines (VM): Isolated OSs

• Physically isolated machines

Resource allocation:

• Resources need to be allocated to
– processes

– Containers

– VMs and

• managed to serve needs best.

19

Virtualization in Virtual machines

• A Virtual scheme provides a simpler perspective of a
Physical scheme. Needs mapping.
– Example: each process a separate virtual address space.

– OS allocates physical memory and disk space and handles mapping.

• System (“machine”) virtualization
– A machine needs its own CPU, memory, storage, I/O to run its OS

and apps. “Machine” = {CPU, memory, storage, I/O, OS, apps}

– Needs to be isolated from other machines.

– “Virtual machines” allocated part of resources from physical
machine (hardware) with allocation done by a Virtual Machine
Monitor (VMM) or hypervisor.

– A single physical machine can run multiple virtual machines.

– A virtual machine can be “migrated” from one physical system to
another.

20

Virtualization

21

Virtualization

• Processors have gradually become very powerful

• Dedicated servers can be very underutilized (5-15%)

• Virtualization allow a single server to support several
virtualized servers: typical consolidation ratio 6:1

• Power cost a major expense for data centers
– Companies frequently locate their data centers in the middle of

nowhere where power cost is low

• If a hardware server crashes, would be nice to migrate the
load to another one.

• A key component of cloud computing

22

Virtual Machines (VM)

• Virtualization technology enables a single PC/server to
simultaneously run multiple Virtual Machines,
– with different operating systems or multiple sessions of a single OS.

• A machine with virtualization can host many applications,
including those that run on different operating systems, on
a single platform.

• The host operating system can support a number of virtual
machines, each of which has the characteristics of a specific
OS.

• The software that enables virtualization is a virtual
machine monitor (VMM), or hypervisor.

23

Virtual Machines (VM)

Traditional
physical machine

Hypervisor with
virtual machines

OS

OS OS OS

24

Kinds of Virtual Systems

Virtualization

• Hypervisor based

– Full virtualization: bare metal hypervisor

– Para virtualization: modified guest OS

– Host OS virtualization

• Container system: multiple user space instances

• Environment virtualization
– Java virtual machine, Dalvic virtual machine

• Software simulation of hardware/ISA

– Android JDK

– SoftPC etc.

• Emulation using microcode

25

Brief history

• Early 1960s IBM experimented with two independently
developed hypervisors - SIMMON and CP-40

• Common CPU modes: user and supervisor (Privileged)

• In 1974, Popek and Goldberg published a paper which listed
what conditions a computer architecture should satisfy to
support virtualization efficiently
– Privileged instructions: Those that trap if the processor is in user mode

and do not trap if it is in system mode (supervisor mode).

– Sensitive instructions: that attempt to change the configuration of
resources in the system or whose behavior or result depends on the
configuration of resources

– Theorem. For any conventional third-generation computer, an effective
VMM may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

– The x86 architecture that originated in the 1970s did not meet these
for requirements for decades.

•

26

“Strictly Virtualizable”

A processor or mode of a processor is strictly virtualizable if,
when executed in a lesser privileged mode:

• all instructions that access privileged state trap

• all instructions either trap or execute identically

• Satisfied by modern CPUs (with virtualization option
enabled).

27

Brief history (recent)

• Stanford researchers developed a new hypervisor and then
founded VMware

– first virtualization solution for x86 in 1999

– Linux, windows

• Others followed

– Xen, 2003 University of Cambridge, Xen Project
community

– KVM, 2007 startup/Red Hat

– VirtualBox (Innotek GmbH/Sun/Oracle) , 2007

– Hyper-V (Microsoft), 2008

• Cgroups (2007 Google), Docker Engine 2013

28

Implementation of VMMs

– Type 1 hypervisors - Operating-system-like software
built to provide virtualization. Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems
that provide standard functions as well as VMM

functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with

KVM

– Type 2 hypervisors - Applications that run on
standard operating systems but provide VMM features
to guest operating systems
• Including VMware Workstation and Fusion, Parallels Desktop, and Oracle

VirtualBox

29

Implementation of VMMs

https://microkerneldude.files.wordpress.com/2012/01/type1-vs-2.png

A higher layer uses services of the lower layers.

30

Market share

All 3 are Type 1 http://www.virtualizationsoftware.com/top-5-enterprise-type-1-hypervisors/

31

User mode and Kernel (supervisor) mode

• Special instructions:

• Depending on whether it is executed in kernel/user mode

– “Sensitive instructions”

• Some instructions cause a trap when executed in user-
mode

– “Privileged instructions”

• A machine is virtualizable only if sensitive instructions are a
subset of privileged instructions

– Intel’s 386 did not always do that. Several sensitive 386 instructions
were ignored if executed in user mode.

• Fixed in 2005 virtualization may need to be enabled using BIOS

– Intel CPUs: VT (Virtualization Technology)

– AMD CPUs: SVM (Secure Virtual Machine)

32

Virtualization support

• Terminology:

– Guest Operating System
• The OS running on top of the hypervisor

– Host Operating System
• For a type 2 hypervisor: the OS that runs on the hardware ¨executions

• Create environments in which VMs can be run

• When a guest OS is started in an environment, continues to
run until it causes an exception and traps to the hypervisor
– For e.g., by executing an I/O instruction

• Set of operations that trap is controlled by a hardware bit
map set by hypervisor
– trap-and-emulate approach becomes possible

33

Implementation of VMMs

What question do you see here?

• What mode does hypervisor run in? Guest OSs?

• Are Guest OSs aware of hypervisor?

• How is memory managed?

• How do we know what is the best choice? Answers coming up.

34

Virtual Machine (VM) as a software construct

• Each VM is configured with some number of processors,
some amount of RAM, storage resources, and connectivity
through the network ports.

• Once the VM is created it can be activated on like a physical
server, loaded with an operating system and software
solutions, and used just like a physical server.

• Unlike a physical server, VM only sees the resources it has
been configured with, not all of the resources of the
physical host itself.

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

35

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,

– how many virtual processors (vCPUs)

– how much RAM is allocated,

– which I/O devices the VM has access to,

– how many network interface cards (NICs) are in the virtual server

– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

36

Virtualization benefits

• Run multiple OSes on a single machine
– Consolidation, app dev, …

• Security: Host system protected from VMs; VMs
protected from each other
– Sharing though shared file system volume, network communication

• Freeze, suspend, running VM
– Then can move or copy somewhere else and resume

• Live migration

– Snapshot of a given state, able to restore back to that state

– Clone by creating copy and running both original and copy

• Hence – cloud computing

37

Building Block – Trap and Emulate

• VM needs two modes: both in real user mode
– virtual user mode and virtual kernel mode

• When Guest OS attempts to execute a privileged
instruction, what happens?
– Causes a trap

– VMM gains control, analyzes error, executes operation
as attempted by guest

– Returns control to guest in user mode

– Known as trap-and-emulate

• Trap-and-emulate was the technique used for
implementing floating point instructions in CPUs
without floating point coprocessor

38

Handling sensitive instructions

• Some CPUs didn’t have clean separation between
privileged and non-privileged instructions
– Sensitive instructions

• Consider Intel x86 popf instruction
• If CPU in privileged mode -> all flags replaced
• If CPU in user mode -> on some flags replaced

– No trap is generated

• Binary translation (complex) solves the problem
1. If guest VCPU is in user mode, guest can run instructions natively
2. If guest VCPU in kernel mode (guest believes it is in kernel mode)

1. VMM examines every instruction guest is about to execute by reading a
few instructions ahead of program counter

2. Special instructions translated into new set of instructions that perform
equivalent task (for example changing the flags in the VCPU)

3. Cached translations can reduce overhead

• Not needed in newer processors with virtualization
support.

39

Type 1 Hypervisors

• Run on top of bare metal

• Guest OSs believe they are running on bare metal, are unaware of
hypervisor
– are not modified

– Better performance

• Choice for data centers

• Consolidation of multiple OSes and apps onto less HW

• Move guests between systems to balance performance

• Snapshots and cloning

• Hypervisor creates runs and manages guest OSes

– Run in kernel mode

– Implement device drivers

– provide traditional OS services like CPU and memory management

• Examples: VMWare esx (dedicated) , Windows with Hyper-V (includes
OS)

40

Type 2 Hypervisors

• Run on top of host OS

• VMM is simply a process, managed by host OS

– host doesn’t know they are a VMM running guests

• poorer overall performance because can’t take
advantage of some HW features

• Host OS is just a regular one

– Individuals could have Type 2 hypervisor (e.g.
Virtualbox) on native host (perhaps windows), run one
or more guests (perhaps Linux, MacOS)

https://www.youtube.com/watch?v=nvdnQX9UkMY

41

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.

– Introduced and developed by Xen
• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support

– allowed virtualization of older x86 CPUs without binary
translation

– Not used by Xen on newer processors

42

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest

– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like native

operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs

– Some add fairness aspect

• Oversubscription of CPUs means guests may get CPU cycles
they expect

– Time-of-day clocks may be incorrect

– Some VMMs provide application to run in each guest to fix time-of-
day

43

Memory Management

Memory mapping:

• On a bare metal machine: OS uses page table/TLB to map Virtual page
number (VPN) to Physical page number (PPN) (physical memory is
shared). Each process has its own page table/TLB.

– VPN -> PPN

• VMM: Real physical memory (machine memory) is shared by the OSs.
Need to map PPN of each VM to MPN (Shadow page table)

 PPN ->MPN

44

Memory Management

• VMM: Real physical memory (machine memory) is
shared by the OSs. Need to map PPN of each VM
to MPN (Shadow page table)

 PPN ->MPN

• Where is this done?
– Has to be done by hypervisor type 1. Guest OS knows

nothing about MPN.

– Page Table/TLB updates are trapped to VMM.

 It needs to do VPN->PPN ->MPN.

– It can do VPN->MPN directly (VMware ESX)

45

Virtual Machine (VM) as a software construct

• Each VM is configured with some number of processors,
some amount of RAM, storage resources, and connectivity
through the network ports.

• Once the VM is created it can be activated on like a physical
server, loaded with an operating system and software
solutions, and used just like a physical server.

• Unlike a physical server, VM only sees the resources it has
been configured with, not all of the resources of the
physical host itself.

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

46

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,

– how many virtual processors (vCPUs)

– how much RAM is allocated,

– which I/O devices the VM has access to,

– how many network interface cards (NICs) are in the virtual server

– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

47

Live Migration

Running guest can be moved between systems, without interrupting user
access to the guest or its apps

– for resource management,

– maintenance downtime windows, etc

• Migration from source VMM to target VMM

– Needs to migrate all pages gradually, without
interrupting execution (details in next slide)

– Eventually source VMM freezes guest, sends vCPU’s final
state, sends other state details, and tells target to start
running the guest

– Once target acknowledges that guest running, source
terminates guest

48

Live Migration

• Migration from source VMM to target VMM

– Source establishes a connection with the target

– Target creates a new guest

– Source sends all read-only memory pages to target

– Source starts sending all read-write pages

– Source VMM freezes guest, sends final stuff,

– Once target acknowledge that guest running, source terminates
guest.

49

VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines

• Developer can construct a virtual machine with
– required OS, compiler, libraries, and application code

– Freeze them as a unit … ready to run

• Customers get a complete working package

• Virtual appliances: “shrink-wrapped” virtual machines

• Amazon’s EC2 cloud offers many pre-packaged virtual
appliances examples of Software as a service

• Question: do we really have to include a whole kernel in a
shrink wrapped VM?

50 50

Colorado State University
Yashwant K Malaiya

Fall 2025

CS370 Operating Systems

Containers

Slides based on
• Various sources

	Slide 1
	Slide 2
	Slide 3: Hadoop: Distributed Framework for Big Data
	Slide 4: Hadoop: Distributed Framework for Big Data
	Slide 5: Hadoop: Core components
	Slide 6: Challenges in Distributed Big Data
	Slide 7: HDFS Architecture
	Slide 8: HDFS Architecture
	Slide 9: HDFS Write operation
	Slide 10: HDFS Fault-tolerance
	Slide 11: HDFS Fault-tolerance
	Slide 12: HDFS Command line interface
	Slide 13: Distributing Tasks
	Slide 14: Fault-tolerance in Computers
	Slide 15: Hadoop Ecosystem Evolution
	Slide 16
	Slide 17: Virtualization
	Slide 18: Isolation and resource allocation
	Slide 19: Virtualization in Virtual machines
	Slide 20: Virtualization
	Slide 21: Virtualization
	Slide 22: Virtual Machines (VM)
	Slide 23: Virtual Machines (VM)
	Slide 24: Kinds of Virtual Systems
	Slide 25: Brief history
	Slide 26: “Strictly Virtualizable”
	Slide 27: Brief history (recent)
	Slide 28: Implementation of VMMs
	Slide 29: Implementation of VMMs
	Slide 30: Market share
	Slide 31: User mode and Kernel (supervisor) mode
	Slide 32: Virtualization support
	Slide 33: Implementation of VMMs
	Slide 34: Virtual Machine (VM) as a software construct
	Slide 35: Virtual Machine (VM) as a set of files
	Slide 36: Virtualization benefits
	Slide 37: Building Block – Trap and Emulate
	Slide 38: Handling sensitive instructions
	Slide 39: Type 1 Hypervisors
	Slide 40: Type 2 Hypervisors
	Slide 41: Full vs Para-virtualization
	Slide 42: CPU Scheduling
	Slide 43: Memory Management
	Slide 44: Memory Management
	Slide 45: Virtual Machine (VM) as a software construct
	Slide 46: Virtual Machine (VM) as a set of files
	Slide 47: Live Migration
	Slide 48: Live Migration
	Slide 49: VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines
	Slide 50

