
1 1

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 3

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Notes
Logistics:

• On-line quizzes
– Released Fri evening, due Monday evening 11 PM.

– Allow enough time. Some may take 30-40 minutes or more.

– No collaboration of any type among the students is allowed.

• IClicker

– Please register each time

– In-class iClicker quizzes, almost everyday 1-2 times.

– Distance students evaluated differently

• Help Sessions: material not covered in lectures
– HW1: expected tomorrow, due in 2 weeks

– Help Session: Required: attend or watch video.

– Coming next week: HW1 inc C pointers, dynamic memory allocation,
makefiles, Valgrind

3

Notes
Assignments & Quizzes:

• You must work individually. No collaboration is permitted.
– TAs will check to ensure there was no collaboration or use of improper

sources.

– Automated/manual/data-based approaches for detection

• HW Requirements (C/Java/Python):
– submissions must compile and run on the machines in CS Linux

machines.
• C and Java: You will provide your own makefile

– the TAs will test them on department machines.

– More details in assignment documents

– HW1 will be available soon.

4

What is an Operating System?

5

What is an Operating System?

• Referee
– Manage sharing of resources, Protection, Isolation

• Resource allocation, isolation, communication
• Isolation among threads, processes, users, virtual

machines/containers

• Illusionist
– Provide clean, easy to use abstractions of physical

resources
• Infinite memory, dedicated machine
• Higher level objects: files, users, messages
• Masking limitations, virtualization

• Glue
– Common services

• Storage, Window system, Networking
• Sharing, Authorization
• Look and feel

6

A multicore processor

• Package: LGA 1155
– 1155 pins
– 95W design envelope

• Cache:
– L1: 32K Inst, 32K Data

(3 clock access)
– L2: 256K (8 clock access)
– Shared L3: 3MB – 20MB

• Transistor count:

– 504 Million (2 cores, 3MB L3)

– 2.27 Billion (8 cores, 20MB L3)

8

Short History of Operating Systems

• One application at a time

– Had complete control of hardware

• Batch systems

– Keep CPU busy by having a queue of jobs

– OS would load next job while current one runs

• Multiple programs on computer at same time

– Multiprogramming: run multiple programs at
seemingly at the “same time”

– Multiple programs by multiple or single user

• Multiple processors in the same computer

• Multiple OSs on the same computer

1960s
80286
(1984)

Dual
core
2004

Vt-x
2005

9

One Processor One program View 1/2

Simple view (e.g. instructional versions of ARM, MIPS)

• Instructions and data fetched from Main Memory using
a program counter

• Traps system routines and Subroutines application routines (functions/methods)

– Obtaining address to branch to, and coming back

– A Stack Frames for holding info for one function call

• Prior PC, FP

• Arguments and local variables

• Dynamic memory allocation: heap

• Global data: accessed by any function in the program

10

One Processor One program View 2/2
• External devices: disk, network, screen, keyboard etc.

• Device interface: Status and data registers

• User and Supervisor modes for processor
– User mode (for user programs)

• Some resources cannot be used directly by a user program

• I/O can be done only using system calls (traps)

– Supervisor (or Kernel, privileged) mode
• Access to all resources

• Input/output operations are done in kernel mode, hence require system calls.

• I/O
– Device drivers use Direct Memory Access (DMA) and interrupts

– Interrupts need context switch

– I/O done in supervisor mode

– System calls invoke devise drivers

Enough info to
resume

(registers, process
state etc)

11

What a simple view don’t include
• Cache between CPU and main memory

– Makes the main memory appear much faster

– Multilevel. L1, L2, L3

• Direct memory access (DMA) between Memory and
external device (Disk, network etc.)
– Transfer by blocks at a time

– After initial set-up DHA controller manages the transfer (not processor)

• A memory access is slower than register access. Disk access
is slower than a memory access.

• Program may run concurrently (Multiprogramming) or with
many threads, which may occasionally interact.

• New multiple processors in the system (like in Multicore)

Like the
browser

cache

12

Program Execution
• Programs are compiled into binary machine code. One high

level language instruction compiles into multiple machine
instructions.

• Machine instructions are fetched from memory one by one
and executed.
– Machine instructions can be 32, 64 or a variable number of bits.

They specify the operation and the operands.

• They are fetched sequentially unless there is
– a branch or
– a call to a subroutine (function) or a system routine, from where

the execution will return. Triggered by a call within the code or
caused by an external event (interrupt)

• In modern processors, multiple instructions may be fetched
and executed in parallel.

13

Information transfer in a system
• Processor Registers <–>(Caches) <–> Memory

– CPU addresses memory locations

– Bytes/words at a time

– Included in CS270 and similar classes

• Memory <–> (Controllers hw/sw) <–> external devices

– Chunks of data

– External devices have their own timing

• DMA with interrupts

– Disk is “external”!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks

Displays

Keyboards
Networks

14

Input/Output operations

• The CPU can directly address memory locations and
the I/O ports.

• External devices (Network, Keyboard, Disks, Display
etc) run and communicate with different and
unpredictable timings, some are fast and some are
slow.

• Communications with external devices requires some
handshake to ensure proper exchange.

• The device drivers handle the specific attributes of the
external devices.

15

System I/O (Chap 1, 12 SGG 10the)

Central
brain

16

I/O

• OS communicates with the device drivers software,

they communicate with device controllers hardware.

• I/O Devices have associated registers where device

driver places commands, addresses, and data

– Data-in register, data-out register

– status register, control register

– Typically, 1-4 bytes, or FIFO buffer

• Devices have associated addresses, used by

– Separate I/O instructions (Intel)

– Memory-mapped I/O (ARM etc)

• Device data and command registers mapped to processor

address space

17

I/O Transfer rates MB/sec

Transfer rates keep going up,
current rate are up by an
order of magnitude.

18

Interrupts

• Processor executes an ordinary instruction

sequence until

– It encounters instructions asking it to go to a routine, and

come back (user routine or system routine)

– It encounters hardware-initiated interrupts.

• Interrupts: IO is initiated by hardware (P&P ch 10.2, YZ ch.

10)

– CPU is informed when the external device is ready for an

IO

– CPU does something else until interrupted

Patt & Patel (CS), Yifeng Zhu (ECE)

19

Interrupts

• Polling is busy waiting for an IO need. Slow.

• Interrupts used in practice

• CPU Interrupt-request line triggered by I/O
device
– Checked by processor after each instruction

• Interrupt handler receives interrupts
– Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct
handler
– Context switch at start and end

– Based on priority
• Some interrupts maybe nonmaskable

• Interrupt chaining if more than one device at same
interrupt number

Exact
details cpu

specific

20

Interrupts (Cont.)

• Interrupt mechanism also used for

exceptions, which include

– Terminate process, crash system due to

hardware error

– Page fault executes when memory access

error

– OS causes switch to another process

– System call executes via trap to trigger

kernel to execute request

21

Direct Memory Access (DMA)

• for movement of a block of data
– To/from disk, network etc.

• Requires DMA controller

• Bypasses CPU to transfer data directly
between I/O device and memory

• OS writes DMA command block into memory
– Source and destination addresses

– Read or write mode

– Count of bytes

– Writes location of command block to DMA controller

– Bus mastering of DMA controller – grabs bus from CPU

• Or Cycle stealing from CPU but still much more efficient

– When done, interrupts to signal completion

22

Interrupt-Driven I/O Cycle

Block-by-Block DMA Transfers

23

Six Step Process to Perform DMA Transfer

Interrupt
when
done

Device driver: sw
Device controller: hw

24

Direct Memory Access Structure

• high-speed I/O devices

• Device controller transfers
blocks of data from buffer
storage directly to main
memory without CPU
intervention

• Only one interrupt is generated
per block

25

I/O Subsystem

• One purpose of OS is to hide peculiarities
of hardware devices from the user

• I/O subsystem responsible for
– Memory management of I/O including

• buffering (storing data temporarily while it is being
transferred),

• caching (storing parts of data in faster storage for
performance),

• spooling (the overlapping of output of one job with
input of other jobs) like printer queue

– General device-driver interface
– Drivers for specific hardware devices

26

A Kernel I/O Structure

27

Application I/O Interface

• I/O system calls encapsulate device behaviors in generic
classes

• Device-driver layer hides differences among I/O
controllers from kernel

• New devices talking already-implemented protocols need
no extra work

• Each OS has its own I/O subsystem structures and device
driver frameworks

• Devices vary in many attributes
– Character-stream or block

– Sequential or random-access

– Synchronous or asynchronous (or both)

– Sharable or dedicated

– Speed of operation

– read-write, read only, or write only

28

Storage

29

Storage Structure

• Main memory – only large storage media that the CPU can access directly

– Random access

– Typically volatile (except for ROM)

• Secondary storage – extension of main memory that provides large nonvolatile
storage capacity

– Hard disks (HDD) – rigid platters covered with magnetic recording material

• Disk surface divided into tracks, which are subdivided into sectors

• The disk controller – transfers between the device and the processor

– Solid-state disks (SSD) – faster than hard disks, lower power consumption

• More expensive, but becoming more popular

• Tertiary/removable storage

– External disk, thumb drives, cloud backup etc.

Memory

for short

Disk
for short

30

Storage Hierarchy

• Storage systems organized in hierarchy
– Speed

– Cost

– Volatility

• Caching – copying information into faster
storage system; main memory can be
viewed as a cache for secondary storage

• Device Driver for each device controller to
manage I/O
– Provides uniform interface between

controller and kernel

31

Storage-Device Hierarchy

One or
the other

Cloud

32

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit
• Cache managed by hardware. Makes main memory appear much

faster.
• Disks are several orders of magnitude slower.

33

General Concept: Caching

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

• Information in use copied from slower to faster storage
temporarily

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)

– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem

– Cache size and replacement policy

• Examples: “cache”, browser cache ..

Cache la
Poudre?

34

Multilevel Caches

• Cache: between registers and main memory

– Cache is faster and smaller than main memory

– Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

– Hardware managed because of speed requirements

• Multilevel caches
– L1: smallest and fastest of the three (about 4 cycles, 32 KB)

– L2: bigger and slower than L1 (about 10 cycles, 256KB)

– L3: bigger and slower than L2 (about 50 cycles, 8MB)

– Main memory: bigger and slower than L3 (about 150 cycles, 8GB)

• You can mathematically show that multi-level caches
improve performance with usual high hit rates.

35

Multiprocessors

36

Multiprocessors

• Past systems used a single general-purpose processor
– Most systems have special-purpose processors as well

• Multiprocessor systems were once special, now are
common
– Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

– Two types:
1. Asymmetric Multiprocessing – each processor is assigned a

specific task. (older systems)

2. Symmetric Multiprocessing – each processor performs all tasks

37

Multiprocessor

Multi-chip and multicore

• Multi-chip: Systems containing all chips

– Chassis containing multiple separate systems

• Multi-core: chip containing multiple CPUs

Symmetric Multiprocessing Architecture

38

Multiprogramming and multitasking

• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at all times

– Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

– Response time should be < 1 second

– Each user has at least one program executing in memory process

– If several jobs ready to run at the same time  CPU scheduling

– If processes don’t fit in memory, swapping moves them in and out to run

– Virtual memory allows execution of processes not completely in memory

39

Multiprogramming, Multitasking, Multiprocessing

• Multiprogramming: multiple program under execution at
the same time, switching programs when needed (older
term)

• Timesharing (multitasking): sharing a CPU among multiple
users using time slicing (older term). Multitasking among
people …

• Multiprocessing: multiple processors in the system
running in parallel.

40

Memory Layout for Multiprogrammed System

42

Operating-System Operations (cont.)

• Dual-mode operation allows OS to protect
itself and other system components

– User mode and kernel mode
– Mode bit provided by hardware

• Provides ability to distinguish when system is
running user code or kernel code

• Some instructions designated as privileged, only
executable in kernel mode

• System call changes mode to kernel, return from call
resets it to user

• Increasingly CPUs support multi-mode
operations
– i.e. virtual machine manager (VMM) mode for

guest VMs

called Supervisor mode
 in LC3 processor in P&P book

43

Transition from User to Kernel Mode

• Ex: to prevent a process from hogging resources
– Timer is set to interrupt the computer after some time period
– Keep a counter that is decremented by the physical clock.
– Operating system set the counter (privileged instruction)
– When counter zero generate an interrupt
– Set up before scheduling process to regain control or

terminate program that exceeds allotted time

• System calls are executed in the kernel mode

44

Multiple modes

Newer processors may offer multiple modes (“rings”)

• Ring -1 hypervisor

• Ring 0 Supervisor

• Rings 1,2 Device drivers

• Ring 3 Applications

To simplify discussions, we will consider only two. Linux uses
only these two.

45

Process Management

• A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

• Process needs resources to accomplish its task
– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location
of next instruction to execute
– Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• Typically, system has many processes (some user, some operating
system), running concurrently on one or more CPUs
– Concurrency by multiplexing the CPUs among the processes / threads

A program may
involve multiple

processes.

Our text uses terms job and process interchangeably.

46

Process Management Activities

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for
– process synchronization

– process communication

– deadlock handling

The operating system is responsible for the following

activities in connection with process management:

More about these
later

	Slide 1
	Slide 2: Notes
	Slide 3: Notes
	Slide 4: What is an Operating System?
	Slide 5: What is an Operating System?
	Slide 6: A multicore processor
	Slide 8: Short History of Operating Systems
	Slide 9: One Processor One program View 1/2
	Slide 10: One Processor One program View 2/2
	Slide 11: What a simple view don’t include
	Slide 12: Program Execution
	Slide 13: Information transfer in a system
	Slide 14: Input/Output operations
	Slide 15: System I/O (Chap 1, 12 SGG 10the)
	Slide 16: I/O
	Slide 17: I/O Transfer rates MB/sec
	Slide 18: Interrupts
	Slide 19: Interrupts
	Slide 20: Interrupts (Cont.)
	Slide 21: Direct Memory Access (DMA)
	Slide 22: Interrupt-Driven I/O Cycle
	Slide 23: Six Step Process to Perform DMA Transfer
	Slide 24: Direct Memory Access Structure
	Slide 25: I/O Subsystem
	Slide 26: A Kernel I/O Structure
	Slide 27: Application I/O Interface
	Slide 28: Storage
	Slide 29: Storage Structure
	Slide 30: Storage Hierarchy
	Slide 31: Storage-Device Hierarchy
	Slide 32: Performance of Various Levels of Storage
	Slide 33: General Concept: Caching
	Slide 34: Multilevel Caches
	Slide 35: Multiprocessors
	Slide 36: Multiprocessors
	Slide 37: Multiprocessor
	Slide 38: Multiprogramming and multitasking
	Slide 39: Multiprogramming, Multitasking, Multiprocessing
	Slide 40: Memory Layout for Multiprogrammed System
	Slide 42: Operating-System Operations (cont.)
	Slide 43: Transition from User to Kernel Mode
	Slide 44: Multiple modes
	Slide 45: Process Management
	Slide 46: Process Management Activities

