CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 3

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Logistics:
e On-line quizzes
— Released Fri evening, due Monday evening 11 PM.

— Allow enough time. Some may take 30-40 minutes or more.
— No collaboration of any type among the students is allowed.

» [Clicker
— Please register each time
— In-class iClicker quizzes, almost everyday 1-2 times.
— Distance students evaluated differently

* Help Sessions: material not covered in lectures
— HW1: expected tomorrow, due in 2 weeks

— Help Session: Required: attend or watch video.

— Coming next week: HW1 inc C pointers, dynamic memory allocation,
makefiles, Valgrind

Colorado State University

Assignments & Quizzes:

* You must work individually. No collaboration is permitted.

— TAs will check to ensure there was no collaboration or use of improper
sources.

— Automated/manual/data-based approaches for detection

« HW Requirements (C/Java/Python):

— submissions must compile and run on the machines in CS Linux
machines.
« C and Java: You will provide your own makefile

— the TAs will test them on department machines.
— More details in assignment documents
— HW1 will be available soon.

Colorado State University

What is an Operating System?

User-mode
APP APP APP
System System System
Library Library Library
AETHIOT-U5ST INeTiacy
Kernel-mode / (Abstract virtual machine) \
7) N V<l N\
| File System Virtual Memory ‘
\ J J
e _/"
TCP/IP Neotworking | Scheduling
J)
Hardware Abstraction Layer -
Hardware- Specific Software ‘
\ | and Device Drivers) j
Hardware — Processors

Address Translation

Graphics Processor

. Colorado State University

What is an Operating System?

e Referee

— Manage sharing of resources, Protection, Isolation
* Resource allocation, isolation, communication
* |solation among threads, processes, users, virtual
machines/containers
* lllusionist

— Provide clean, easy to use abstractions of physical
resources

* Infinite memory, dedicated machine
* Higher level objects: files, users, messages
* Masking limitations, virtualization

Glue
@ — Common services
AD

e Storage, Window system, Networking
e Sharing, Authorization
* Look and feel

Colorado State University

A multlcore processor

R i sl : = 5 d System
' | o [y . [WESPRR, .. [“# Agent &
e S = g ' Memory

'Graphics E i e = RIB By -

including
DMI, Display
and Misc. I/0

e Package: LGA 1155 « Transistor count:
— 1155pins — 504 Million (2 cores, 3MB L3)
— 95W design envelope .
— 2.27 Billion (8 cores, 20MB L3)
e Cache:

— L1: 32K Inst, 32K Data
(3 clock access)

— L2: 256K (8 clock access)

— Shared L3: 3MB — 20MB Colorado State University

Short History of Operating Systems

* One application at a time
— Had complete control of hardware

* Batch systems
— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs

1960s

. 1 80286
 Multiple programs on computer at same ti (1084)

— Multiprogramming: run multiple programs at
seemingly at the “same time”

— Multiple programs by multiple or single user Dual
core

* Multiple processors in the same computer AgL

 Multiple OSs on the same computer

Colorado State University

One Processor One program View i

Simple view

* Instructions and data fetched from Main Memory using
a program counter

* Traps systemroutinesanNd Subroutines appiication routines (functions/methods)

— Obtaining address to branch to, and coming back

— A Stack Frames for holding info for one function call
* Prior PC, FP
e Arguments and local variables

* Dynamic memory allocation: heap
* Global data: accessed by any function in the program

Colorado State University

10

One Processor One program View 2.

External devices: disk, network, screen, keyboard etc.
Device interface: Status and data registers

User and Supervisor modes for processor

— User mode (for user programs)
« Some resources cannot be used directly by a user program
» |/O can be done only using system calls (traps)

— Supervisor (or Kernel, privileged) mode
» Access to all resources
* Input/output operations are done in kernel mode, hence require system calls.

/0
— Device drivers use birect Memory Access (DMA) and interrupts
— Interrupts need context switch

Enough info to

— 1/O done in supervisor mode resume
.)) (registers, process
— System calls invoke devise drivers state etc)

Colorado State University

11

What a simple view don’t include

Cache between CPU and main memory S—
— Makes the main memory appear much faster browser
— Multilevel. L1, L2, L3 —
Direct memory access (DMA) between Memory and

external device (Disk, network etc.)
— Transfer by blocks at a time

— After initial set-up DHA controller manages the transfer (not processor)

A memory access is slower than register access. Disk access
is slower than a memory access.

Program may run concurrently (Multiprogramming) or with
many threads, which may occasionally interact.

New multiple processors in the system (like in Multicore)

Colorado State University

Program Execution

12

Programs are compiled into binary machine code. One high
level language instruction compiles into multiple machine
instructions.

Machine instructions are fetched from memory one by one
and executed.

— Machine instructions can be 32, 64 or a variable number of bits.
They specify the operation and the operands.

They are fetched sequentially unless there is

— a branch or

— a call to a subroutine (function) or a system routine, from where
the execution will return. Triggered by a call within the code or
caused by an external event (interrupt)

In modern processors, multiple instructions may be fetched
and executed in parallel.

Colorado State University

Information transfer in a system

* Processor Registers <—>(Caches) <—> Memory
— CPU addresses memory locations

— Bytes/words at a time
— Included in CS270 and similar classes

* Memory <—> (Controllers hw/sw) <—> external devices

Proc — Chunks of data
— External devices have their own timing
Caches « DMA with interrupts
| Busses — Diskis “external”!
adapters
Controllers
, Disks ‘ ‘ ‘

|/O Devices: Disol

ISplays Networks

Keyboards

13

Colorado State University

Input/Output operations

14

* The CPU can directly address memory locations and
the 1/0 ports.

e External devices (Network, Keyboard, Disks, Display
etc) run and communicate with different and
unpredictable timings, some are fast and some are
slow.

e Communications with external devices requires some
handshake to ensure proper exchange.

 The device drivers handle the specific attributes of the
external devices.

Colorado State University

System | / O (chap 1, 12 5GG 10the)

Central

brain

2000

monitor processor
cache
c?orﬁ’?rronlfesr brlcci:%?\/t%i?rory — memory SCSI controller
| PCI bus)
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus)
@ @ parallel serial
port port

Colorado State University

15

/0

« 0OS communicates with the device drivers software,
they communicate with device controllers nardware.

» |/O Devices have associated registers where device
driver places commands, addresses, and data
— Data-in register, data-out register
— status register, control register
— Typically, 1-4 bytes, or FIFO buffer

« Devices have associated addresses, used by
— Separate I/O instructions (Intel)

— Memory-mapped I/O (ARM etc)

* Device data and command registers mapped to processor
address space

Colorado State University

16

/O Transfer rates wesec

system bus
HyperTransport (32-pair)
PCl Express 2.0/(X32)

Infiniband (QDR 12X)

W

erial ATA (SATA-300)
Gigabit Ethernet

SASI bus

Transfer rates keep going up, .)
current rate are up by an FireWire
order of magnitude.

d disk

0.00001 0.001 0.1 10 1000 100000 10E6

. Colorado State University

Interrupts

* Processor executes an ordinary instruction
sequence until

— It encounters instructions asking it to go to a routine, and
come back (user routine or system routine)

— It encounters hardware-initiated interrupts.

 Interrupts: IO is initiated by hardware spcn 102,
)

— CPU is informed when the external device is ready for an
1O

— CPU does something else until interrupted

Colorado State University

18

Interrupts

19

Polling is busy waiting for an IO need. Slow.
Interrupts used in practice

CPU Interrupt-request line triggered by 1/0O
device

— Checked by processor after each instruction Exact

details cpu

Interrupt handler receives interrupts it
— Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct
handler

— Context switch at start and end

— Based on priority

« Some interrupts maybe nonmaskable

* Interrupt chaining if more than one device at same
interrupt number

Colorado State University

Interrupts (Cont.)

* Interrupt mechanism also used for
exceptions, which include

— Terminate process, crash system due to
hardware error

— Page fault executes when memory access
error

— OS causes switch to another process

— System call executes via trap to trigger
kernel to execute request

Colorado State University

20

21

Direct Memory Access (DMA)

for movement of a block of data
— To/from disk, network etc.

Requires DMA controller

Bypasses CPU to transfer data directly
between |/O device and memory

OS writes DMA command block into memory

— Source and destination addresses
— Read or write mode
— Count of bytes
— Writes location of command block to DMA controller
— Bus mastering of DMA controller — grabs bus from CPU
* Or Cycle stealing from CPU but still much more efficient
— When done, interrupts to signal completion

Colorado State University

Interrupt-Driven I/O Cycle

CPU 1/O controller

Y

device driver initiates I/O \
initiates 1/0O

CPU executing checks for
interrupts between instructions

1 3
1
]
¥ ¥
CPU receiving interrupt, 4 input ready, output
transfers control to o complete, or error
interrupt handler generates interrupt signal
7
5
v

interrupt handler
processes data,
returns from interrupt

6 Block-by-Block DMA Transfers

CPU resumes
processing of
interrupted task

Colorado State University

22

Six Step Process to Perform DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
terrunt untiC =0 S
nterru US
when .when C = 0, DMA : . X
done interrupts CPU to signal (I;gtrirrgfﬁ; tr O_ CPU memory bus RS bufier
transfer completion -~
O PCI bus
IDE disk
controller

Device driver: sw
Device controller: hw

ach byte to DMA
controller

) s
) s

Colorado State University

23

Direct Memory Access Structure

; e— instruction execution —»

cycle instructions

and
data

* high-speed I/O devices
* Device controller transfers

blocks of data from buffer CRU)
storage directly to main } |

memory without CPU DMA

ayoeo

thread of execution
«—— data movement —»,

1dniisu —

188nbai O/ ——

intervention remen
* Onlyone interrupt is generated
per block
Colorado State University

24

/0 Subsystem

* One purpose of OS is to hide peculiarities
of hardware devices from the user

* |/O subsystem responsible for

— Memory management of 1/O including

* buffering (storing data temporarily while it is being
transferred),

 caching (storing parts of data in faster storage for
performance),

» spooling (the overlapping of output of one job with
input of other jobs) like printer queue

— General device-driver interface
— Drivers for specific hardware devices

. Colorado State University

26

software

hardware

A Kernel I/O Structure

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device X device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
controller | controller | controller controller | controller | controller
A A A A A A A
) 4 y A 4 A 4 4 Y) 4
ATAPI
SCS| ﬂoPPY’ devices
devices keyboard| | mouse LR PCI bus d'ISk (disks,
drives tapes,
drives)

Colorado State University

Application I/O Interface

27

I/O system calls encapsulate device behaviors in generic
classes

Device-driver layer hides differences among |/O
controllers from kernel

New devices talking already-implemented protocols need
no extra work

Each OS has its own I/O subsystem structures and device
driver frameworks
Devices vary in many attributes

— Character-stream or block

— Sequential or random-access

— Synchronous or asynchronous (or both)

— Sharable or dedicated

— Speed of operation

— read-write, read only, or write only

Colorado State University

Colorado State University

28

29

Storage Structure
for short

Main memory — only large storage media that the CPU can access directly

— Random access Disk
_ : : for short
Typically volatile (except for ROM) or hot

Secondary storage — extension of main memory that provides large nonvolatile
storage capacity
— Hard disks (HDD) —rigid platters covered with magnetic recording material

* Disk surface divided into tracks, which are subdivided into sectors
* The disk controller — transfers between the device and the processor
— Solid-state disks (SSD) — faster than hard disks, lower power consumption
* More expensive, but becoming more popular
Tertiary/removable storage
— External disk, thumb drives, cloud backup etc.

Colorado State University

Storage Hierarchy

e Storage systems organized in hierarchy
— Speed
— Cost
— Volatility
* Caching — copying information into faster

storage system; main memory can be
viewed as a cache for secondary storage

* Device Driver for each device controller to
manage |/0

— Provides uniform interface between
controller and kernel

. Colorado State University

Storage-Device Hierarchy

registers

A I
i h 4
cache

If |
1l v

main memory

B l
i v

One or
the other

solid-state disk

i |
i v

hard disk

| I
—

optical disk |

A

magnetic tapes |

Colorado State University

31

Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000 - 50,000 5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 |5,000- 10,000 | 1,000 - 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

* Cache managed by hardware. Makes main memory appear much
faster.

e Disks are several orders of magnitude slower.

Colorado State University

32

33

General Concept: Caching

Important principle, performed at many levelsin a
computer (in hardware, operating system, software)

Information in use copied from slower to faster storage
temporarily

Faster storage (cache) checked first to determine if
information is there

— Ifitis, information used directly from the cache (fast)

— |If not, data copied to cache and used there Cache la

Cache smaller than storage being cached Poudre?
— Cache management important design problem

— Cache size and replacement policy

Examples: “cache”, browser cache ..

Colorado State University

34

Multilevel Caches

Cache: between registers and main memory
— Cache is faster and smaller than main memory

— Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

— Hardware managed because of speed requirements

Multilevel caches

— L1: smallest and fastest of the three (wout 4 ycies, 32 xe)

— L2: bigger and slower than L1 (bout 10 yctes, 256xe)

— L3: bigger and slower than L2 (bout 50 cycles, sms)

— Main memory: bigger and slower than L3 @bout 150 cyctes, ss)

You can mathematically show that multi-level caches
improve performance with usual high hit rates.

Colorado State University

Multiprocessors

Colorado State University

35

Multiprocessors

* Past systems used a single general-purpose processor
— Most systems have special-purpose processors as well

* Multiprocessor systems were once special, now are
common

— Advantages include:
1. Increased throughput
2. Economy of scale
3. Increased reliability — graceful degradation or fault tolerance

— Two types:

1. Asymmetric Multiprocessing — each processor is assigned a
specific task. (older systems)

2. Symmetric Multiprocessing — each processor performs all tasks

i Colorado State University

Multiprocessor

Multi-chip and multicore
e Multi-chip: Systems containing all chips

— Chassis containing multiple separate systems
* Multi-core: chip containing multiple CPUs

CPUy CPU4 CPU»
registers registers registers
cache cache cache
memory

Symmetric Multiprocessing Architecture

Colorado State University

37

Multiprogramming and multitasking

* Multiprogramming needed for efficiency
— Single user cannot keep CPU and I/O devices busy at all times

— Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

— A subset of total jobs in system is kept in memory
— Onejob selected and run via job scheduling
— When it has to wait (for I/O for example), OS switches to another job

* Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

— Response time should be < 1 second

— Each user has at least one program executing in memory = process

— If several jobs ready to run at the same time = CPU scheduling

— If processes don’ t fit in memory, swapping moves them in and out to run
— Virtual memory allows execution of processes not completely in memory

” Colorado State University

Multiprogramming, Multitasking, Multiprocessing

39

Multiprogramming: multiple program under execution at
the same time, switching programs when needed (older
term)

Timesharing (multitasking): sharing a CPU among multiple
users using time slicing (older term). Multitasking among
people ...

Multiprocessing: multiple processors in the system
running in parallel.

Colorado State University

Memory Layout for Multiprogrammed System

: operating system
job 1
job 2
job 3
job 4
512M

Colorado State University

40

42

Operating-System Operations (cont.)

* Dual-mode operation allows OS to protect

itself and other system components
called Supervisor mode
in LC3 processor in P&P book

— User mode and kernel mode
— Mode bit provided by hardware

* Provides ability to distinguish when system is
running user code or kernel code

* Some instructions designated as privileged, only
executable in kernel mode

* System call changes mode to kernel, return from call
resets it to user

* Increasingly CPUs support multi-mode
operations

— i.e. virtual machine manager (VMM) mode for
guest VIVIs

Colorado State University

Transition from User to Kernel Mode

 Ex: to prevent a process from hogging resources
— Timer is set to interrupt the computer after some time period
— Keep a counter that is decremented by the physical clock.
— Operating system set the counter (privileged instruction)
— When counter zero generate an interrupt

— Set up before scheduling process to regain control or
terminate program that exceeds allotted time

e System calls are executed in the kernel mode

user process
user mode
user process executing —» calls system call return from system call (mode bit= 1)
\ /
LY r
! 7
Karrsi trap return
s mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
L] L]
43 Colorado State University

Multiple modes

44

Newer processors may offer multiple modes (“rings”)
* Ring-1 hypervisor

* Ring 0 Supervisor

* Rings 1,2 Device drivers

* Ring 3 Applications

To simplify discussions, we will consider only two. Linux uses
only these two.

Colorado State University

45

Process Management

A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

Process needs resources to accomplish its task
A program may
— CPU, memory, 1/0, files involve multiple
oy . . . processes.
— Initialization data
Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location
of next instruction to execute

— Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread

Typically, system has many processes (some user, some operating
system), running concurrently on one or more CPUs

— Concurrency by multiplexing the CPUs among the processes / threads

Our text uses terms job and process interchangeably.

Colorado State University

Process Management Activities

46

The operating system is responsible for the following
activities in connection with process management:

* Creating and deleting both user and system processes
e Suspending and resuming processes
* Providing mechanisms for

— process synchronization
— process communication

More about these
— deadlock handling later

Colorado State University

	Slide 1
	Slide 2: Notes
	Slide 3: Notes
	Slide 4: What is an Operating System?
	Slide 5: What is an Operating System?
	Slide 6: A multicore processor
	Slide 8: Short History of Operating Systems
	Slide 9: One Processor One program View 1/2
	Slide 10: One Processor One program View 2/2
	Slide 11: What a simple view don’t include
	Slide 12: Program Execution
	Slide 13: Information transfer in a system
	Slide 14: Input/Output operations
	Slide 15: System I/O (Chap 1, 12 SGG 10the)
	Slide 16: I/O
	Slide 17: I/O Transfer rates MB/sec
	Slide 18: Interrupts
	Slide 19: Interrupts
	Slide 20: Interrupts (Cont.)
	Slide 21: Direct Memory Access (DMA)
	Slide 22: Interrupt-Driven I/O Cycle
	Slide 23: Six Step Process to Perform DMA Transfer
	Slide 24: Direct Memory Access Structure
	Slide 25: I/O Subsystem
	Slide 26: A Kernel I/O Structure
	Slide 27: Application I/O Interface
	Slide 28: Storage
	Slide 29: Storage Structure
	Slide 30: Storage Hierarchy
	Slide 31: Storage-Device Hierarchy
	Slide 32: Performance of Various Levels of Storage
	Slide 33: General Concept: Caching
	Slide 34: Multilevel Caches
	Slide 35: Multiprocessors
	Slide 36: Multiprocessors
	Slide 37: Multiprocessor
	Slide 38: Multiprogramming and multitasking
	Slide 39: Multiprogramming, Multitasking, Multiprocessing
	Slide 40: Memory Layout for Multiprogrammed System
	Slide 42: Operating-System Operations (cont.)
	Slide 43: Transition from User to Kernel Mode
	Slide 44: Multiple modes
	Slide 45: Process Management
	Slide 46: Process Management Activities

