CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2024 Lecture 3

Slides based on

*  Text by Silberschatz, Galvin, Gagne
*  Various sources




Logistics:
e On-line quizzes
— Released Fri evening, due Monday evening 11 PM.

— Allow enough time. Some may take 30-40 minutes or more.
— No collaboration of any type among the students is allowed.

» [Clicker
— Please register each time
— In-class iClicker quizzes, almost everyday 1-2 times.
— Distance students evaluated differently

* Help Sessions: material not covered in lectures
— HW1: expected tomorrow, due in 2 weeks

— Help Session: Required: attend or watch video.

— Coming next week: HW1 inc C pointers, dynamic memory allocation,
makefiles, Valgrind
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Assignments & Quizzes:

* You must work individually. No collaboration is permitted.

— TAs will check to ensure there was no collaboration or use of improper
sources.

— Automated/manual/data-based approaches for detection

« HW Requirements (C/Java/Python):

— submissions must compile and run on the machines in CS Linux
machines.
« C and Java: You will provide your own makefile

— the TAs will test them on department machines.
— More details in assignment documents
— HW1 will be available soon.

Colorado State University



What is an Operating System?
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What is an Operating System?

e Referee

— Manage sharing of resources, Protection, Isolation
* Resource allocation, isolation, communication
* |solation among threads, processes, users, virtual
machines/containers
* lllusionist

— Provide clean, easy to use abstractions of physical
resources

* Infinite memory, dedicated machine
* Higher level objects: files, users, messages
* Masking limitations, virtualization

Glue
@ — Common services
AD

e Storage, Window system, Networking
e Sharing, Authorization
* Look and feel

Colorado State University



A multlcore processor

R i sl : = 5 d System
' | o [y . [WESPRR, .. [ “# Agent &
e S = g ' Memory

'Graphics E i e = RIB By -

including
DMI, Display
and Misc. I/0

e Package: LGA 1155 « Transistor count:
— 1155pins — 504 Million (2 cores, 3MB L3)
— 95W design envelope .
— 2.27 Billion (8 cores, 20MB L3)
e Cache:

— L1: 32K Inst, 32K Data
(3 clock access)

— L2: 256K (8 clock access)

— Shared L3: 3MB — 20MB Colorado State University



Short History of Operating Systems

* One application at a time
— Had complete control of hardware

* Batch systems
— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs

1960s

. 1 80286
 Multiple programs on computer at same ti (1084)

— Multiprogramming: run multiple programs at
seemingly at the “same time”

— Multiple programs by multiple or single user Dual
core

* Multiple processors in the same computer AgL

 Multiple OSs on the same computer

Colorado State University




One Processor One program View i

Simple view

* Instructions and data fetched from Main Memory using
a program counter

* Traps systemroutinesanNd Subroutines appiication routines (functions/methods)

— Obtaining address to branch to, and coming back

— A Stack Frames for holding info for one function call
* Prior PC, FP
e Arguments and local variables

* Dynamic memory allocation: heap
* Global data: accessed by any function in the program

Colorado State University
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One Processor One program View 2.

External devices: disk, network, screen, keyboard etc.
Device interface: Status and data registers

User and Supervisor modes for processor

— User mode (for user programs)
« Some resources cannot be used directly by a user program
» |/O can be done only using system calls (traps)

— Supervisor (or Kernel, privileged) mode
» Access to all resources
* Input/output operations are done in kernel mode, hence require system calls.

/0
— Device drivers use birect Memory Access (DMA) and interrupts
— Interrupts need context switch

Enough info to

— 1/O done in supervisor mode resume
. ) ) (registers, process
— System calls invoke devise drivers state etc)

Colorado State University
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What a simple view don’t include

Cache between CPU and main memory S—
— Makes the main memory appear much faster browser
— Multilevel. L1, L2, L3 —
Direct memory access (DMA) between Memory and

external device (Disk, network etc.)
— Transfer by blocks at a time

— After initial set-up DHA controller manages the transfer (not processor)

A memory access is slower than register access. Disk access
is slower than a memory access.

Program may run concurrently (Multiprogramming) or with
many threads, which may occasionally interact.

New multiple processors in the system (like in Multicore)

Colorado State University



Program Execution
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Programs are compiled into binary machine code. One high
level language instruction compiles into multiple machine
instructions.

Machine instructions are fetched from memory one by one
and executed.

— Machine instructions can be 32, 64 or a variable number of bits.
They specify the operation and the operands.

They are fetched sequentially unless there is

— a branch or

— a call to a subroutine (function) or a system routine, from where
the execution will return. Triggered by a call within the code or
caused by an external event (interrupt)

In modern processors, multiple instructions may be fetched
and executed in parallel.

Colorado State University



Information transfer in a system

* Processor Registers <—>(Caches) <—> Memory
— CPU addresses memory locations

— Bytes/words at a time
— Included in CS270 and similar classes

* Memory <—> (Controllers hw/sw) <—> external devices

Proc — Chunks of data
— External devices have their own timing
Caches « DMA with interrupts
| Busses — Diskis “external”!
adapters
Controllers
, Disks ‘ ‘ ‘

|/O Devices: Disol

ISplays Networks

Keyboards

13
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Input/Output operations
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* The CPU can directly address memory locations and
the 1/0 ports.

e External devices (Network, Keyboard, Disks, Display
etc) run and communicate with different and
unpredictable timings, some are fast and some are
slow.

e Communications with external devices requires some
handshake to ensure proper exchange.

 The device drivers handle the specific attributes of the
external devices.

Colorado State University



System | / O (chap 1, 12 5GG 10the)

Central

brain

2000

monitor processor
cache
c?orﬁ’?rronlfesr brlcci:%?\/t%i?rory — memory SCSI controller
| PCI bus )
IDE disk controller expansion bus keyboard
interface

@ @ { expansion bus )
@ @ parallel serial
port port

Colorado State University

15



/0

« 0OS communicates with the device drivers software,
they communicate with device controllers nardware.

» |/O Devices have associated registers where device
driver places commands, addresses, and data
— Data-in register, data-out register
— status register, control register
— Typically, 1-4 bytes, or FIFO buffer

« Devices have associated addresses, used by
— Separate I/O instructions (Intel)

— Memory-mapped I/O (ARM etc)

* Device data and command registers mapped to processor
address space

Colorado State University
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/O Transfer rates wesec

system bus
HyperTransport (32-pair)
PCl Express 2.0/(X32)

Infiniband (QDR 12X)

W

erial ATA (SATA-300)
Gigabit Ethernet

SASI bus

Transfer rates keep going up, . )
current rate are up by an FireWire
order of magnitude.

d disk

0.00001 0.001 0.1 10 1000 100000 10E6
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Interrupts

* Processor executes an ordinary instruction
sequence until

— It encounters instructions asking it to go to a routine, and
come back (user routine or system routine)

— It encounters hardware-initiated interrupts.

 Interrupts: IO is initiated by hardware spcn 102,
)

— CPU is informed when the external device is ready for an
1O

— CPU does something else until interrupted

Colorado State University
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Interrupts

19

Polling is busy waiting for an IO need. Slow.
Interrupts used in practice

CPU Interrupt-request line triggered by 1/0O
device

— Checked by processor after each instruction Exact

details cpu

Interrupt handler receives interrupts it
— Maskable to ignore or delay some interrupts

Interrupt vector to dispatch interrupt to correct
handler

— Context switch at start and end

— Based on priority

« Some interrupts maybe nonmaskable

* Interrupt chaining if more than one device at same
interrupt number

Colorado State University



Interrupts (Cont.)

* Interrupt mechanism also used for
exceptions, which include

— Terminate process, crash system due to
hardware error

— Page fault executes when memory access
error

— OS causes switch to another process

— System call executes via trap to trigger
kernel to execute request

Colorado State University

20



21

Direct Memory Access (DMA)

for movement of a block of data
— To/from disk, network etc.

Requires DMA controller

Bypasses CPU to transfer data directly
between |/O device and memory

OS writes DMA command block into memory

— Source and destination addresses
— Read or write mode
— Count of bytes
— Writes location of command block to DMA controller
— Bus mastering of DMA controller — grabs bus from CPU
* Or Cycle stealing from CPU but still much more efficient
— When done, interrupts to signal completion

Colorado State University



Interrupt-Driven I/O Cycle

CPU 1/O controller

Y

device driver initiates I/O \
initiates 1/0O

CPU executing checks for
interrupts between instructions

1 3
1
]
¥ ¥
CPU receiving interrupt, 4 input ready, output
transfers control to o complete, or error
interrupt handler generates interrupt signal
7
5
v

interrupt handler
processes data,
returns from interrupt

6 Block-by-Block DMA Transfers

CPU resumes
processing of
interrupted task

Colorado State University
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Six Step Process to Perform DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
terrunt untiC =0 S
nterru US
when .when C = 0, DMA : . X
done interrupts CPU to signal (I;gtrirrgfﬁ; tr O_ CPU memory bus RS bufier
transfer completion -~
O PCI bus
IDE disk
controller

Device driver: sw
Device controller: hw

ach byte to DMA
controller

) s
) s

Colorado State University
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Direct Memory Access Structure

; e— instruction execution —»

cycle instructions

and
data

* high-speed I/O devices
* Device controller transfers

blocks of data from buffer CRU )
storage directly to main } |

memory without CPU DMA

ayoeo

thread of execution
«—— data movement —»,

1dniisu —

188nbai O/ ——

intervention remen
* Onlyone interrupt is generated
per block
Colorado State University
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/0 Subsystem

* One purpose of OS is to hide peculiarities
of hardware devices from the user

* |/O subsystem responsible for

— Memory management of 1/O including

* buffering (storing data temporarily while it is being
transferred),

 caching (storing parts of data in faster storage for
performance),

» spooling (the overlapping of output of one job with
input of other jobs) like printer queue

— General device-driver interface
— Drivers for specific hardware devices

. Colorado State University
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software

hardware

A Kernel I/O Structure

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device X device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
controller | controller | controller controller | controller | controller
A A A A A A A
) 4 y A 4 A 4 4 Y ) 4
ATAPI
SCS| ﬂoPPY’ devices
devices keyboard| | mouse LR PCI bus d'ISk (disks,
drives tapes,
drives)

Colorado State University




Application I/O Interface
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I/O system calls encapsulate device behaviors in generic
classes

Device-driver layer hides differences among |/O
controllers from kernel

New devices talking already-implemented protocols need
no extra work

Each OS has its own I/O subsystem structures and device
driver frameworks
Devices vary in many attributes

— Character-stream or block

— Sequential or random-access

— Synchronous or asynchronous (or both)

— Sharable or dedicated

— Speed of operation

— read-write, read only, or write only

Colorado State University
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Storage Structure
for short

Main memory — only large storage media that the CPU can access directly

— Random access Disk
_ : : for short
Typically volatile (except for ROM) or hot

Secondary storage — extension of main memory that provides large nonvolatile
storage capacity
— Hard disks (HDD) —rigid platters covered with magnetic recording material

* Disk surface divided into tracks, which are subdivided into sectors
* The disk controller — transfers between the device and the processor
— Solid-state disks (SSD) — faster than hard disks, lower power consumption
* More expensive, but becoming more popular
Tertiary/removable storage
— External disk, thumb drives, cloud backup etc.

Colorado State University



Storage Hierarchy

e Storage systems organized in hierarchy
— Speed
— Cost
— Volatility
* Caching — copying information into faster

storage system; main memory can be
viewed as a cache for secondary storage

* Device Driver for each device controller to
manage |/0

— Provides uniform interface between
controller and kernel

. Colorado State University



Storage-Device Hierarchy

registers

A I
i h 4
cache

If |
1l v

main memory

B l
i v

One or
the other

solid-state disk

i |
i v

hard disk

| I
—

optical disk |

A

magnetic tapes |

Colorado State University
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Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000 - 50,000 5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 |5,000- 10,000 | 1,000 - 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

* Cache managed by hardware. Makes main memory appear much
faster.

e Disks are several orders of magnitude slower.

Colorado State University

32



33

General Concept: Caching

Important principle, performed at many levelsin a
computer (in hardware, operating system, software)

Information in use copied from slower to faster storage
temporarily

Faster storage (cache) checked first to determine if
information is there

— Ifitis, information used directly from the cache (fast)

— |If not, data copied to cache and used there Cache la

Cache smaller than storage being cached Poudre?
— Cache management important design problem

— Cache size and replacement policy

Examples: “cache”, browser cache ..

Colorado State University
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Multilevel Caches

Cache: between registers and main memory
— Cache is faster and smaller than main memory

— Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

— Hardware managed because of speed requirements

Multilevel caches

— L1: smallest and fastest of the three (wout 4 ycies, 32 xe)

— L2: bigger and slower than L1 (bout 10 yctes, 256xe)

— L3: bigger and slower than L2 (bout 50 cycles, sms)

— Main memory: bigger and slower than L3 @bout 150 cyctes, ss)

You can mathematically show that multi-level caches
improve performance with usual high hit rates.

Colorado State University



Multiprocessors

Colorado State University
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Multiprocessors

* Past systems used a single general-purpose processor
— Most systems have special-purpose processors as well

* Multiprocessor systems were once special, now are
common

— Advantages include:
1. Increased throughput
2. Economy of scale
3. Increased reliability — graceful degradation or fault tolerance

— Two types:

1. Asymmetric Multiprocessing — each processor is assigned a
specific task. (older systems)

2. Symmetric Multiprocessing — each processor performs all tasks

i Colorado State University



Multiprocessor

Multi-chip and multicore
e Multi-chip: Systems containing all chips

— Chassis containing multiple separate systems
* Multi-core: chip containing multiple CPUs

CPUy CPU4 CPU»
registers registers registers
cache cache cache
memory

Symmetric Multiprocessing Architecture

Colorado State University
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Multiprogramming and multitasking

*  Multiprogramming needed for efficiency
— Single user cannot keep CPU and I/O devices busy at all times

— Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

— A subset of total jobs in system is kept in memory
— Onejob selected and run via job scheduling
— When it has to wait (for I/O for example), OS switches to another job

* Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

— Response time should be < 1 second

— Each user has at least one program executing in memory = process

— If several jobs ready to run at the same time = CPU scheduling

— If processes don’ t fit in memory, swapping moves them in and out to run
— Virtual memory allows execution of processes not completely in memory

” Colorado State University



Multiprogramming, Multitasking, Multiprocessing
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Multiprogramming: multiple program under execution at
the same time, switching programs when needed (older
term)

Timesharing (multitasking): sharing a CPU among multiple
users using time slicing (older term). Multitasking among
people ...

Multiprocessing: multiple processors in the system
running in parallel.

Colorado State University



Memory Layout for Multiprogrammed System

: operating system
job 1
job 2
job 3
job 4
512M

Colorado State University
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Operating-System Operations (cont.)

* Dual-mode operation allows OS to protect

itself and other system components
called Supervisor mode
in LC3 processor in P&P book

— User mode and kernel mode
— Mode bit provided by hardware

* Provides ability to distinguish when system is
running user code or kernel code

* Some instructions designated as privileged, only
executable in kernel mode

* System call changes mode to kernel, return from call
resets it to user

* Increasingly CPUs support multi-mode
operations

— i.e. virtual machine manager (VMM) mode for
guest VIVIs

Colorado State University



Transition from User to Kernel Mode

 Ex: to prevent a process from hogging resources
— Timer is set to interrupt the computer after some time period
— Keep a counter that is decremented by the physical clock.
— Operating system set the counter (privileged instruction)
— When counter zero generate an interrupt

— Set up before scheduling process to regain control or
terminate program that exceeds allotted time

e System calls are executed in the kernel mode

user process
user mode
user process executing —» calls system call return from system call (mode bit= 1)
\ /
LY r
! 7
Karrsi trap return
s mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
L] L]
43 Colorado State University



Multiple modes

44

Newer processors may offer multiple modes (“rings”)
* Ring-1 hypervisor

* Ring 0 Supervisor

* Rings 1,2 Device drivers

* Ring 3 Applications

To simplify discussions, we will consider only two. Linux uses
only these two.

Colorado State University
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Process Management

A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

Process needs resources to accomplish its task
A program may
— CPU, memory, 1/0, files involve multiple
oy . . . processes.
— Initialization data
Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location
of next instruction to execute

— Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread

Typically, system has many processes (some user, some operating
system), running concurrently on one or more CPUs

— Concurrency by multiplexing the CPUs among the processes / threads

Our text uses terms job and process interchangeably.

Colorado State University



Process Management Activities
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The operating system is responsible for the following
activities in connection with process management:

* Creating and deleting both user and system processes
e Suspending and resuming processes
* Providing mechanisms for

— process synchronization
— process communication

More about these
— deadlock handling later

Colorado State University
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