CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 3

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Multiprocessors

OS Operations/Modes
Storage hierarchy, caches
OS Services

Shells/User interfaces

Colorado State University

* Follow updates and notes on Teams

* TA Office hour info on Teams
— HW1 available this Thursday
— Help Session for next week, perhaps Thursday

* |Clicker Cloud

— IClicker App must be registered and configured
properly, otherwise the scores will not be uploaded in
CanvasPIease check_

— Exit poll: Identify! °"? concepts you found most
challenging or significant

— Purpose of iClicker is to allow interaction, and and get
feedback, with automatic record keeping

Colorado State University

Differences among Subroutines/traps/Interrupt
service routines

« Subroutines: program specifies transfer of control
* Traps: transfer of control to a system routine

 Interrupt: hardware request transfers control to the
Interrupt service routine

Interrupts: Why? How?
* Interrupt request line is hardware

 Interrupt causes transfer of control to Interrupt
Service Routine

« Hence need to save context. Context restored when
returning.

Colorado State University

Direct Memory Access (DMA)

for movement of a block of data
— To/from disk, network etc.
Requires DMA controller unit.

Bypasses CPU to transfer data directly between 1/O
device and memory

OS initiates a DMA transfer.

— When done, interrupt is sent to the CPU to signal
completion

Colorado State University

Storage-Device Hierarchy

registers

I Il
i h 4
cache
£ |
| Vv

main memory

A l
i v

One or
the other

solid-state disk

i |
i v

hard disk

| I
—

optical disk |

A

magnetic tapes |

Colorado State University

Multiprocessors

e Past systems used a single general-purpose
processor

— Most systems have special-purpose processors as well

* Multiprocessor systems were once special, now
are common

— Advantages include:
1. Increased throughput
2. Economy of scale

— Two types:

1. Asymmetric Multiprocessing — each processor is assigned a
specific task. (older systems)

2. Symmetric Multiprocessing — each processor performs all
tasks

Colorado State University

Multiprocessing Architecture

Multi-chip and multicore
e Multi-chip: Systems containing all chips

— Chassis containing multiple separate systems
* Multi-core

CPUg CPU; CPUy CPU core CPU core,
registers registers registers registers registers
cache cache cache cache cache

memory l
memory

FAQ: How does system decide what information should be in cache?

Colorado State University

Multiprogramming and multitasking

* Multiprogramming needed for efficiency
— Single user cannot keep CPU and I/O devices busy at all times

— Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

— A subset of total jobs in system is kept in memory
— Onejob selected and run via job scheduling
— When it has to wait (for I/O for example), OS switches to another job

* Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

— Response time should be < 1 second

— Each user has at least one program executing in memory = process

— If several jobs ready to run at the same time = CPU scheduling

— If processes don’ t fit in memory, swapping moves them in and out to run
— Virtual memory allows execution of processes not completely in memory

Colorado State University

Memory Layout for Multiprogrammed System

: operating system
job 1
job 2
job 3
job 4
512M

Colorado State University

10

Operating-System Operations

* “Interrupts” (hardware and software)
— Hardware interrupt by one of the devices

— Software interrupt (exception or trap):
» Software error (e.g., division by zero)
* Request for operating system service

e Other process problems like processes
modifying each other or the operating

system

Colorado State University

11

Operating-System Operations (cont.)

* Dual-mode operation allows OS to protect

itself and other system components
Also called Supervisor mode

— User mode and kernel mode
— Mode bit provided by hardware

* Provides ability to distinguish when system is
running user code or kernel code

* Some instructions designated as privileged, only
executable in kernel mode

* System call changes mode to kernel, return from call
resets it to user

* Some CPUs support multi-mode operations

— i.e. virtual machine manager (VMM) mode for
guest VIVIs

Colorado State University

12

Transition from User to Kernel Mode

 Ex: to prevent a process from hogging resources
— Timer is set to interrupt the computer after some time period
— Keep a counter that is decremented by the physical clock.
— Operating system set the counter (privileged instruction)
— When counter zero generate an interrupt

— Set up before scheduling process to regain control or
terminate program that exceeds allotted time

* Ex: System calls are executed in the kernel mode

user process
user mode
user process executing —» calls system call return from system call (mode bit= 1)
\ /
LY r
! 7
Karrsi trap return
s mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
L] L]
- Colorado State University

14

Multiple protection rings

Newer processors may offer multiple
modes (“protection rings”)

* Ring-1 hypervisor VI >VM
* Ring 0 Kernel/supervisor
* Rings 1,2 Device drivers

* Ring 3 Applications -

To simplify discussions, we will consider
only two. Linux and Windows uses only
these tWO- ISy - The Walls of Theodosius 11

Note that labels/terminology may vary.

Colorado State University

15

Process Management

A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

Process needs resources to accomplish its task
A program may
— CPU, memory, 1/0, files involve multiple
oy . . . processes.
— Initialization data
Process termination requires reclaim of any reusable resources

Single-threaded process has one program counter specifying location
of next instruction to execute

— Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread

Typically, system has many processes (some user, some operating
system), running concurrently on one or more CPUs

— Concurrency by multiplexing the CPUs among the processes / threads

Our text uses terms job and process interchangeably.

Colorado State University

Process Management Activities

16

The operating system is responsible for the following
activities in connection with process management:

* Creating and deleting both user and system processes
e Suspending and resuming processes
* Providing mechanisms for

— process synchronization
— process communication

More about these
— deadlock handling later

Colorado State University

Memory & Storage Management

Colorado State University

17

18

K-scale: Amount of information/storage

Byte (B) = 8 bits (b)
Amount of info:
* A kilobyte, or KB, is 1,024 (or 21°) bytes
* a megabyte, or MB, is 1,0242 (or 22°) bytes
* agigabyte, or GB, is 1,0243 bytes
* aterabyte, or TB, is 1,024% bytes
* a petabyte, or PB, is 1,024° bytes
Measures of time

* Milliseconds, microseconds, nanoseconds,
picoseconds: 10 10°, 10 1012

Colorado State University

Performance of Various Levels of Storage

Level 1 2 3 4 5
Name registers cache main memory solid state disk magnetic disk
Typical size <1KB < 16MB < 64GB <1TB <10TB
Implementation custom memory | on-chip or CMOS SRAM flash memory magnetic disk
technology with multiple off-chip

ports CMOS CMOS SRAM
Access time (ns) 0.25-0.5 0.5-25 80-250 25,000 - 50,000 5,000,000
Bandwidth (MB/sec) | 20,000 - 100,000 |5,000- 10,000 | 1,000 - 5,000 500 20-150
Managed by compiler hardware operating system | operating system | operating system
Backed by cache main memory | disk disk disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

 Cache managed by hardware. Makes main memory appear much
faster.

e Disks are several orders of magnitude slower than Main Memory.

Colorado State University

19

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

ICQ

20

Ql.

OO wZr

Terabvytes, Megabvtes

How may Megabytes are there in a Terabyte?

1TB =1000 MB

1TB =10,000 MB

1 TB =1000,000 MB

Do we really need to know that?

Colorado$tate University

Multiprogramming

Q2. You need multiple processors to allow
multiprogramming.

True, obviously.

Only if the processors are not powerful enough.
Not really.

Not sure.

o0 wp

Colorado$tate University

Answers

Colorado State University

23

Ql.

OO wxr

Terabvytes, Megabvtes

How may Megabytes are there in a Terabyte?

1TB =1000 MB

1TB =10,000 MB

1TB=1000,000MB 1TB=KGB,1GB=KMB
Do we really need to know that?

Colorado$tate University

Multiprogramming

Q2. You need multiple processors to allow
multiprogramming.

True, obviously.

Only if the processors are not powerful enough.
Not really. Programs can time-share aprocessor
Not sure.

oo ®p

Colorado$tate University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Back from I1CQ

26

27

General Concept: Caching

Important principle, performed at many levelsin a
computer (in hardware, operating system, software)

Information in use copied from slower to faster storage
temporarily

Faster storage (cache) checked first to determine if
information is there

— Ifitis, information used directly from the cache (fast)

— |If not, data copied to cache and used there Cache la

Cache smaller than storage being cached Poudre?
— Cache management important design problem

— Cache size and replacement policy

Examples: “cache”, browser cache ..

Colorado State University

28

Multilevel Caches

Cache: between registers and main memory
— Cache is faster and smaller than main memory

— Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

— Hardware managed because of speed requirements

Multilevel caches

— L1: smallest and fastest of the three (wout 4 ycies, 32 xe)

— L2: bigger and slower than L1 (bout 10 yctes, 256xe)

— L3: bigger and slower than L2 (bout 50 cycles, sms)

— Main memory: bigger and slower than L3 @bout 150 cyctes, ss)

You can mathematically show that multi-level caches
improve performance with usual high hit rates.

Colorado State University

means Main = Mlemory Management

Memory here

* To executeqy program all (or part) of the instructions must
be in memory

e All (or part) of the data that is needed by the program
must be in memory.

e Memory management determines what is in memory and
when

— Optimizing CPU utilization and computer respanse to users
* Memory management activities

— Keeping track of which parts of memory are currently being
used and by whom

— Deciding which processes (or parts thereof) and data to
move into and out of memory

— Allocating and deallocating memory space as needed

CPU
scheduling

Colorado State University

29

Storage Management

e OS provides uniform, logical view of information
storage

— Abstracts physical properties to logical storage unit - file

— gaph)medium is controlled by device (i.e., disk drive, tape
rive

* Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

* File-System management
— Files usually organized into directories

— Access control on most systems to determine who can
access what
— OS activities include
* Creating and deleting files and directories
* Primitives to manipulate files and directories
* Mapping files onto secondary storage
* Backup files onto stable (non-volatile) storage media

. Colorado State University

Mass-Storage Management

31

Usually, disks used to store data that does not‘fit in
main memory or data that must be kept for a "long
period of time

Entire speed of computer operation hinges on disk
subsystem and its algorithms
OS activities

— Free-space management

— Storage allocation

— Disk scheduling (for magnetic disks)
Some storage need not be fast

— Tertiary storage includes optical storage, magnetic tape
— Still must be managed — by OS or applications

— Varies between WORM (write-once, read-many-times)
and RW (read-write)

Colorado State University

Migration of data “A” from Disk to Register

* Multitasking environments must be careful to use most
recent value, no matter where it is stored in the storage
hierarchy

hgrd A main A . A hardjware
disk memory register

* Multiprocessor environment must provide cache coherency
in hardware such that all CPUs have the most recent value in
their cache

e Distributed environment situation even more complex
— Several copies of a datum can exist
— Various solutions covered in Chapter 19 (will not get to it)

. Colorado State University

Introductions

* |Intro Pt 2

* End of time

33 Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
OS Structures

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

34

Chap2: Operating-System Structures

Objectives:

e Services OS provides to users, processes, and other
systems

e Structuring an operating system

* How operating systems are desighed and
customized and how they boot

ColoradosState University

OS Services for the User 1/3

e QOperating systems provide an environment for execution of
programs and services to programs and users

— User interface - Almost all operating systems have a user
interface (Ul).

e Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

— Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

— 1/0 operations - A running program may require |/O, which
may involve a file or an I/O device

Colorado State University

36

OS services for the User 2/3 (Cont.)

— File-system operations - read and write files and directories,
create and delete them, search them, list file Information,
permission management.

— Communications — Processes may exchange information, on the
same computer or between computers over a network

 via shared memory or through message passing (packets
moved by the OS)

— Error detection — OS needs to be constantly aware of possible
errors
* May occur in the CPU and memory hardware, in /O devices, in
user program

* For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

Colorado State University

37

OS services for system 3/3 (Cont.)

e OS functions for ensuring the efficient resource sharing

— Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of
them

* Many types of resources - CPU cycles, main memory, file
storage, /0O devices.

— Accounting - To keep track of which users use how much and
what kinds of computer resources

— Protection and security - concurrent processes should not
interfere with each other

* Protection involves ensuring that all access to system
resources is controlled

* Security of the system from outsiders requires user
authentication, extends to defending external 1/O devices
from invalid access attempts

Colorado State University

38

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /o file communication X i accounting
execution operations systems allocation
error pro;eniuon
detection) security
services

operating system

hardware

Colorado State University

39

User interfaces

Let us see
e CLI: command line interface
 GUI: graphical user interface

Colorado State University

40

User Operating System Interface - CLI

CLI or command interpreter allows direct command
entry
— Fetches a command from user and executes it

— Sometimes implemented in kernel, sometimes by systems
programs

— Sometimes commands built-in, sometimes just names of

programs
* If the latter, adding new features doesn’t require shell modification

— Multiple flavors implemented — shells

Ex:
Windows: command prompt
Linux: bash

Colorado State University

41

42

A bash session

Shell Command Interpreter

® [] 2y ymalaiya — -bash — 81x35

Last login: Sat Aug 27 22:09:08 on ttys0@@
Ys-MacBook-Air:~ ymalaiya$ echo $@

-bash

Ys-MacBook-Air:~ ymalaiya$ pwd

/Users/ymalaiya

Ys-MacBook-Air:~ ymalaiya$ ls

270 Desktop Downloads Music
Applications Dialcom Library Pictures
DLID Books Documents Movies Public

Ys-MacBook-Air:~ ymalaiya$ w
22:14 wup 1:12, 2 users, load averages: 1.15 1.25 1.27

USER TTY FROM LOGIN@ IDLE WHAT
ymalaiya console - 21:02 1:11 -
|ymalaiya s000 - 22:14 - w
Ys-MacBook-Air:~ ymalaiya$ ps

PID TTY TIME CMD

594 ttys000 0:00.02 -bash

Ys-MacBook-Air:~ ymalaiya$ iostat 5
disk@ cpu load average
KB/t tps MB/s wus sy id Im 5m 15m

36.76 17 .60 5 3 92 1.42 1.31 1.28
~C
Ys-MacBook-Air:~ ymalaiya$ ping colostate.edu
PING colostate.edu (129.82.103.93): 56 data bytes
64 bytes from 129.82.103.93: icmp_seq=0 tt1=116 time=46.069 ms
64 bytes from 129.82.103.93: icmp_seq=1 tt1=116 time=41.327 ms
64 bytes from 129.82.103.93: icmp_seq=2 tt1l=116 time=58.673 ms
64 bytes from 129.82.103.93: icmp_seq=3 ttl=116 time=44.75@ ms
64 bytes from 129.82.103.93: icmp_seg=4 tt1l=116 time=48.336 ms
~C
-—— colostate.edu ping statistics ——-
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 41.327/47.831/58.673/5.877 ms
Ys-MacBook-Air:~ ymalaiya$ [

android-sdks

43

Common bash commands 1/2

pwd

|s -I

cd dirpath
~username

cp f1 di1

mv f1 d1

rm f1 {2

mkdir d1

which x1

mancm help cm

Is > f.ixt

sort < list.txt

Is—I | less

/

print Working directory

Files in the working dir —long format
Change to dirpath dir

This dir , upper, usename’s home, root
Copy f1to dir d1

Move f1 to d1

Remove f1, 2

Create directory d1

Path for executable file x1

Manual entry or help with command cm
Redirect command std output to f.txt, >> to append
Std input from file

Pipe first command into second

Colorado State University

44

Common bash commands 2/2

echo $((expression))
echo SPATH

echo SSHELL

chmod 755 dir

jobs ps

kill id

cmd &

fgid

ctrl-z followed by bg or fg
w who

ping ipadd

ssh user@host

grep pattern files

Ctrl-c

Evaluate expression
Show PATH
Show default shell

Change dir permissions to 755

List jobs for current shell,

processes in the system

Kill job or process with given id

Start job in background
Bring job id to foreground

Suspend job and put it in background

Who is logged on

Get a ping from ipadd
Connect to host as user
Search for pattern in files

Halt current command

AT P QU G o 4V Qg \vav EE EE YV WuEm v.-.vJ

User Operating System Interface - GUI

45

User-friendly desktop metaphor interface

Usually mouse, keyboard, and monitor
Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

Invented at Xerox PARC in 1973

Most systems now include both CLI and GUI interfaces

Microsoft Windows is GUI with CLI “command” shell

— Apple Mac 0S X is “Aqua” GUI interface with UNIX kernel

underneath and shells available

— Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

Colorado State University

Touchscreen Interfaces

e Touchscreen devices
require new interfaces

Mouse not possible or not desired

Actions and selection based on
gestures

Virtual keyboard for text entry
Voice commands.

16 Colorado Ytate University

Dashboard

!
§

.
.
»
-
-
*

e
.

Finder

-

gy ———
F= e

- I
——7—

Surg goes dusk-cone at MWC 2011

S— — . —

Partcpateg b b
-
- i Yor yoor O
. (SIS AD R

/)
TextEdit

47 Colorado State Universi ty

System Calls

* What are they?

— Calls to system routines

* How are they implemented?

Colorado State University

48

System Calls

* Programming interface to the services provided by the OS
* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call

use

* Three most common APIs are Win32 API for Windows,

POSIX APl for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for

the Java virtual machine (JVM)

Note that the system-call names used throughout our
text are generic.

Colorado State University

49

Example of System Calls

e System call sequence to copy the contents of one file
to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally)

.

Colorado State University

50

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is

available in UNIX and Linux systems. The API for this function is obtained unistd.h header file provides
from the man page by invoking the command access to the POSIX API
man read

on the command line. A description of this API appears below:

#include =<unistd.h>

ssize t read(int f£d, woid *buf, size t count)
I | | | | |
rehum function parametars read(2) — Linux manual page
value name

A program that uses the read () function must include the unistd.hheader
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

® int fd—the file descriptor to be read

® yoid *buf—a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of

0 indicates end of file. If an error occurs, read () returns —1.
Colorado State University

51

https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/read.2.html
https://man7.org/linux/man-pages/man2/read.2.html

System Call Implementation

* The caller need know nothing about how the
system call is implemented

— Just needs to obey APl and understand what OS will do
as a result call

— Most details of OS interface hidden from programmer
by API

* Managed by run-time support library (set of functions built
into libraries included with compiler)

* System call implementation examples: InLC3
— LC-3 Trap x21 (O UT) code in Patt & Patel (see slide T;?,Etse?;e

— ldentified by a number that leads to address of the calls
routine

— Arguments provided in designated registers
— Linux x86 64 table, code snippets

Colorado State University

52

https://www.cs.colostate.edu/~cs270/.Fall17/slides/LectureMT2Review.pdf
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

APl — System Call — OS Relationship

user application

user
mode

open () (

)

kernel
mode

Trap

vector
table in
LC3

53

system call interface

i >

A
open ()
Implementation
of open ()
system call
return
Colorado State University

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

Colorado State University

Standard C Library Example

e Cprogram invoking printf() library call, which
calls write() system call

#include <stdio.h=
int main {)

{

—— printf ("Greetings"); |=-

return 0,
}

user *
mode
standard C library

kernel
mode
Grite () >

write ()
system call

Colorado State University

55

POSIX

56

POSIX: Portable Operating Systems Interface for

UNIX for system commands Pronounced pahz-icks

POSIX.1 published in 1988

Final POSIX standard: Joint document

— Approved by IEEE & Open Group End of 2001
— ISO/IEC approved it in November 2002
— Most recent IEEE Std 1003.1-2017 Edition

Most OSs are mostly POSIX-compliant

We will use a few POSIX-compliant system
commands

Colorado State University

Example OS: MS-DOS .

57

Single-tasking

Shell invoked when
system booted
Simple method to run
program

— No process created

Single memory space

Loads program into
memory, overwriting
all but the kernel

Program exit -> shell
reloaded

free memory

free memory

command
interpreter

process

kernel

command
interpreter

(@)

At system startup

Colorado State University

kernel

(b)

running da program

Unix <z variant, inherited by
several later OSs

Multitasking

User login -> invoke user’ s choice
of shell

Shell executes fork() system call to
create process

— Executes exec() to load program into
process

— Shell waits for process to terminate
or continues with user commands

Process exits with:
— code =0—-no error
— code > 0 - error code

Colorado State University

Example: XBSD s

process D

free memory

process C

Interpreter

process B

kernel

	Slide 1
	Slide 2: Today
	Slide 3: Course Notes
	Slide 4: Perspective
	Slide 5: Direct Memory Access (DMA)
	Slide 6: Storage-Device Hierarchy
	Slide 7: Multiprocessors
	Slide 8: Multiprocessing Architecture
	Slide 9: Multiprogramming and multitasking
	Slide 10: Memory Layout for Multiprogrammed System
	Slide 11: Operating-System Operations
	Slide 12: Operating-System Operations (cont.)
	Slide 13: Transition from User to Kernel Mode
	Slide 14: Multiple protection rings
	Slide 15: Process Management
	Slide 16: Process Management Activities
	Slide 17: Memory & Storage Management
	Slide 18: K-scale: Amount of information/storage
	Slide 19: Performance of Various Levels of Storage
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Answers
	Slide 24
	Slide 25
	Slide 26
	Slide 27: General Concept: Caching
	Slide 28: Multilevel Caches
	Slide 29: Memory Management
	Slide 30: Storage Management
	Slide 31: Mass-Storage Management
	Slide 32: Migration of data “A” from Disk to Register
	Slide 33: Introductions
	Slide 34
	Slide 35
	Slide 36: OS Services for the User 1/3
	Slide 37: OS services for the User 2/3 (Cont.)
	Slide 38: OS services for system 3/3 (Cont.)
	Slide 39: A View of Operating System Services
	Slide 40: User interfaces
	Slide 41: User Operating System Interface - CLI
	Slide 42: Shell Command Interpreter
	Slide 43: Common bash commands 1/2
	Slide 44: Common bash commands 2/2
	Slide 45: User Operating System Interface - GUI
	Slide 46: Touchscreen Interfaces
	Slide 47: The Mac OS X GUI
	Slide 48: System Calls
	Slide 49: System Calls
	Slide 50: Example of System Calls
	Slide 51: Example of Standard API
	Slide 52: System Call Implementation
	Slide 53: API – System Call – OS Relationship
	Slide 54: Examples of Windows and Unix System Calls
	Slide 55: Standard C Library Example
	Slide 56: POSIX
	Slide 57: Example OS: MS-DOS ’81..
	Slide 58: Example: xBSD ‘93 Berkely

