
1 1

Colorado State University
Yashwant K Malaiya

Fall 25 Lecture 4
OS Structures/Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2 2

Colorado State University
Yashwant K Malaiya

OS Structures

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

3 3

Chap2: Operating-System Structures

Objectives:

• Services OS provides to users, processes, and other
systems

• Structuring an operating system

• How operating systems are designed and
customized and how they boot

4

Viewing Proceses

MAC: look at processes. Launchpad>Other>Activity Monitor
Activity Monitor User Guide> CPU, Process, threads, PID etc.

Info about processes.

Windows: Open Task Manager.

https://support.apple.com/guide/activity-monitor/welcome/mac
https://support.apple.com/guide/activity-monitor/view-information-about-processes-actmntr1001/mac
https://www.digitalcitizen.life/task-manager-details/

5

Shell Command Interpreter

A bash session

6

Common bash commands 1/2

pwd print Working directory

ls -l Files in the working dir –long format

cd dirpath Change to dirpath dir

. .. ~username / This dir , upper, usename’s home, root

cp f1 d1 Copy f1 to dir d1

mv f1 d1 Move f1 to d1

rm f1 f2 Remove f1, f2

mkdir d1 Create directory d1

which x1 Path for executable file x1

man cm help cm Manual entry or help with command cm

ls > f.txt Redirect command std output to f.txt, >> to append

sort < list.txt Std input from file

ls –l | less Pipe first command into second

7

Common bash commands 2/2

echo $((expression)) Evaluate expression

echo $PATH Show PATH

echo $SHELL Show default shell

chmod 755 dir Change dir permissions to 755

ps List jobs for current shell, processes in the system

kill id Kill job or process with given id

cmd & Start job in background

fg id Bring job id to foreground

ctrl-z followed by bg or fg Suspend job and put it in background

w who Who is logged on

ping ipadd Get a ping from ipadd

ssh user@host Connect to host as user

grep pattern files Search for pattern in files

Ctrl-c (shows as ^C) Halt current command

8

User Operating System Interface - GUI

• User-friendly desktop metaphor interface
– Usually mouse, keyboard, and monitor

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

– Invented at Xerox PARC in 1973

• Most systems now include both CLI and GUI interfaces
– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

– Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME etc)

9

Touchscreen and Voice Command Interfaces

• Touchscreen interfaces
• Mouse not possible or not desired

• Actions and selection based on
gestures

• Virtual keyboard for text entry

• Voice user interfaces VUI
• Siri IOS

• Google Assistant

• Alexa - Amazon

• Cortana - Microsoft

10

The Mac OS X GUI

11

System Calls

• Services provided by the OS

• Application Programming Interface (API)

• POSIX API for POSIX-based systems

12

System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call
use

• Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for
the Java virtual machine (JVM)

Note that the system-call names used throughout our
text are generic.

13

Example of System Calls

• System call sequence to copy the contents of one file
to another file

14

Example of Standard API

unistd.h header file provides
access to the POSIX API

15

System Call Implementation

• The caller need know nothing about how the
system call is implemented
– Just needs to obey API and understand what OS will do

as a result call
– Most details of OS interface hidden from programmer

by API
• Managed by run-time support library (set of functions built

into libraries included with compiler)

• System call implementation examples:
– Identified by a number that leads to address of the

routine
– Arguments need to be provided in designated registers,

return value in a register
– Linux x86_64 table, code snippets

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
https://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

16

API – System Call – OS Relationship

Trap vector
table lookup

to get an
address

17

Examples of Windows and Unix System Calls

We will mostly use Unix
as an example.

Implementation may be
somewhat different

18

Standard C Library Example

• C program invoking printf() library call, which
calls write() system call

19

POSIX

• POSIX: Portable Operating Systems Interface for
UNIX for system commands Pronounced pahz-icks

– Specifies interface, not implementation

• POSIX.1 published in 1988

• Final POSIX standard: Joint document
– Approved by IEEE & Open Group End of 2001

– ISO/IEC approved it in November 2002

– Most recent IEEE Std 1003.1-2024 2024

• Most OSs are mostly POSIX-compliant

• We will use a few POSIX-compliant system
commands

20

Example OS: MS-DOS ’81..

• Single-tasking
• Shell invoked when

system booted
• Simple method to run

program
– No process created

• Single memory space
• Loads program into

memory, overwriting
all but the kernel

• Program exit -> shell
reloaded

At system startup running a program

21

Example: xBSD ‘93 Berkely

• Unix ‘73 variant, inherited by
several later OSs

• Multitasking
• User login -> invoke user’s choice

of shell
• Shell executes fork() system call to

create process
– Executes exec() to load program into

process
– Shell waits for process to terminate

or continues with user commands

• Process exits with:
– code = 0 – no error
– code > 0 – error code

22

System Programs 1/4

• System programs provide a convenient environment
for program development and execution. They can be
divided into:
– File manipulation

– Status information sometimes stored in a File modification

– Programming language support

– Program loading and execution

– Communications

– Background services

– Application programs are not systems programs

• Most users’ view of the operation system is defined
by system programs, not the actual system calls

23

System Programs 2/4

• Provide a convenient environment for program
development and execution
– Some of them are simply user interfaces to system calls;

others are considerably more complex

• File management - Create, delete, copy, rename,
print, dump, list, and generally manipulate files
and directories

• Status information
– Some ask the system for info - date, time, amount of

available memory, disk space, number of users
– Others provide detailed performance, logging, and

debugging information
– Typically, these programs format and print the output to

the terminal or other output devices
– Some systems implement a registry - used to store and

retrieve configuration information

24

System Programs 3/4

• File modification
– Text editors to create and modify files
– Special commands to search contents of files or perform

transformations of the text

• Programming-language support - Compilers,
assemblers, debuggers and interpreters sometimes
provided

• Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

• Communications - Provide the mechanism for
creating virtual connections among processes, users,
and computer systems
– Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

25

System Programs 4/4

• Background Services
– Launch at boot time

• Some for system startup, then terminate
• Some from system boot to shutdown

– Provide facilities like disk checking, process
scheduling, error logging, printing

– Run in user context not kernel context
– Known as services, subsystems, daemons

• Application programs
– Don’t pertain to system
– Run by users
– Not typically considered part of OS
– Launched by command line, mouse click, finger poke

26

Operating System Design

• General-purpose OS is very large program

• Various ways to structure ones

– Simple structure – MS-DOS. not modular

– More complex – UNIX.
• Kernel+systems programs

– Layered – an abstraction

– Microkernel –Mach: kernel is minimal

– hybrid
Tanenbaum–Torvalds debate:
(January 29, 1992). Funny.
"LINUX is obsolete".

http://www.oreilly.com/openbook/opensources/book/appa.html

27 27

CS370 OS Ch3 Processes
• Process Concept: a program in execution

• Process Scheduling

• Processes creation and termination

• Interprocess Communication using shared
memory and message passing

28

Process Concept

• An operating system executes a variety of
programs:

• Process – a program in execution; process
execution must progress in sequential fashion.
Includes
– The program code, also called “text section”

– Current activity including program counter, processor
registers

– Stack containing temporary data
• Function parameters, return addresses, local variables

– Data section containing global variables

– Heap containing memory dynamically allocated during
run time

29

Process Concept (Cont.)

• Program is passive entity stored on disk
(executable file), process is active

– Program becomes process when executable file
loaded into memory

• Execution of program started via GUI mouse
clicks, command line entry of its name, etc

• One program can be several processes

– Consider multiple users executing the same
program

• A process can create child processes

30

Process in Memory

This is address space for a
specific process.

Each process has a
separate address space.

31

Process State

• As a process executes, it changes state
– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to
occur

– ready: The process is waiting to be assigned to a
processor

– terminated: The process has finished execution, but ..

32

33

Diagram of Process State

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

In the Ready
Queue

34

Process Control Block (PCB)

Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of

instruction to next execute
• CPU registers – contents of all process-

centric registers
• CPU scheduling information- priorities,

scheduling queue pointers
• Memory-management information –

memory allocated to the process
• Accounting information – CPU used,

clock time elapsed since start, time
limits

• I/O status information – I/O devices
allocated to process, list of open files

35

CPU Switch From Process to Process

36

Threads

• So far, process has a single thread of
execution

• Consider having multiple program
counters per process
– Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB

• Coming up in next chapter

37

Process Control Block in Linux

Represented by the C structure task_struct.
Fields may include

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

38

Process Scheduling

Process Scheduling

39

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU for time sharing

• Process scheduler selects among available
processes for next execution on CPU

• Maintains scheduling queues of processes
– Job queue – set of all processes in the system on the disk

– Ready queue – set of all processes residing in main
memory, ready and waiting to execute

– Device queues – set of processes waiting for an I/O
device

– Processes migrate among the various queues

40

Ready Queue And Various I/O Device Queues

41

Queues are fun

42

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

Assumes a single CPU. Common until recently

43

Schedulers

• Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

– Sometimes the only scheduler in a system

– Short-term scheduler is invoked frequently (milliseconds)  (must be
fast)

• Long-term scheduler (or job scheduler) – selects which processes should be
brought into the ready queue

– Long-term scheduler is invoked infrequently (seconds, minutes)  (may
be slow)

– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than computations,
many short CPU bursts

– CPU-bound process – spends more time doing computations; few very
long CPU bursts

• Long-term scheduler strives for good process mix

44

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow
only one process to run, others suspended

• In past, user interface limits iOS provided for a
– Single foreground process- controlled via user interface

– Multiple background processes– in memory, running, but not on the
display, and with limits

• Newer iOS supports multitasking better. iOS 14: picture in
picture

• Android runs foreground and background, with fewer
limits
– Background process uses a service to perform tasks

– Service can keep running even if background process is suspended

– Service has no user interface, small memory use.

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Viewing Proceses
	Slide 5: Shell Command Interpreter
	Slide 6: Common bash commands 1/2
	Slide 7: Common bash commands 2/2
	Slide 8: User Operating System Interface - GUI
	Slide 9: Touchscreen and Voice Command Interfaces
	Slide 10: The Mac OS X GUI
	Slide 11: System Calls
	Slide 12: System Calls
	Slide 13: Example of System Calls
	Slide 14: Example of Standard API
	Slide 15: System Call Implementation
	Slide 16: API – System Call – OS Relationship
	Slide 17: Examples of Windows and Unix System Calls
	Slide 18: Standard C Library Example
	Slide 19: POSIX
	Slide 20: Example OS: MS-DOS ’81..
	Slide 21: Example: xBSD ‘93 Berkely
	Slide 22: System Programs 1/4
	Slide 23: System Programs 2/4
	Slide 24: System Programs 3/4
	Slide 25: System Programs 4/4
	Slide 26: Operating System Design
	Slide 27
	Slide 28: Process Concept
	Slide 29: Process Concept (Cont.)
	Slide 30: Process in Memory
	Slide 31: Process State
	Slide 32
	Slide 33: Diagram of Process State
	Slide 34: Process Control Block (PCB)
	Slide 35: CPU Switch From Process to Process
	Slide 36: Threads
	Slide 37: Process Control Block in Linux
	Slide 38: Process Scheduling
	Slide 39: Process Scheduling
	Slide 40: Ready Queue And Various I/O Device Queues
	Slide 41: Queues are fun
	Slide 42: Representation of Process Scheduling
	Slide 43: Schedulers
	Slide 44: Multitasking in Mobile Systems

