
1 1

Colorado State University
Yashwant K Malaiya

Fall 25 Lecture 5
OS Structures/Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2 2

CS370 OS Ch3 Processes
• Process Concept: a program in execution

• Process Scheduling

• Processes creation and termination

• Interprocess Communication using shared
memory and message passing

3

• Use of Laptops, phones and other devices are not permitted.

• Exception: only with the required pledge that you will

– Must have a reason for request

– use it only for class related note taking, which must be submitted on
1st and 15th of each month.

– not distract others, turn off wireless, last row

• Laptop use lowers student grades, experiment shows, Screens also distract laptop-
free classmates

• The Case for Banning Laptops in the Classroom

• Laptop multitasking hinders classroom learning for both users and nearby
peers

Electronic devices in lecture room

http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254

4

Diagram of Process State

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

In the Ready
Queue

5

Process Control Block (PCB)

Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of

instruction to next execute
• CPU registers – contents of all process-

centric registers
• CPU scheduling information- priorities,

scheduling queue pointers
• Memory-management information –

memory allocated to the process
• Accounting information – CPU used,

clock time elapsed since start, time
limits

• I/O status information – I/O devices
allocated to process, list of open files

6

CPU Switch From Process to Process

7

Context Switch

• When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system

does no useful work while switching
– The more complex the OS and the PCB ➔ the longer

the context switch

• Time dependent on hardware support
– Some hardware provides multiple sets of registers

per CPU ➔ multiple contexts loaded at once

8

Threads

• So far, process has a single thread of
execution

• Consider having multiple program
counters per process
– Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB

• Coming up in next chapter

9

Process Control Block in Linux

Represented by the C structure task_struct.
Fields may include

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

10

Process Scheduling

Process Scheduling

11

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU for time sharing

• Process scheduler selects among available
processes for next execution on CPU

• Maintains scheduling queues of processes
– Job queue – set of all processes in the system on the disk

– Ready queue – set of all processes residing in main
memory, ready and waiting to execute

– Device queues – set of processes waiting for an I/O
device

– Processes migrate among the various queues

12

Ready Queue And Various I/O Device Queues

13

Queues are fun

14

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

Assumes a single CPU. Common until recently

15

Schedulers

• Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

– Sometimes the only scheduler in a system

– Short-term scheduler is invoked frequently (milliseconds)  (must be
fast)

• Long-term scheduler (or job scheduler) – selects which processes should be
brought into the ready queue

– Long-term scheduler is invoked infrequently (seconds, minutes)  (may
be slow)

– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than computations,
many short CPU bursts

– CPU-bound process – spends more time doing computations; few very
long CPU bursts

• Long-term scheduler strives for good process mix

16

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow
only one process to run, others suspended

• In past, user interface limits iOS provided for a
– Single foreground process- controlled via user interface

– Multiple background processes– in memory, running, but not on the
display, and with limits

• Newer iOS supports multitasking better. iOS 14: picture in
picture

• Android runs foreground and background, with fewer
limits
– Background process uses a service to perform tasks

– Service can keep running even if background process is suspended

– Service has no user interface, small memory use.

17

Processes creation & termination

18

Process Creation

• Parent process create children processes,
which, in turn create other processes, forming
a tree of processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
– Parent and children share all resources?

– Children share subset of parent’s resources?

– Parent and child share no resources or just a few*?

• Execution options
– Parent and children execute concurrently?

– Parent waits until children terminate*?

19

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

20

Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples
– fork() system call creates new process

– exec() system call used after a fork() to replace the

process’ memory space with a new program

21

Fork () to create a child process
• Fork creates a copy of process

• Return value from fork (): integer

– When > 0:

• Running in (original) Parent process

• return value is pid of new child

– When = 0:

• Running in new Child process

– When < 0:
• Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

• Running in original process

• All of the state of original process duplicated in
both Parent and Child! Almost ..

– Memory, File Descriptors (next topic), etc…

22

Process Management System Calls
• UNIX fork – system call to create a copy of the current process,

and start it running
– No arguments!

• UNIX exec – system call to change the program being run by the
current process. Several variations.

• UNIX wait – system call to wait for a process to finish

• Details: see man pages

Some examples:

• pid_t pid = getpid(); /* get current processes PID */;

• waitpid(cid, 0, 0); /* Wait for my child to terminate. */

• exit (0); /* Quit*/

• kill(cid, SIGKILL); /* Kill child*/

http://man7.org/linux/man-pages/man3/execl.3.html

23

UNIX Process Management

child

parent

24

C Program Forking Separate Process

execlp(3) - Linux man page
http://linux.die.net/man/3/execlp

<sys/types.h> definitions of derived types
<unistd.h> POSIX API

http://linux.die.net/man/3/execlp

25

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){
 pid_t cid;

 /* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
 return 1;
 }
 else if (cid == 0) { /* child process */
 printf("I am the child %d, my PID is %d\n", cid, getpid());
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
 wait(NULL);

 printf("Child Complete\n");
 }

 return 0;
}

Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m
I am the parent with PID 494, my parent is 485, my child is 496
I am the child 0, my PID is 496
DateClient.java newproc-posix_m

Child Complete
Ys-MacBook-Air:ch3 ymalaiya$

https://www.tutorialspoint.com/compile_c_online.phpSee self-exercise in Teams

https://www.tutorialspoint.com/compile_c_online.php

26

wait/waitpid

• Wait/waitpid () allows caller to suspend execution
until child’s status is available

• Process status availability
– Generally, after termination
– Or if process is stopped

• pid_t waitpid(pid_t pid, int *status, int options);
• The value of pid can be:

– 0 wait for any child process with same process group ID
(perhaps inherited)

– > 0 wait for child whose process group ID is equal to the
value of pid

– -1 wait for any child process (equi to wait ())

• Status: where status info needs to be saved

27

Linux: fork ()

• Search for man fork()
• http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process

SYNOPSIS #include <unistd.h>

 pid_t fork(void);

DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. …

 The child process and the parent process run in separate memory spaces…

 The child process is an exact duplicate of the parent process except for the
following points: ….

RETURN VALUE On success, the PID of the child process is returned in the
parent, and 0 is returned in the child. On failure, -1 is returned in the

parent, no child process is created, and errno is set appropriately.

EXAMPLE See pipe(2) and wait(2).

…

errno is a global variable in errno.h

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html

28

Process Group ID

• Process group is a collection of related
processes

• Each process has a process group ID

• Process group leader?
– Process with pid equal to pgid

• A process group has an associated controlling
terminal, usually the user’s keyboard
– Control-C: sends interrupt signal (SIGINT) to all

processes in the process group

– Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting
With the terminal

29

Process Groups

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:
• Parent (and further ancestors)
• Siblings
• Children (and further descendants)

A process can only send signals to members of its
process group
• Signals are a limited form of inter-process communication

used in Unix.
• Signals can be sent using system call

– int kill(pid_t pid, int sig);

http://man7.org/linux/man-pages/man2/kill.2.html
http://man7.org/linux/man-pages/man2/kill.2.html

30

Process Termination

• Process executes last statement and then asks
the operating system to delete it using the
exit() system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating

system

• Parent may terminate the execution of children
processes using the kill() system call.
Some reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does

not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

31

Process Termination

• Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

 pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a
zombie

• If parent terminated without invoking wait , process is an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

32

Multi-process Program Ex – Chrome Browser

• Early web browsers ran as single process
– If one web site causes trouble, entire browser can hang or

crash

• Google Chrome Browser is multiprocess with 3
different types of processes:
– Browser process manages user interface, disk and

network I/O

– Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

– Plug-in process for each type of plug-in

33

Multitasking

34

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation

– Information sharing

– Computation speed-up

– Modularity

– Convenience

35

Interprocess Communication

• Processes within a system may be independent or
cooperating

• Cooperating process can affect or be affected by other
processes, including sharing data

• Reasons for cooperating processes:
– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC
– Shared memory
– Message passing

36

Producer-Consumer Problem

• Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

– unbounded-buffer places no practical limit on the
size of the buffer

– bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.
Where does the bounded buffer “start”?
- It is circular

37

Bounded-Buffer – Shared-Memory Solution

• Shared data

#define BUFFER_SIZE 8

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• in points to the next free position in the buffer
• out points to the first full position in the buffer.
• Buffer is empty when in == out;
• Buffer is full when
 ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
• This scheme can only use BUFFER_SIZE-1

elements

Out In

0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

38

Bounded-Buffer – Producer

item next_produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* do nothing */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

Out In

0 1 2 3 4 5 6 7

39

Bounded Buffer – Consumer

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

Out In

0 1 2 3 4 5 6 7

40

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.

• Example soon.

Only one process
may access

shared memory

at a time

41

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)

– receive(message)

• The message size is either fixed or variable

42

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

43

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)

• Synchronous (blocking) or asynchronous (non-blocking)

• Automatic or explicit buffering

	Slide 1
	Slide 2
	Slide 3: Electronic devices in lecture room
	Slide 4: Diagram of Process State
	Slide 5: Process Control Block (PCB)
	Slide 6: CPU Switch From Process to Process
	Slide 7: Context Switch
	Slide 8: Threads
	Slide 9: Process Control Block in Linux
	Slide 10: Process Scheduling
	Slide 11: Process Scheduling
	Slide 12: Ready Queue And Various I/O Device Queues
	Slide 13: Queues are fun
	Slide 14: Representation of Process Scheduling
	Slide 15: Schedulers
	Slide 16: Multitasking in Mobile Systems
	Slide 17: Processes creation & termination
	Slide 18: Process Creation
	Slide 19: A Tree of Processes in Linux
	Slide 20: Process Creation (Cont.)
	Slide 21: Fork () to create a child process
	Slide 22: Process Management System Calls
	Slide 23: UNIX Process Management
	Slide 24: C Program Forking Separate Process
	Slide 25: Forking PIDs
	Slide 26: wait/waitpid
	Slide 27: Linux: fork ()
	Slide 28: Process Group ID
	Slide 29: Process Groups
	Slide 30: Process Termination
	Slide 31: Process Termination
	Slide 32: Multi-process Program Ex – Chrome Browser
	Slide 33: Multitasking
	Slide 34: Cooperating Processes
	Slide 35: Interprocess Communication
	Slide 36: Producer-Consumer Problem
	Slide 37: Bounded-Buffer – Shared-Memory Solution
	Slide 38: Bounded-Buffer – Producer
	Slide 39: Bounded Buffer – Consumer
	Slide 40: Interprocess Communication – Shared Memory
	Slide 41: Interprocess Communication – Message Passing
	Slide 42: Message Passing (Cont.)
	Slide 43: Message Passing (Cont.)

