CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 25 Lecture 5
OS Structures/Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

CS370 0OS Ch3 Processes

* Process Concept: a program in execution
* Process Scheduling
* Processes creation and termination

* Interprocess Communication using shared
memory and message passing

ColoradoState University

Electronic devices in lecture room

Use of Laptops, phones and other devices are not permitted.
Exception: only with the required pledge that you will

— Must have a reason for request

— use it only for class related note taking, which must be submitted on
15t and 15 of each month.

— not distract others, turn off wireless, last row

Laptop use lowers student grades, experiment shows, Screens also distract laptop-
free classmates
The Case for Banning Laptops in the Classroom

Laptop multitasking hinders classroom learning for both users and nearby
peers

Colorado State University

http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
http://www.cbc.ca/news/technology/laptop-use-lowers-student-grades-experiment-shows-1.1401860
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.newyorker.com/tech/elements/the-case-for-banning-laptops-in-the-classroom
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254
https://www.sciencedirect.com/science/article/pii/S0360131512002254

Diagram of Process State

admitted interrupt

In the Ready
Queue

I/O or event completion I/O or event wait

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

Colorado State University

Process Control Block (PCB)

Information associated with each process
(also called task control block)
* Process state — running, waiting, etc

process state

* Program counter —location of process number
instruction to next execute
» CPU registers — contents of all process- program counter

centric registers

 CPU scheduling information- priorities, ,
scheduling queue pointers registers

* Memory-management information —
memory allocated to the process

e Accounting information — CPU used,

memory limits

clock time elapsed since start, time : :
it list of open files
e |/O status information —1/O devices
allocated to process, list of open files e o o
. Colorado State University

CPU Switch From Process to Process

process P,

executing ;L /
h J

executing |
\'4

-

\idle

=

operating system process P,

interrupt or system call

save state into PCB,

reload state from PCB, 1
interrupt or system call

! ¥

save state into PCB;

reload state from PCB,

>idle

executing

~

>idle

Colorado State University

Context Switch

When CPU switches to another process, the
system must save the state of the old process
and load the saved state for the new process
via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system
does no useful work while switching

— The more complex the OS and the PCB = the longer
the context switch

Time dependent on hardware support

— Some hardware provides multiple sets of registers
per CPU =» multiple contexts loaded at once

Colorado State University

So far, process has a single thread of
execution

Consider having multiple program
counters per process

— Multiple locations can execute at once
* Multiple threads of control -> threads

Must then have storage for thread details,
multiple program counters in PCB

Coming up in next chapter

Colorado State University

Process Control Block in Linux

Represented by the Cstructure task struct.

Fields may include
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process’ s children */
struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

Vi

struct task_struct
process information

/N

struct task_struct
process information

_“

f

current

struct task_struct
process information

S RS

(currently executing proccess)

Colorado State University

Process Scheduling

Colorado State University

10

Process Scheduling

11

Maximize CPU use, quickly switch processes
onto CPU for time sharing

Process scheduler selects among available
processes for next execution on CPU

Maintains scheduling queues of processes
— Job queue —set of all processes in the system on the disk

— Ready queue — set of all processes residing in main
memory, ready and waiting to execute

— Device queues — set of processes waiting for an |I/0
device

— Processes migrate among the various queues

Colorado State University

Ready Queue And Various |I/O Device Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

12

queue header

head

PCB,

tail

head

tail

head

tail

A 4

registers

PCB,,

Y

Y

Y

PCB,
i —
registers
PCBg
| —

head

tail

PCBs

head

tail

\

Colorado State University

Queues are fun

€rsl

g 2
E
o O

Representation of Process Scheduling

O Queueing diagram represents queues, resources, flows

_____, ready queue CPU >
l/O queue *&—— /O request &—
time slice :
expired
child fork a
@ child y
interrupt walit for an
OcCcurs interrupt
Assumes a single CPU. Common until recently
y Colorado State University

15

Schedulers

Short-term scheduler (or CPU scheduler) — selects which process should be
executed next and allocates CPU

— Sometimes the only scheduler in a system

— Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

Long-term scheduler (or job scheduler) —selects which processes should be
brought into the ready queue

— Long-term scheduler is invoked infrequently (seconds, minutes) = (may
be slow)

— The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

— 1/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

— CPU-bound process — spends more time doing computations; few very
long CPU bursts

Long-term scheduler strives for good process mix

Colorado State University

Multitasking in Mobile Systems

16

Some mobile systems (e.g., early version of iOS) allow
only one process to run, others suspended

In past, user interface limits iOS provided for a

— Single foreground process- controlled via user interface

— Multiple background processes— in memory, running, but not on the
display, and with limits

Newer iOS supports multitasking better. ios 14: picture in
picture
Android runs foreground and background, with fewer
limits

— Background process uses a service to perform tasks

— Service can keep running even if background process is suspended
— Service has no user interface, small memory use.

Colorado State University

Processes creation & termination

Colorado State University

17

Process Creation

18

Parent process create children processes,
which, in turn create other processes, forming
a tree of processes

Generally, process identified and managed via a
process identifier (pid)

Resource sharing options

— Parent and children share all resources?

— Children share subset of parent’ s resources?

— Parent and child share no resources orjustafew™?
Execution options

— Parent and children execute concurrently?
— Parent waits until children terminate™?

Colorado State University

A Tree of Processes in Linux

login
pid = 8415

kthreadd sshd
pid = 2 pid = 3028

bash khelper pdflush . sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
e Y id = 4005
pid = 9298 pid = 9204 pia =

Colorado State University

19

Process Creation (Cont.)

* Address space

— Child duplicate of parent
— Child has a program loaded into it

 UNIX examples
— fork () system call creates new process

— exec () system call used after a fork () to replace the
process’ memory space with a new program

parent resumes

child : exec()

Colorado State University

20

Fork () to create a child process

* Fork creates a copy of process

e Return value from fork (): intege-
— When > 0:

* Runningin (original) Parent process
* return value is pid of new child

— When =0:
* Runningin new Child process

— When < O:;

* Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

* Runningin original process

* All of the state of original process duplicated in
both Parent and Child! ume.

— Memory, File Descriptors (next topic&(ﬁtc.ud State Uni ersity
Oorado Univ

21

Process Management System Calls

UNIX fork — system call to create a copy of the current process,
and start it running

— No arguments!

UNIX exec — system call to change the program being run by the
current process. Several variations.

UNIX wait — system call to wait for a process to finish
Details: see man pages

Some examples:

22

pid_t pid = getpid(); /* get current processes PID */;
waitpid(cid, 0, 0); /* Wait for my child to terminate. */
exit (0); /* Quit*/

kill(cid, SIGKILL); /* Kill child*/

Colorado State University

http://man7.org/linux/man-pages/man3/execl.3.html

UNIX Process Management

23

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

fork

A
I

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

child

pid = fork();

if (pid ==0)
exec(...);

else
wait(pid);

parent

exec main () {
N
7
}
wait N
/
Colorado State University

C Program Forking Separate Process

#include {sys!t}rpes h> <sys/types.h> definitions of derived types
#include <stdio.h= <unistd.h> POSIX API

#include <unistd.h>

int main()

{

pid.t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */

wait (NULL);

printf("Child Complete"); execlp(3) - Linux man page
} http://linux.die.net/man/3/execlp
return 0;

} rado State University

http://linux.die.net/man/3/execlp

Forking PIDs

#include <sys/types.h>

#include <stdio.h>
#include <unistd.h>

int main(){

return O;

}
25

Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m
| am the parent with PID 494, my parent is 485, my child is 496
| am the child 0, my PID is 496

DateClient.java Newproc-posix_m
pid_t cid;

Child Complete
/* fork a child process */ Ys-MacBook-Air:ch3 ymalaiya$
cid = fork();

if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");
return 1;
}
else if (cid == 0) { /* child process */
printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is",NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */
printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

See Self_exercise in Tea ms httDS://WWW.tutoria|SDOint.com/C0mDi|e c_online.php

Colorado State University

https://www.tutorialspoint.com/compile_c_online.php

26

Wait/waitpid () allows caller to suspend execution
until child’s status is available
Process status availability

— Generally, after termination
— Or if process is stopped

pid_t waitpid(pid_t pid, int *status, int options);
The value of pid can be:

— 0 wait for any child process with same process group ID
(perhaps inherited)

— >0 wait for child whose process group ID is equal to the
value of pid

— -1 wait for any child process (equi to wait ())
Status: where status info needs to be saved

Colorado State University

27

Linux: fork ()

e Search for man fork()
 http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process
SYNOPSIS #include <unistd.h>
pid_t fork(void);
DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. ...
The child process and the parent process run in separate memory spaces...

The child process is an exact duplicate of the parent process except for the
following points:

RETURN VALUE On success, the PID of the child process is returned in the
parent, and 0 is returned in the child. On failure, -1 is returned in the

parent, no child process is created, and errno is set appropriately.
EXAMPLE See pipe(2) and wait(2).

errno is a global variable in errno.h

Colorado State University

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html

Process Group ID

28

Process group is a collection of related
processes

Each process has a process group 1D

Process group leader?

— Process with pid equal to pgid

A process group has an associated controlling
terminal, usually the user’s keyboard

— Control-C: sends interrupt signal (SIGINT) to all
processes in the process group

— Control-Z: sends the suspend signal (SIGSTOP) to
all processes in the process group

Applies to foreground processes: those interacting

With the terminal
Colorado State University

Process Groups

29

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.

By default, a Process Group comprises:

 Parent (and further ancestors)

* Siblings

e Children (and further descendants)

A process can only send signals to members of its
process group

e Signals are a limited form of inter-process communication
used in Unix.

* Signals can be sent using system call
— intkill(pid t pid, int sig);

Colorado State University

http://man7.org/linux/man-pages/man2/kill.2.html
http://man7.org/linux/man-pages/man2/kill.2.html

Process Termination

* Process executes last statement and then asks
the operating system to delete it using the
exit () system call.

— Returns status data from child to parent (viawait ())
— Process’ resources are deallocated by operating
system

* Parent may terminate the execution of children
processes usingthekill() system call.
Some reasons for doing so:

— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does
not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

Colorado State University

30

Process Termination

 Some operating systems do not allow child to exists if its
parent has terminated. If a process terminates, then all its
children must also be terminated.

— cascading termination. All children, grandchildren, etc. are
terminated.

— The termination is initiated by the operating system.

* The parent process may wait for termination of a child
process by using the wait () system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);

* If no parent waiting (did not invoke wait ()) processis a
zombie

* If parent terminated without invoking wait, processis an
orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process

table
Colorado State University

31

32

Multi-process Program Ex — Chrome Browser

e Early web browsers ran as single process

— If one web site causes trouble, entire browser can hang or
crash

* Google Chrome Browser is multiprocess with 3
different types of processes:

— Browser process manages user interface, disk and
network |/O
— Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website
opened
* Runsin sandbox restricting disk and network I/O, minimizing
effect of security exploits

— Plug-in process for each type of plug-in

8no @'ﬂ\ﬁley::ﬁp@.raﬂug System Cor * @0 BBC - Homepage ® E The New York Times - Breal FGoogte Chrome = The web | % \| ..

& =2 C () www.google.c chrome.ﬁntl,I'en,"ma*,l'download—mac.html?brand=¢l(2 / b §
@ chrome md Features / | English :)
Each tab represents a separate process ° °
o .- teUniversity

Multitasking

Colorado State University

33

Cooperating Processes

* Independent process cannot affect or be
affected by the execution of another process

* Cooperating process can affect or be affected
by the execution of another process

* Advantages of process cooperation
— Information sharing
— Computation speed-up
— Modularity

— Convenience

y Colorado State University

Interprocess Communication

35

Processes within a system may be independent or
cooperating

Cooperating process can affect or be affected by other
processes, including sharing data
Reasons for cooperating processes:

— Information sharing

— Computation speedup

— Modularity

— Convenience

Cooperating processes need interprocess communication
(IPC)

Two models of IPC
— Shared memory
— Message passing

Colorado State University

Producer-Consumer Problem

e Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

— unbounded-buffer places no practical limit on the
size of the buffer

— bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.

Where does the bounded buffer “start”?
- Itis circular

iy Colorado State University

Bounded-Buffer — Shared-Memory Solution

e Shared data
#define BUFFER SIZE 8

typedef struct { * in points to the next free position in the buffer
e out points to the first full position in the buffer.
) item; » Bufferis empty when in == out;
e Bufferis full when
item butfer [BUFFER _SIZE]; ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
int in = 0; e This scheme can only use BUFFER_SIZE-1
int out = 0;
elements
Out In
0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

Colorado State University

37

Bounded-Buffer — Producer

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced,;
in = (in + 1) % BUFFER_SIZE;

Out In

Colorado State University

38

Bounded Buffer — Consumer

item next consumed;

while (true) {
while (in == out)
; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Out In
' '
0 1 2 3 4 5 6 7

Colorado State University

39

40

Interprocess Communication — Shared Memory

Each process has its own private address
space.

An area of memory shared among the
processes that wish to communicate

The communication is under the control of Onl) one brocess
the user processes, not the operating system. [

shared memory

Major issue is to provide mechanism that w ata time
allow the user processes to synchronize#fiei
actions when they access shared memory.

— Synchronization is discussed in great details in a
later Chapter.

Example soon.

Colorado State University

Interprocess Communication — Message Passing

41

Mechanism for processes to communicate
and to synchronize their actions

Message system — processes communicate
with each other without resorting to shared

variables

IPC facility provides two operations:
— send(message)
— receive(message)

The message size is either fixed or variable

Colorado State University

Message Passing (Cont.)

* |If processes P and Q wish to communicate, they need
to:

— Establish a communication link between them
— Exchange messages via send/receive

* Implementation issues:
— How are links established?
— Can alink be associated with more than two processes?

— How many links can there be between every pair of
communicating processes?

— What is the capacity of a link?

— |Is the size of a message that the link can accommodate
fixed or variable?

— Is a link unidirectional or bi-directional?

Colorado State University

42

Message Passing (Cont.)

* Implementation of communication link
— Physical:

e Shared memory
e Hardware bus
* Network

— Logical: Options (details next)
* Direct (process to process) or indirect (mail box)
* Synchronous (blocking) or asynchronous (non-blocking)
» Automatic or explicit buffering

Colorado State University

43

	Slide 1
	Slide 2
	Slide 3: Electronic devices in lecture room
	Slide 4: Diagram of Process State
	Slide 5: Process Control Block (PCB)
	Slide 6: CPU Switch From Process to Process
	Slide 7: Context Switch
	Slide 8: Threads
	Slide 9: Process Control Block in Linux
	Slide 10: Process Scheduling
	Slide 11: Process Scheduling
	Slide 12: Ready Queue And Various I/O Device Queues
	Slide 13: Queues are fun
	Slide 14: Representation of Process Scheduling
	Slide 15: Schedulers
	Slide 16: Multitasking in Mobile Systems
	Slide 17: Processes creation & termination
	Slide 18: Process Creation
	Slide 19: A Tree of Processes in Linux
	Slide 20: Process Creation (Cont.)
	Slide 21: Fork () to create a child process
	Slide 22: Process Management System Calls
	Slide 23: UNIX Process Management
	Slide 24: C Program Forking Separate Process
	Slide 25: Forking PIDs
	Slide 26: wait/waitpid
	Slide 27: Linux: fork ()
	Slide 28: Process Group ID
	Slide 29: Process Groups
	Slide 30: Process Termination
	Slide 31: Process Termination
	Slide 32: Multi-process Program Ex – Chrome Browser
	Slide 33: Multitasking
	Slide 34: Cooperating Processes
	Slide 35: Interprocess Communication
	Slide 36: Producer-Consumer Problem
	Slide 37: Bounded-Buffer – Shared-Memory Solution
	Slide 38: Bounded-Buffer – Producer
	Slide 39: Bounded Buffer – Consumer
	Slide 40: Interprocess Communication – Shared Memory
	Slide 41: Interprocess Communication – Message Passing
	Slide 42: Message Passing (Cont.)
	Slide 43: Message Passing (Cont.)

