CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 6
Processes

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

We have seen

When does the child process begin execution? ok ().
What does fork() return?

— It returns the value 0 in the child process. ciws ppisnot zero
— In the parent fork() returns the PID of the child.

Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The
child process is a separate process.

getpid(), getppid()

rv = wait(&wstatus);
— Caller will block until the child exits or finishes.
— on success, returns PID of the terminated child; on error, -1 is returned.
— Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

Self exercise 3: Examine, compile and and run programes.

Colorado State University

Forking PIDs

#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main(){

}
3

return O;

parent resumes

> wait

pid_t cid; @
/* fork a child process */ ~
cid = fork(); o

if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");

return 1; Parent and the child processes

run concurrently.

}
else if (cid == 0) { /* child process */
printf("l am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/Is","Is" ,NULL);
}
else { /* parent process */
/* parent will wait for the child to complete */
printf("l am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");

Colorado State University

Producer-Consumer Problem

e Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

— unbounded-buffer places no practical limit on the
size of the buffer

— bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.

Where does the bounded buffer “start”?
- Itis circular

. Colorado State University

Bounded-Buffer — Shared-Memory Solution

e Shared data
#define BUFFER SIZE 8

typedef struct { * in points to the next free position in the buffer
e out points to the first full position in the buffer.
) item; » Bufferis empty when in == out;
e Bufferis full when
item butfer [BUFFER _SIZE]; ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
int in = 0; e This scheme can only use BUFFER_SIZE-1
int out = 0;
elements
Out In
0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

Colorado State University

Bounded-Buffer — Producer

item next_produced;
while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced,;
in = (in + 1) % BUFFER_SIZE;

Out In

Colorado State University

Bounded Buffer — Consumer

item next consumed;

while (true) {
while (in == out)
; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

Out In
' '
0 1 2 3 4 5 6 7

Colorado State University

Interprocess Communication — Shared Memory

Each process has its own private address
space.

An area of memory shared among the
processes that wish to communicate

The communication is under the control of Onl) one brocess
the user processes, not the operating system. [

shared memory

Major issue is to provide mechanism that w ata time
allow the user processes to synchronize#fiei
actions when they access shared memory.

— Synchronization is discussed in great details in a
later Chapter.

Example soon.

Colorado State University

Interprocess Communication — Message Passing

 Mechanism for processes to communicate
and to synchronize their actions

* Message system — processes communicate
with each other without resorting to shared

variables

* |PC facility provides two operations:
— send(message)
— receive(message)

* The message size is either fixed or variable

Colorado State University

Message Passing (Cont.)

* |If processes P and Q wish to communicate, they need
to:

— Establish a communication link between them
— Exchange messages via send/receive

* Implementation issues:
— How are links established?
— Can alink be associated with more than two processes?

— How many links can there be between every pair of
communicating processes?

— What is the capacity of a link?

— |Is the size of a message that the link can accommodate
fixed or variable?

— Is a link unidirectional or bi-directional?

Colorado State University

10

Message Passing (Cont.)

* Implementation of communication link
— Physical:

e Shared memory
e Hardware bus
* Network

— Logical: Options (details next)
* Direct (process to process) or indirect (mail box)
* Synchronous (blocking) or asynchronous (non-blocking)
» Automatic or explicit buffering

Colorado State University

11

Direct Communication

* Processes must name each other explicitly:

— send (P message) — send a message to process P

— receive(Q, message) — receive a message from
process Q

* Properties of communication link
— Links are established automatically

— A link is associated with exactly one pair of
communicating processes

— Between each pair there exists exactly one link

— The link may be unidirectional, but is usually bi-
directional

Colorado State University

12

Indirect Communication

 Messages are directed and received from
mailboxes (also referred to as ports)
— Each mailbox has a unique id
— Processes can communicate only if they share a mailbox

* Properties of communication link

— Link established only if processes share a common
mailbox

— A link may be associated with many processes

— Each pair of processes may share several communication
links

— Link may be unidirectional or bi-directional

Colorado State University

13

Indirect Communication

14

* QOperations

— create a new mailbox (port)
— send and receive messages through mailbox
— destroy a mailbox

* Primitives are defined as:
send(A, message) — send a message to mailbox A

receive(A, message) — receive a message from
mailbox A

Colorado State University

Indirect Communication

15

* Mailbox sharing
— P, P,, and P; share mailbox A
— P, sends; P, and P; receive

— Who gets the message?

e Possible Solutions

— Allow a link to be associated with at most two
processes

— Allow only one process at a time to execute a
receive operation

— Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Colorado State University

16

Synchronization(blocking or not)

 Message passing may be either blocking or non-

blocking

* Blocking is termed synchronous

— Blocking send -- sender is blocked until message is received

— Blocking receive -- receiver is blocked until a message is
available

* Non-blocking is termed asynchronous

— Non-blocking send -- sender sends message and continues

— Non-blocking receive -- the receiver receives:
A valid message, or
Null message

Different combinations possible
If both send and receive are blocking, we have a rendezvous.
Producer-Consumer problem: Easy if both block

Colorado State University

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

 Shared Memory
* Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

Colorado State University

17

Ex. POSIX Shared Memory (1)

= QOlder scheme (System V) us3d shmget(), shmat(), shmdt(), shmctl()
= POSIX Shared Memory

18

First process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

* Returns file descriptor (int)
* |dentified by name (string)

* Also used to open an existing segment to share it
Set the size of the object

ftruncate (shm fd, 4096);
map the shared memory segment in the address space of the process
ptr = mmap(0,SIZE, PROT READ | PROT WRITE,
MAP SHARED, shm fd, 0);
Now the process could write to the shared memory
sprintf (ptr, "Writing to shared memory") ;

Colorado State University

Ex. POSIX Shared memory (2)

= POSIX Shared Memory

e Other process opens shared memory object name
shm fd = shm open(name, O RDONLY, 0666) ;

e Returns file descriptor (int) which identifies the file
* map the shared memory object

ptr = mmap (0,SIZE, PROT READ, MAP SHARED,

shm £d4, 0);

* Now the proces:can read from to the shared memory object
* printf(“"%$s”, (char *)ptr);
 remove the shared memory object

shm unlink (name) ;

Please remember to unlink, name persists in OS.

Colorado State University

19

20

#include <sys/shm.h>
#include <sys/stat.h>

int main()

{
/* thesize (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name ="0S";

/* strings written to shared memory */
const char* message_0= "Hello";
const char* message_1="World!";

/* shared memory file descriptor */
intshm_fd;

/* pointer to shared memory object */
char* ptr;

/* create the shared memory object */
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

/* configure the size of the shared memory object */
ftruncate(shm_fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

/* write to the shared memory object */
sprintf(ptr, "%s", message_0);

ptr += strlen(message_0);
sprintf(ptr, "%s", messagel);
ptr += strlen(message_1);
return 0;

IPC POSIX Producer

See Self Exercises

Colorado State University

IPC POSIX Producer (details)

/* create the shared memory segment */

Shm_fd = Shm_Open(name, O_CREAT | O_RDWR, 0666); File descriptor FD:int that unique|y
identifies a file.

/* configure the size of the shared memory segment */

ftruncate(shm_fd,SIZE);

/* now map the shared memory segment in the address space of the process */
ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
if (ptr == MAP_FAILED) {

printf("Map failed\n");

return -1;

}
/**

* Now write to the shared memory region.
*

* Note we must increment the value of ptr after each write.
*/

sprintf(ptr,"%s",message0);

ptr += strlen(message0);

sprintf(ptr,"%s",messagel);

ptr += strlen(messagel);

sprintf(ptr,"%s",message2);

ptr += strlen(message?2);

return 0; Colorado State l]niversity

21 }

|IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */
const char* name = "OS";

/* shared memory file descriptor */
intshm_fd;

/* pointer to shared memory object */
char *ptr;

/* open the shared memory object */
shm_fd = shm_open(name, O_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

/* read from the shared memory object */
printf("%s", (char*)ptr);

/* remove the shared memory object */
shm_unlink(name);
return 0;

Colorado State University

22

23

/* open the shared memory segment */

*/

IPC POSIX Consumer (details)

Bit mask created
by ORing flags

shm_fd = shm_open(name, O_RDONLY, 0666);
if (shm_fd ==-1) {
printf("shared memory failed\n");
exit(-1);
} Memory
protection

/* now map the shared memory segs In the address space of the process

ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

if (ptr == MAP_FAILED) {
printf("Map failed\n");
exit(-1);

}

/* now read and print from the shared memory region */
printf("%s",ptr);

/* remove the shared memory segment */

if (shm_unlink(name) ==-1) {
printf("Error removing %s\n",name);
exit(-1);

} Colorado State University

Communications in Client-Server Systems

e Sockets
* Pipes

Colorado State University

24

Socket Communication

host X
(146.86.5.20) 80: HTTP (well known)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

* CS457 Computer
Networks and the
Internet

Colorado State University

25

Conduit allowing two processes to communicate

* Ordinary (“anonymous”) pipes —Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

— Cannot be accessed from outside the process that
created it.

— Created using pipe() in Linux.

 Named pipes (“FIFO”) — can be accessed without a
parent-child relationship.

— Created using fifo() in Linux.

Colorado State University

26

Ordinary Pipes

27

Ordinary Pipes allow communication in standard producer-
consumer style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the
pipe)

Ordinary pipes are therefore unidirectional (half duplex)

Require parent-child relationship between communicating
processes

pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the
write-end

parent child
fd[O] fd[1] fd[O] fd[1]

E E

Windows calls these anonymous pipes

Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

Colorado State University

Ordinary Pipes

= Pipeis a special type of file.
= Ends identified by file descriptors (FDs).
= |nherited by the child as FDs
= Flow: from Write End of P/C to Read End of C/P

= Must close unused portions of the the pipe

= Next example: Parent to child information flow

parent child
fd[0] fd[1] fd[0] fd[1]

SR

Colorado State University

28

29

UNIX pipe example 1/2 (parent)

. parent child
#define READ_END O fd[0] fd[1] fd0] fd[1]
#define WRITE_END 1

— ipe : ‘J
int fd[2]; PP :

create the pipe: : .
f (pipe(fd) == -1) { Direction of flow

fprintf(stderr,"Pipe failed");
return 1;

fork a child process: Child inherits
pid = fork();

the pipe

parent process:
/* close the unused end of the pipe */
close(fd[READ _END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */

close(fd[WRITE_END]);
Colorado State University

UNIX pipe example 2/2 (child)

parent child
fd[0] fd[1] fd[0] fd[1]

S
child process: m

/* close the unused end of the pipe */
close(fd[WRITE_END]);

/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);

/* close the write end of the pipe */
close(fd[READ_END]);

See Self Exercises

. Colorado State University

Named Pipes

31

Named Pipes (termed FIFO) are more
powerful than ordinary pipes

Communication is bidirectional

No parent-child relationship is necessary
between the communicating processes

Several processes can use the named pipe
for communication

Provided on both UNIX and Windows
systems

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Threads

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

32

Chapter 4: Threads

Objectives:

Thread—Dbasis of multithreaded systems
APIs for the Pthreads and Java thread libraries
implicit threading, multithreaded programming

OS support for threads

code data

files

code

data

files

registers

stack

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

34—— thread

single-threaded process

multithreaded process

ColoradosState University

34

Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

Colorado State University

Modern applications are multithreaded

 Most modern applications are multithreaded
— Became common with GUI

« Threads run within application

« Multiple tasks with the application can be
Implemented by separate threads
— Update display
— Fetch data

— Spell checking
— Answer a network request

* Process creation is heavy-weight while thread
creation is light-weight

« Can simplify code, increase efficiency
» Kernels are generally multithreaded

Colorado State University

35

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request
server > thread

U

(3) resume listening
for additional
client requests

Y

client

Colorado State University

36

37

 Responsiveness — may allow continued execution
if part of process is blocked, especially important for
user interfaces

 Resource Sharing — threads share resources of
process, easier than shared memory or message

passing
« Economy - cheaper than process creation (10-100

times), thread switching lower overhead than context
switching

« Scalability — process can take advantage of
multiprocessor architectures

Colorado State University

Multicore Programming

* Multicore or multiprocessor systems putting
pressure on programmers, challenges include:
— Dividing activities
— Balance
— Data splitting
— Data dependency
— Testing and debugging

« Parallelism implies a system can perform more than
one task simultaneously
— Extra hardware needed for parallel execution
« Concurrency supports more than one task making
progress
— Single processor / core: scheduler providing concurrency

Colorado State University

38

Concurrency vs. Parallelism

n Concurrent execution on single-core system:

single core T4 To T3 Ty T4 T5 T3 T4 T4 . ‘
time
n Parallelism on a multi-core system:
core 1 T4 Ts T4 Ts T4
core 2 To Ty To Ty To
time R
19 Colorado State University

Multicore Programming (Cont.)

« Types of parallelism

— Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

— Task parallelism — distributing threads across cores,
each thread performing unique operation
« As # of threads grows, so does architectural
support for threading
— CPUs have cores as well as hardware threads

* e.g. hyper-threading

— Oracle SPARC T4 with 8 cores, and 8 hardware threads per core
(total 64 threads)

— AMD Ryzen 7 with 4 cores and 8 threads

Colorado State University

40

41

Single and Multithreaded Processes

code

data

files

registers

registers

registers

code data files
registers stack
thread ——>

stack

stack

stack

single-threaded process

<

— thread

multithreaded process

Colorado State University

Process vs Thread

42

All threads in a process have same address
space (text, data, open files, signals etc.),
same global variables

Each thread has its own

— Thread ID

— Program counter

— Registers

— Stack: execution trail, local variables

— State (running, ready, blocked, terminated)

Thread is also a schedulable entity

Colorado State University

	Slide 1
	Slide 2: We have seen
	Slide 3: Forking PIDs
	Slide 4: Producer-Consumer Problem
	Slide 5: Bounded-Buffer – Shared-Memory Solution
	Slide 6: Bounded-Buffer – Producer
	Slide 7: Bounded Buffer – Consumer
	Slide 8: Interprocess Communication – Shared Memory
	Slide 9: Interprocess Communication – Message Passing
	Slide 10: Message Passing (Cont.)
	Slide 11: Message Passing (Cont.)
	Slide 12: Direct Communication
	Slide 13: Indirect Communication
	Slide 14: Indirect Communication
	Slide 15: Indirect Communication
	Slide 16: Synchronization(blocking or not)
	Slide 17: Examples of IPC Systems
	Slide 18: Ex. POSIX Shared Memory (1)
	Slide 19: Ex. POSIX Shared memory (2)
	Slide 20: IPC POSIX Producer
	Slide 21: IPC POSIX Producer (details)
	Slide 22: IPC POSIX Consumer
	Slide 23: IPC POSIX Consumer (details)
	Slide 24: Communications in Client-Server Systems
	Slide 25: Socket Communication
	Slide 26: Pipes
	Slide 27: Ordinary Pipes
	Slide 28: Ordinary Pipes
	Slide 29: UNIX pipe example 1/2 (parent)
	Slide 30: UNIX pipe example 2/2 (child)
	Slide 31: Named Pipes
	Slide 32
	Slide 33
	Slide 34: Chapter 4: Threads
	Slide 35: Modern applications are multithreaded
	Slide 36: Multithreaded Server Architecture
	Slide 37: Benefits
	Slide 38: Multicore Programming
	Slide 39: Concurrency vs. Parallelism
	Slide 40: Multicore Programming (Cont.)
	Slide 41: Single and Multithreaded Processes
	Slide 42: Process vs Thread

