
1 1

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 6

Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

We have seen
• When does the child process begin execution? fork ().

• What does fork() return?
– It returns the value 0 in the child process. Child’s PID is not zero

– In the parent fork() returns the PID of the child.
• Fork is not a branch or a function call like the ordinary programs you have worked with in the past. The

child process is a separate process.

• getpid(), getppid()

• rv = wait(&wstatus);
– Caller will block until the child exits or finishes.

– on success, returns PID of the terminated child; on error, -1 is returned.

– Status in wstatus variable, extracted using WEXITSTATUS(wstatus)

• Self exercise 3: Examine, compile and and run programs.

3

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){
 pid_t cid;

 /* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
 return 1;
 }
 else if (cid == 0) { /* child process */
 printf("I am the child %d, my PID is %d\n", cid, getpid());
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process */
 /* parent will wait for the child to complete */
 printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
 wait(NULL);

 printf("Child Complete\n");
 }

 return 0;
}

Parent and the child processes
run concurrently.

4

Producer-Consumer Problem

• Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process

– unbounded-buffer places no practical limit on the
size of the buffer

– bounded-buffer assumes that there is a fixed
buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.
Where does the bounded buffer “start”?
- It is circular

5

Bounded-Buffer – Shared-Memory Solution

• Shared data

#define BUFFER_SIZE 8

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• in points to the next free position in the buffer
• out points to the first full position in the buffer.
• Buffer is empty when in == out;
• Buffer is full when
 ((in + 1) % BUFFER SIZE) == out. (Circular buffer)
• This scheme can only use BUFFER_SIZE-1

elements

Out In

0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

6

Bounded-Buffer – Producer

item next_produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* do nothing */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

Out In

0 1 2 3 4 5 6 7

7

Bounded Buffer – Consumer

item next_consumed;

while (true) {

 while (in == out)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

Out In

0 1 2 3 4 5 6 7

8

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.

• Example soon.

Only one process
may access

shared memory

at a time

9

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)

– receive(message)

• The message size is either fixed or variable

10

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

11

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)

• Synchronous (blocking) or asynchronous (non-blocking)

• Automatic or explicit buffering

12

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P

– receive(Q, message) – receive a message from
process Q

• Properties of communication link
– Links are established automatically

– A link is associated with exactly one pair of
communicating processes

– Between each pair there exists exactly one link

– The link may be unidirectional, but is usually bi-
directional

13

Indirect Communication

• Messages are directed and received from
mailboxes (also referred to as ports)
– Each mailbox has a unique id

– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox

– A link may be associated with many processes

– Each pair of processes may share several communication
links

– Link may be unidirectional or bi-directional

14

Indirect Communication

• Operations

– create a new mailbox (port)

– send and receive messages through mailbox

– destroy a mailbox

• Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from
mailbox A

15

Indirect Communication

• Mailbox sharing

– P1, P2, and P3 share mailbox A

– P1, sends; P2 and P3 receive

– Who gets the message?

• Possible Solutions

– Allow a link to be associated with at most two
processes

– Allow only one process at a time to execute a
receive operation

– Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

16

Synchronization(blocking or not)

• Message passing may be either blocking or non-
blocking

• Blocking is termed synchronous
– Blocking send -- sender is blocked until message is received

– Blocking receive -- receiver is blocked until a message is
available

• Non-blocking is termed asynchronous
– Non-blocking send -- sender sends message and continues

– Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

 Different combinations possible
 If both send and receive are blocking, we have a rendezvous.

 Producer-Consumer problem: Easy if both block

17

Examples of IPC Systems

OSs support many different forms of IPC*. We will look at
two of them

• Shared Memory

• Pipes

* Linux kernel supports: Signals, Anonymous Pipes, Named Pipes or FIFOs,
SysV Message Queues, POSIX Message Queues, SysV Shared memory, POSIX
Shared memory, SysV semaphores, POSIX semaphores, FUTEX locks, File-
backed and anonymous shared memory using mmap, UNIX Domain Sockets,
Netlink Sockets, Network Sockets, Inotify mechanisms, FUSE subsystem, D-Bus
subsystem

18

Ex. POSIX Shared Memory (1)

▪ Older scheme (System V) us3d shmget(), shmat(), shmdt(), shmctl()
▪ POSIX Shared Memory

• First process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

• Returns file descriptor (int)

• Identified by name (string)

• Also used to open an existing segment to share it

• Set the size of the object

 ftruncate(shm_fd, 4096);

• map the shared memory segment in the address space of the process

 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE,

 MAP_SHARED, shm_fd, 0);

• Now the process could write to the shared memory
 sprintf(ptr, "Writing to shared memory");

19

Ex. POSIX Shared memory (2)

▪ POSIX Shared Memory
• Other process opens shared memory object name
shm_fd = shm_open(name, O_RDONLY, 0666);

• Returns file descriptor (int) which identifies the file

• map the shared memory object

 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED,

 shm_fd, 0);

• Now the process can read from to the shared memory object

• printf(“%s”, (char *)ptr);

• remove the shared memory object

 shm_unlink(name);

Please remember to unlink, name persists in OS.

20

IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{
 /* the size (in bytes) of shared memory object */
 const int SIZE = 4096;

 /* name of the shared memory object */
 const char* name = "OS";

 /* strings written to shared memory */
 const char* message_0 = "Hello";
 const char* message_1 = "World!";

 /* shared memory file descriptor */
 int shm_fd;

 /* pointer to shared memory object */
 char* ptr;

 /* create the shared memory object */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory object */
 ftruncate(shm_fd, SIZE);

 /* memory map the shared memory object */
 ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

 /* write to the shared memory object */
 sprintf(ptr, "%s", message_0);

 ptr += strlen(message_0);
 sprintf(ptr, "%s", message1);
 ptr += strlen(message_1);
 return 0;

See Self Exercises

21

IPC POSIX Producer (details)
 /* create the shared memory segment */
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 /* configure the size of the shared memory segment */
 ftruncate(shm_fd,SIZE);

 /* now map the shared memory segment in the address space of the process */
 ptr = mmap(0,SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
 printf("Map failed\n");
 return -1;
 }

 /**
 * Now write to the shared memory region.
 *
 * Note we must increment the value of ptr after each write.
 */
 sprintf(ptr,"%s",message0);
 ptr += strlen(message0);
 sprintf(ptr,"%s",message1);
 ptr += strlen(message1);
 sprintf(ptr,"%s",message2);
 ptr += strlen(message2);

 return 0;
}

File descriptor FD: int that uniquely
identifies a file.

22

IPC POSIX Consumer
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()
{
 /* the size (in bytes) of shared memory object */
 const int SIZE = 4096;

 /* name of the shared memory object */
 const char* name = "OS";

 /* shared memory file descriptor */
 int shm_fd;

 /* pointer to shared memory object */
 char *ptr;

 /* open the shared memory object */
 shm_fd = shm_open(name, O_RDONLY, 0666);

 /* memory map the shared memory object */
 ptr = mmap(0, SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);

 /* read from the shared memory object */
 printf("%s", (char*)ptr);

 /* remove the shared memory object */
 shm_unlink(name);
 return 0;
}

23

IPC POSIX Consumer (details)
/* open the shared memory segment */
 shm_fd = shm_open(name, O_RDONLY, 0666);
 if (shm_fd == -1) {
 printf("shared memory failed\n");
 exit(-1);
 }

 /* now map the shared memory segment in the address space of the process
*/
 ptr = mmap(0,SIZE, PROT_READ, MAP_SHARED, shm_fd, 0);
 if (ptr == MAP_FAILED) {
 printf("Map failed\n");
 exit(-1);
 }

 /* now read and print from the shared memory region */
 printf("%s",ptr);

 /* remove the shared memory segment */
 if (shm_unlink(name) == -1) {
 printf("Error removing %s\n",name);
 exit(-1);
 }

Bit mask created
by ORing flags

Mode

Memory
protection

Flag

24

Communications in Client-Server Systems

• Sockets

• Pipes

• Remote Procedure Calls

– Calling a function on another machine through
the network.

• Remote Method Invocation (Java)

– Object oriented version of RPC

25

Socket Communication

• CS457 Computer
Networks and the
Internet

80: HTTP (well known)

26

Pipes

Conduit allowing two processes to communicate

• Ordinary (“anonymous”) pipes –Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.
– Cannot be accessed from outside the process that

created it.

– Created using pipe() in Linux.

• Named pipes (“FIFO”) – can be accessed without a
parent-child relationship.
– Created using fifo() in Linux.

27

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-
consumer style
▪ Producer writes to one end (the write-end of the pipe)
▪ Consumer reads from the other end (the read-end of the

pipe)
▪ Ordinary pipes are therefore unidirectional (half duplex)
▪ Require parent-child relationship between communicating

processes
▪ pipe (int fd[]) to create pipe, fd[0] is the read-end, fd[1] is the

write-end

▪ Windows calls these anonymous pipes
Arrows do not Show direction of transfer
Right: write-end for parent or child

For a process the file descriptors identify specific files.

28

Ordinary Pipes

▪ Pipe is a special type of file.

▪ Ends identified by file descriptors (FDs).

▪ Inherited by the child as FDs

▪ Flow: from Write End of P/C to Read End of C/P
▪ Must close unused portions of the the pipe

▪ Next example: Parent to child information flow

29

UNIX pipe example 1/2 (parent)

#define READ_END 0
#define WRITE_END 1

 int fd[2];

create the pipe:
 if (pipe(fd) == -1) {
 fprintf(stderr,"Pipe failed");
 return 1;
fork a child process:
 pid = fork();

parent process:
 /* close the unused end of the pipe */
 close(fd[READ_END]);

 /* write to the pipe */
 write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

 /* close the write end of the pipe */
 close(fd[WRITE_END]);

Child inherits
the pipe

Direction of flow

30

UNIX pipe example 2/2 (child)

child process:

 /* close the unused end of the pipe */

 close(fd[WRITE_END]);

 /* read from the pipe */

 read(fd[READ_END], read_msg, BUFFER_SIZE);

 printf("child read %s\n",read_msg);

 /* close the write end of the pipe */

 close(fd[READ_END]);

direction

See Self Exercises

31

Named Pipes

• Named Pipes (termed FIFO) are more
powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary
between the communicating processes

• Several processes can use the named pipe
for communication

• Provided on both UNIX and Windows
systems

32 32

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

33 33

Chapter 4: Threads

Objectives:
• Thread—basis of multithreaded systems

• APIs for the Pthreads and Java thread libraries

• implicit threading, multithreaded programming

• OS support for threads

34

Chapter 4: Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

35

Modern applications are multithreaded

• Most modern applications are multithreaded
– Became common with GUI

• Threads run within application

• Multiple tasks with the application can be
implemented by separate threads
– Update display

– Fetch data

– Spell checking

– Answer a network request

• Process creation is heavy-weight while thread
creation is light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

36

Multithreaded Server Architecture

37

Benefits

• Responsiveness – may allow continued execution
if part of process is blocked, especially important for
user interfaces

• Resource Sharing – threads share resources of
process, easier than shared memory or message
passing

• Economy – cheaper than process creation (10-100
times), thread switching lower overhead than context
switching

• Scalability – process can take advantage of
multiprocessor architectures

38

Multicore Programming

• Multicore or multiprocessor systems putting
pressure on programmers, challenges include:
– Dividing activities

– Balance

– Data splitting

– Data dependency

– Testing and debugging

• Parallelism implies a system can perform more than
one task simultaneously
– Extra hardware needed for parallel execution

• Concurrency supports more than one task making
progress
– Single processor / core: scheduler providing concurrency

39

Concurrency vs. Parallelism

n Concurrent execution on single-core system:

n Parallelism on a multi-core system:

40

Multicore Programming (Cont.)

• Types of parallelism
– Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

– Task parallelism – distributing threads across cores,
each thread performing unique operation

• As # of threads grows, so does architectural
support for threading
– CPUs have cores as well as hardware threads

• e.g. hyper-threading

– Oracle SPARC T4 with 8 cores, and 8 hardware threads per core
(total 64 threads)

– AMD Ryzen 7 with 4 cores and 8 threads

41

Single and Multithreaded Processes

42

Process vs Thread

• All threads in a process have same address
space (text, data, open files, signals etc.),
same global variables

• Each thread has its own
– Thread ID

– Program counter

– Registers

– Stack: execution trail, local variables

– State (running, ready, blocked, terminated)

• Thread is also a schedulable entity

	Slide 1
	Slide 2: We have seen
	Slide 3: Forking PIDs
	Slide 4: Producer-Consumer Problem
	Slide 5: Bounded-Buffer – Shared-Memory Solution
	Slide 6: Bounded-Buffer – Producer
	Slide 7: Bounded Buffer – Consumer
	Slide 8: Interprocess Communication – Shared Memory
	Slide 9: Interprocess Communication – Message Passing
	Slide 10: Message Passing (Cont.)
	Slide 11: Message Passing (Cont.)
	Slide 12: Direct Communication
	Slide 13: Indirect Communication
	Slide 14: Indirect Communication
	Slide 15: Indirect Communication
	Slide 16: Synchronization(blocking or not)
	Slide 17: Examples of IPC Systems
	Slide 18: Ex. POSIX Shared Memory (1)
	Slide 19: Ex. POSIX Shared memory (2)
	Slide 20: IPC POSIX Producer
	Slide 21: IPC POSIX Producer (details)
	Slide 22: IPC POSIX Consumer
	Slide 23: IPC POSIX Consumer (details)
	Slide 24: Communications in Client-Server Systems
	Slide 25: Socket Communication
	Slide 26: Pipes
	Slide 27: Ordinary Pipes
	Slide 28: Ordinary Pipes
	Slide 29: UNIX pipe example 1/2 (parent)
	Slide 30: UNIX pipe example 2/2 (child)
	Slide 31: Named Pipes
	Slide 32
	Slide 33
	Slide 34: Chapter 4: Threads
	Slide 35: Modern applications are multithreaded
	Slide 36: Multithreaded Server Architecture
	Slide 37: Benefits
	Slide 38: Multicore Programming
	Slide 39: Concurrency vs. Parallelism
	Slide 40: Multicore Programming (Cont.)
	Slide 41: Single and Multithreaded Processes
	Slide 42: Process vs Thread

