CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 7 Threads

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Threads

Amdahl’s law

Kernel support for threads
Pthreads

Java Threads

Implicit threading

Colorado State University

UNIX pipe example

parent child
Parent Process: fd[o] fd[1] fd[0] fd[1]

#define READ_END 0
#define WRITE_END 1

int fd[2]; "(pipe O‘_l

create the pipe:
if (pipe(fd) == -1) {
fprintf(stderr,"Pipe failed");
return 1;

Direction of flow
Parent to child

fork a child process:
pid = fork();

parent process:
close(fd[READ_END]); /* close the unused end of the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1); /* write to the pipe */
close(fd[WRITE_END]); /* close the write end of the pipe */

child process:
close(fd[WRITE_END]); /* close the unused end of the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE); /* read from the pipe */
printf("child read %s\n",read_msg);
close(fd[READ_END]); /* close the write end of the pipe */

Synchronization not considered here to keep illustration simple.

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Threads

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Chapter 4: Threads

Objectives:

Thread—Dbasis of multithreaded systems
APIs for the Pthreads and Java thread libraries
implicit threading, multithreaded programming

OS support for threads

code data

files

code

data

files

registers

stack

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

34—— thread

single-threaded process

multithreaded process

ColoradoState University

Concurrency vs. Parallelism

Concurrent execution on single-core system:

single core T4 To T3 Ty T4 T5 T3 T4 T4 . ‘
time
Parallelism on a multi-core system:
core 1 T4 Ts T4 Ts T4
core 2 To Ty To Ty To
time R
) Colorado State University

Amdahl’'s Law: Multicore systems

|dentifies performance gains from adding additional cores to an
application that has both serial and parallel components.

S is serial portion (as a fraction) that cannot be broken into
parallel operations.

Some things can possibly be done in parallel.
N processing cores

1
s+

speedup <

Example: if application is 75% parallel / 25% serial, moving from
1 to 2 cores results in speedup of

1/(0.25+ 0.75/2) = 1.6 times
As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

Colorado State University

Amdahls law: ordinary life example

* Amdahls law: ordinary life example.
Which of the two option is faster?

— Person A cooks, person B eats and then Person C
eats.

— Person A cooks, then both person B and person C
eat at the same time.

4
439

Colorado State University

User Threads and Kernel Threads

» User threads - management done
by user-level threads library

 Three main thread libraries:
— POSIX Pthreads
— Windows threads
— Java threads

« Kernel threads - Supported by the
Kernel
— Examples — virtually all general-purpose
operating systems, including:
* Windows

* Linux
e Mac OS X

Colorado State University

Multithreading Models

10

How do kernel threads support user process
threads?

« Many-to-One: Many user-level threads mapped to
single kernel thread (thread library in user space

older model)

* One-to-One: (now common)

* Many-to-Many: Allows many user level threads to
be mapped to smaller or equal number of kernel
th readS (older systems)

Colorado State University

Many-to-One

11

Many user-level threads mapped
to single kernel thread (thread
library in user space older model)

One thread blocking causes all
to block

Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

Few systems currently use this
model

Examples:

— Solaris Green Threads for Java
1996

— GNU Portable Threads 2006

SN

<«— kernel thread

Colorado State University

« Each user-level thread maps to kernel
thread

« Creating a user-level thread creates a
kernel thread

* More concurrency than many-to-one

 Number of threads per process
sometimes restricted due to overhead

 Examples ;

— Windows

— Linux
— Solaris 9 and later
<«—kernel thread

Colorado State University

<«— user thread

12

Many-to-Many Model

* Allows many user level
threads to be mapped to
smaller or equal number
of kernel threads ; ;

* Allows the operating
system to create a ;
sufficient number of kernel
threads

« Solaris prior to version 9

2002-3

 Windows with the
ThreadFiber package T kemel thread

24— user thread

Colorado State University

13

Two-level Model

« Similar to M:M, except that it allows a

user thread to be bound to a kernel
thread

 Examples ; ; ; e
— |RIX -2006
— HP-UX
— True4 UNIX
— Solaris 8 and earlier @ —— emel tread

y Colorado State University

Thread Libraries

* Thread library provides programmer
with API for creating and managing
threads

« Two primary ways of implementing

— Library entirely in user space
— Kernel-level library supported by the OS

Colorado State University

15

POSIX Pthreads

16

May be provided either as user-level or
kernel-level

A POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization 1991

Specification, not implementation

API specifies behavior of the thread library,
implementation is up to development of the
library

Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

Colorado State University

17

Some Pthread management functions

POSIX function Description

pthread cancel Terminate a thread

pthread create Create a thread

pthread detach Set thread to release resources

pthread exit Exit a thread without exiting process
pthread_Kkill Send a signal to a thread

pthread join Wait for a thread

pthread_self Find out own thread ID

e Return O if successful

Colorado State University

POSIX: Thread creation pthread create()

* Automatically makes the thread runnable without a
start operation

* Takes 3 parameters:

— Points to ID of newly created thread

— Attributes for the thread
— Stack size, scheduling information, etc.

— Name of function that the thread calls when it begins
execution with argument

[* create the thread */
pthread_create(&tid, &attr, runner, argv[1]);

Colorado State University

18

POSIX: Detaching and Joining

e pthread detach()

— Sets internal options to specify that storage for thread can
be reclaimed when it exits

— 1 parameter: Thread ID of the thread to detach

— Undetached threads don’t release resources until

* Another thread calls pthread_join for them
* Orthe whole process exits

* pthread_join
— Takes ID of the thread to wait for
— Suspends calling thread till target terminates

— Similar to waitpid at the process level
pthread join(tid, NULL);

Colorado State University

19

POSIX: Exiting and cancellation

* If a process calls exit, all threads terminate

e Call to pthread exit causes only the calling thread to
terminate

pthread_exit(0)

 Threads can force other threads to return through a
cancellation mechanism

— pthread_cancel (): takes thread ID of target
— Actual cancellation depends on type and state of thread

Colorado State University

20

Pthreads Example (next 2 slides)

* This process will have two threads

— Initial/main thread to execute the main () function. It
crates a new thread and waits for it to finish.

— A new thread that runs function runner ()

* It will get a parameter, an integer, and will compute the sum of all
integers from 1 to that number.

* New thread leaves the result in a global variable sum.

— The main thread prints the result.

Colorado State University

21

22

Pthreads Example Pt 1

#include <pthread.h>
#include <stdio.h>

int sum; /* this global data is shared by the thread(s) */

thread runner will
perform summation
int main(int argc, char *argvl]) of integers 1,2, ..n

{

pthread_t tid; /* the thread i1dentifier */
pthread_attr_t attr; /* set of attributes for the thread */

void *runner(void *param); /* the thread */

if (arge 1= 2) {
fprintf(stderr,"usage: a.out <integer value>\n");
[*exit(1);*/
return -1;

}

if (atoi(argv([1]) <0) {
fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));
[*exit(1);*/
return -1;

Colorado State University

23

Pthreads Example Pt 2

/* get the default attributes */
pthread_attr_init(&attr);
/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]); < Second thread begins in runner () function

/* now wait for the thread to exit */
pthread_join(tid, NULL);

printf("sum = %d\n", sum);

§

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;
if (upper > 0) {
for G = 1; 1 <= upper; i++)
sum +=1;
h
pthread_exit(0);
§

Compile using
gcc thrd.c —lpthread

Execution:

%./thrd 4
sum =10

Colorado State University

24

Pthreads Code for Multiple Threads

/* create the threads */
for (i=0; i < NUM_THREADS; i++)
pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */

for (i=0; i < NUM_THREADS; i++)
pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */
pthread_exit(0);
}

Colorado State University

Java Threads

« Java threads are managed by the JVM

« Typically implemented using the threads model
provided by underlying OS

« Java threads may be created by:

— Extending Thread class
* Override its run() method
Runnable interface is defined by

— More commonly, implementing the Runnable
interface public interface Runnable

{

1. Has 1 method run())

Create new Thread class by passingal . __ _
object to its constructor

3. start() method creates a new thread by calling
the run() method.

- new features available in java.util.concurrent package

public abstract void runf();

Colorado State University

25

Java Thread States

start() sleep() done, i/o

complete, lock available,
resume(), notify() or notifyAll()

Runnable

Non Runnable

(Blocked)

sleep(), block on 1/0, wait

run() method for lock, suspend(), wait()

exits
or stop()

Terminated

Colorado State University

26

https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread

27

Ex: Using Java Threads (1/3)

Java version of a multithreaded program that computes summation of a non-negative

integer.

This program creates a separate thread by implementing the Runnable interface.

class Sum
{
private int sum;
public int get() {
return sum;
}
public void set(int sum) {
this.sum = sum;
}
}

Program Overall Structure
class sum

{1}

class summation implements runnable

{..
public void run() {.. }

}

Public class Driver
public static void main(String[] args) {

Thread worker = new Thread(new summation(...
worker.start();

try {
worker.join(); ...

}

Colorado State University

28

Ex: Using Java Threads (2/3)

class Summation implements Runnable

{

private int upper;
private Sum sumValue;
//constructor
public Summation(int upper, Sum sumValue) {
if (upper < 0)
throw new lllegalArgumentException();

this.upper = upper;
this.sumValue = sumValue;

}

/Ithis method runs as a separate thread
public void run() {
int sum = 0;

for (inti=0;i<=upper; i++)
sum +=i;

sumValue.set(sum);

Colorado State University

Ex: Using Java Threads (3/3)

public class Driver

{

public static void main(String[] args) {

29

if (args.length 1= 1) {
System.err.printin("Usage Driver <integer>");
System.exit(0);

}

Sum sumObject = new Sum();
int upper = Integer.parselnt(args[0]);

Thread worker = new Thread(new Summation(upper, sumObject));
worker.start();

try {

worker.join();
} catch (InterruptedException ie) { }
System.out.printin("The sum of " + upper + " is " + sumObject.get());

Colorado State University

Implicit Threading

30

Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

Creation and management of threads done by compilers
and run-time libraries rather than programmers

Three methods explored

— Thread Pools

— OpenMP

— Grand Central Dispatch

Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

Colorado State University

Implicit Threading1: Thread Pools

* Create a number of threads in a pool where they await
work

« Advantages:

— Usually slightly faster to service a request with an
existing thread than create a new thread

— Allows the number of threads in the application(s) to be
bound to the size of the pool

— Separating task to be performed from mechanics of
creating task allows different strategies for running task

* i.e.Tasks could be scheduled to run periodically
« Posix thread pools
 Windows API supports thread pools.

Colorado State University

31

32

Implicit Threading2: OpenMP

« Set of compiler directives and an
API for C, C++, FORTRAN

* Provides support for parallel
programming in shared-memory
environments

* l|dentifies parallel regions —
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

#pragma omp parallel for
for (i=0;i<N;i++) {
c[i] = a[i] + b[i];
}
Run for loop in parallel

Compile using
gcc -fopenmp openmp.c

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([])

{

/* sequential code */
#pragma omp parallel

printf("I am a parallel region.");

}

/* sequential code */

return 0;

Self exercise 3, 4 available now.

Colorado State University

Implicit Threading3:Grand Central Dispatch

* Apple technology for Mac OS X and iOS
operating systems

« Extensions to C, C++ languages, API, and
run-time library

* Allows identification of parallel sections
* Manages most of the details of threading
* Blockisin “M Y}

- "{ printf ("I am a block"); }

* Blocks placed in dispatch queue

— Assigned to available thread in thread pool when
removed from queue

Colorado State University

33

Threading Issues

34

« Semantics of fork() and exec() system
calls

« Signal handling

— Synchronous and asynchronous

* Thread cancellation of target thread
— Asynchronous or deferred

* Thread-local storage

)

Colorado State University

Semantics of fork() and exec()

 Does fork () duplicate only the
calling thread rosixyor all threads?

— Some UNIXes soais have two versions of
fork

— 1. when exec() will replace the entire
process, dup just that thread

— 2. duplicate all threads

 exec () usually works as normal —
replace the running process including
all threads

Colorado State University

35

Signhal Handling

36

Signals are used in UNIX systems to notify a
process that a particular event has occurred.

A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

Every signal has default handler that kernel
runs when handling signal

— User-defined signal handler can override default
— Forsingle-threaded, signal delivered to process

Colorado State University

Signal Handling (Cont.)

* Where should a signal be delivered for
multi-threaded process?
— Deliver the signal to the thread to which the
signal applies?

— Deliver the signal to every thread in the
process?

— Deliver the signal to certain threads in the
process?

— Assign a specific thread to receive all signals
for the process? common

Colorado State University

37

Thread Cancellation

Terminating a thread before it has finished
Thread to be canceled is target thread

Two general approaches:

— Asynchronous cancellation terminates the target
thread immediately pthread_seteanceltype (PTHEAD_CANCEL ASYNCHRONOUS, NULL)

— Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Pthread code to create and cancel a thread:

pthread. t tid;

/% create the thread x/
pthread create(&tid, 0, worker, NULL);

/* cancel the thread x*/
pthread-cancel (tid) ;

Colorado State University

38

39

O O

Thread Cancellation (Cont.)

Invoking thread cancellation requests cancellation, but
actual cancellation depends on thread state

Mode State Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

A thread’s cancelation type (mode) and state can be set.

If thread has cancellation disabled, cancellation remains
pending until thread enables it

Default type is deferred
O Cancellation only occurs when thread reaches cancellation
point
» l.e. pthread testcancel ()
» Then cleanup handler is invoked
On Linux systems, thread cancellation is handled through
signals

Colorado State University

Thread-Local Storage

Thread-local storage (TLS) allows each thread
to have its own copy of data

« Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

« Different from local variables

— Local variables visible only during single function
Invocation

— TLS visible across function invocations
« Similar to static data
— TLS is unique to each thread

Colorado State University

40

s complexity always good?

* |s something that is
— More advanced
— More complex

Generally better?

Colorado State University

41

Hyper-threading

42

n.,

“Hyper-threading”: “simultaneous multithreading”:
— Hardware support for multiple threads in the same core
(CPU)
e Performance:

— performance improvements are very application-
dependent

— Higher energy consumption suw s
— Not better than out-of-order execution ..
— Intel has dropped it in some Chips coeir-sroo 201 & cores, s threads, core 9 10900k 2020 10

cores, 20threads

— Can cause security issues. Sometimes disabled by default.
— May be enabled/disabled using firmware

Colorado State University

Forms of Parallelism

— Pipelining: instruction flows though multiple levels

— Multiple issue: Instruction level Parallelism (ILP)
* Multiple instructions fetched at the same time
 Static: compiler scheduling of instructions

« Dynamic: hardware assisted scheduling of operations
— “Superscalar” processors

— CPU decides whether to issue 0, 1, 2, ... instructions
each cycle

— Thread or task level parallelism (TLP)
* Multiple processes or threads running at the same time

Colorado State University

43

Chapter 5: CPU Scheduling

44

Basic Concepts

Scheduling Criteria

Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Real-Time CPU Scheduling
Operating Systems Examples
Algorithm Evaluation

Colorado State University

45

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Ready to Running: scheduled by scheduler

Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output

Waiting to Ready: Input available

Colorado State University

	Slide 1
	Slide 2: Today
	Slide 3: UNIX pipe example
	Slide 4
	Slide 5
	Slide 6: Concurrency vs. Parallelism
	Slide 7: Amdahl’s Law: Multicore systems
	Slide 8: Amdahls law: ordinary life example
	Slide 9: User Threads and Kernel Threads
	Slide 10: Multithreading Models
	Slide 11: Many-to-One
	Slide 12: One-to-One
	Slide 13: Many-to-Many Model
	Slide 14: Two-level Model
	Slide 15: Thread Libraries
	Slide 16: POSIX Pthreads
	Slide 17: Some Pthread management functions
	Slide 18: POSIX: Thread creation pthread_create()
	Slide 19: POSIX: Detaching and Joining
	Slide 20: POSIX: Exiting and cancellation
	Slide 21: Pthreads Example (next 2 slides)
	Slide 22: Pthreads Example Pt 1
	Slide 23: Pthreads Example Pt 2
	Slide 24: Pthreads Code for Multiple Threads
	Slide 25: Java Threads
	Slide 26: Java Thread States
	Slide 27: Ex: Using Java Threads (1/3)
	Slide 28: Ex: Using Java Threads (2/3)
	Slide 29: Ex: Using Java Threads (3/3)
	Slide 30: Implicit Threading
	Slide 31: Implicit Threading1: Thread Pools
	Slide 32: Implicit Threading2: OpenMP
	Slide 33: Implicit Threading3:Grand Central Dispatch
	Slide 34: Threading Issues
	Slide 35: Semantics of fork() and exec()
	Slide 36: Signal Handling
	Slide 37: Signal Handling (Cont.)
	Slide 38: Thread Cancellation
	Slide 39: Thread Cancellation (Cont.)
	Slide 40: Thread-Local Storage
	Slide 41: Is complexity always good?
	Slide 42: Hyper-threading
	Slide 43: Forms of Parallelism
	Slide 44: Chapter 5: CPU Scheduling
	Slide 45: Diagram of Process State

