
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 Lecture 7 Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Today

• Threads

• Amdahl’s law

• Kernel support for threads

• Pthreads

• Java Threads

• Implicit threading

3

UNIX pipe example

Parent Process:

 #define READ_END 0

 #define WRITE_END 1

 int fd[2];

 create the pipe:

 if (pipe(fd) == -1) {

 fprintf(stderr,"Pipe failed");

 return 1;

 fork a child process:

 pid = fork();

 parent process:

 close(fd[READ_END]); /* close the unused end of the pipe */

 write(fd[WRITE_END], write_msg, strlen(write_msg)+1); /* write to the pipe */

 close(fd[WRITE_END]); /* close the write end of the pipe */

child process:

 close(fd[WRITE_END]); /* close the unused end of the pipe */

 read(fd[READ_END], read_msg, BUFFER_SIZE); /* read from the pipe */

 printf("child read %s\n",read_msg);

 close(fd[READ_END]); /* close the write end of the pipe */

Direction of flow
Parent to child

Synchronization not considered here to keep illustration simple.

4 4

Colorado State University
Yashwant K Malaiya

Threads

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

5 5

Chapter 4: Threads

Objectives:
• Thread—basis of multithreaded systems

• APIs for the Pthreads and Java thread libraries

• implicit threading, multithreaded programming

• OS support for threads

6

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

7

Amdahl’s Law: Multicore systems

Identifies performance gains from adding additional cores to an
application that has both serial and parallel components.

• S is serial portion (as a fraction) that cannot be broken into
parallel operations.

• Some things can possibly be done in parallel.

• N processing cores

• Example: if application is 75% parallel / 25% serial, moving from
1 to 2 cores results in speedup of

 1/(0.25+ 0.75/2) = 1.6 times

• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

8

Amdahls law: ordinary life example

• Amdahls law: ordinary life example.

 Which of the two option is faster?

– Person A cooks, person B eats and then Person C
eats.

– Person A cooks, then both person B and person C
eat at the same time.

A

B

C

A

B C

9

User Threads and Kernel Threads

• User threads - management done

by user-level threads library

• Three main thread libraries:

– POSIX Pthreads

– Windows threads

– Java threads

• Kernel threads - Supported by the

Kernel

– Examples – virtually all general-purpose

operating systems, including:

• Windows

• Linux

• Mac OS X

10

Multithreading Models

How do kernel threads support user process

threads?

• Many-to-One: Many user-level threads mapped to

single kernel thread (thread library in user space

older model)

• One-to-One: (now common)

• Many-to-Many: Allows many user level threads to

be mapped to smaller or equal number of kernel

threads (older systems)

11

Many-to-One

• Many user-level threads mapped
to single kernel thread (thread
library in user space older model)

• One thread blocking causes all
to block

• Multiple threads may not run in
parallel on muticore system
because only one may be in
kernel at a time

• Few systems currently use this
model

• Examples:
– Solaris Green Threads for Java

1996

– GNU Portable Threads 2006

12

One-to-One

• Each user-level thread maps to kernel
thread

• Creating a user-level thread creates a
kernel thread

• More concurrency than many-to-one

• Number of threads per process
sometimes restricted due to overhead

• Examples
– Windows

– Linux

– Solaris 9 and later

13

Many-to-Many Model

• Allows many user level
threads to be mapped to
smaller or equal number
of kernel threads

• Allows the operating
system to create a
sufficient number of kernel
threads

• Solaris prior to version 9
2002-3

• Windows with the
ThreadFiber package NT/2000

14

Two-level Model

• Similar to M:M, except that it allows a

user thread to be bound to a kernel

thread

• Examples

– IRIX -2006

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

15

Thread Libraries

• Thread library provides programmer

with API for creating and managing

threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

16

POSIX Pthreads

• May be provided either as user-level or
kernel-level

• A POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization 1991

• Specification, not implementation

• API specifies behavior of the thread library,
implementation is up to development of the

library

• Common in UNIX operating systems
(Solaris, Linux, Mac OS X)

17

Some Pthread management functions

POSIX function Description

pthread_cancel Terminate a thread

pthread_create Create a thread

pthread_detach Set thread to release resources

pthread_exit Exit a thread without exiting process

pthread_kill Send a signal to a thread

pthread_join Wait for a thread

pthread_self Find out own thread ID

• Return 0 if successful

18

POSIX: Thread creation pthread_create()

• Automatically makes the thread runnable without a
start operation

• Takes 3 parameters:

– Points to ID of newly created thread

– Attributes for the thread

– Stack size, scheduling information, etc.

– Name of function that the thread calls when it begins
execution with argument

/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]);

19

POSIX: Detaching and Joining

• pthread_detach()
– Sets internal options to specify that storage for thread can

be reclaimed when it exits

– 1 parameter: Thread ID of the thread to detach

– Undetached threads don’t release resources until
• Another thread calls pthread_join for them

• Or the whole process exits

• pthread_join
– Takes ID of the thread to wait for

– Suspends calling thread till target terminates

– Similar to waitpid at the process level

pthread_join(tid, NULL);

20

POSIX: Exiting and cancellation

• If a process calls exit, all threads terminate

• Call to pthread_exit causes only the calling thread to
terminate

pthread_exit(0)

• Threads can force other threads to return through a
cancellation mechanism

– pthread_cancel (): takes thread ID of target

– Actual cancellation depends on type and state of thread

21

Pthreads Example (next 2 slides)

• This process will have two threads

– Initial/main thread to execute the main () function. It
crates a new thread and waits for it to finish.

– A new thread that runs function runner ()
• It will get a parameter, an integer, and will compute the sum of all

integers from 1 to that number.

• New thread leaves the result in a global variable sum.

– The main thread prints the result.

22

Pthreads Example Pt 1
#include <pthread.h>

#include <stdio.h>

int sum; /* this global data is shared by the thread(s) */

void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{

pthread_t tid; /* the thread identifier */

pthread_attr_t attr; /* set of attributes for the thread */

if (argc != 2) {

 fprintf(stderr,"usage: a.out <integer value>\n");

 /*exit(1);*/

 return -1;

}

if (atoi(argv[1]) < 0) {

 fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));

 /*exit(1);*/

 return -1;

}

thread runner will
perform summation
of integers 1,2, ..n

23

Pthreads Example Pt 2
/* get the default attributes */

pthread_attr_init(&attr);

/* create the thread */

pthread_create(&tid, &attr, runner, argv[1]);

/* now wait for the thread to exit */

pthread_join(tid, NULL);

printf("sum = %d\n", sum);

}

/* The thread will begin control in this function */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

 if (upper > 0) {

 for (i = 1; i <= upper; i++)

 sum += i;

 }

 pthread_exit(0);

}

Compile using
gcc thrd.c –lpthread

Execution:
%./thrd 4
sum = 10

<- Second thread begins in runner () function

24

Pthreads Code for Multiple Threads

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], &attr, runner, NULL);

/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);
}
/* Each thread will begin control in this function */

void *runner(void *param)
{
 /* do some work ... */
pthread_exit(0);
}

25

Java Threads

• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:
– Extending Thread class

• Override its run() method

– More commonly, implementing the Runnable
interface

1. Has 1 method run()

2. Create new Thread class by passing a Runnable
object to its constructor

3. start() method creates a new thread by calling
the run() method.

 - new features available in java.util.concurrent package

Runnable interface is defined by

26

Java Thread States

https://www.javatpoint.com/life-cycle-of-a-thread

https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread
https://www.javatpoint.com/life-cycle-of-a-thread

27

Ex: Using Java Threads (1/3)

Java version of a multithreaded program that computes summation of a non-negative
integer.
This program creates a separate thread by implementing the Runnable interface.

class Sum
{

 private int sum;

 public int get() {
 return sum;
 }

 public void set(int sum) {

 this.sum = sum;
 }
}

Program Overall Structure
class sum
{ }
class summation implements runnable
{ …
 public void run() { .. }
}
Public class Driver
 { …..
 public static void main(String[] args) {

 Thread worker = new Thread(new summation(…
 worker.start();
 try {
 worker.join(); ….
 }

28

Ex: Using Java Threads (2/3)
class Summation implements Runnable

{

 private int upper;

 private Sum sumValue;

//constructor
 public Summation(int upper, Sum sumValue) {

 if (upper < 0)

 throw new IllegalArgumentException();

 this.upper = upper;

 this.sumValue = sumValue;

 }

//this method runs as a separate thread

 public void run() {

 int sum = 0;

 for (int i = 0; i <= upper; i++)

 sum += i;

 sumValue.set(sum);

 }

}

29

Ex: Using Java Threads (3/3)
public class Driver

{

 public static void main(String[] args) {

 if (args.length != 1) {

 System.err.println("Usage Driver <integer>");

 System.exit(0);

 }

 Sum sumObject = new Sum();

 int upper = Integer.parseInt(args[0]);

 Thread worker = new Thread(new Summation(upper, sumObject));

 worker.start();

 try {

 worker.join();

 } catch (InterruptedException ie) { }

 System.out.println("The sum of " + upper + " is " + sumObject.get());

 }

}

A call to
run()

30

Implicit Threading

• Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

• Creation and management of threads done by compilers

and run-time libraries rather than programmers

• Three methods explored

– Thread Pools

– OpenMP

– Grand Central Dispatch

• Other methods include Microsoft Threading Building
Blocks (TBB), java.util.concurrent package

31

Implicit Threading1: Thread Pools

• Create a number of threads in a pool where they await

work

• Advantages:

– Usually slightly faster to service a request with an

existing thread than create a new thread

– Allows the number of threads in the application(s) to be

bound to the size of the pool

– Separating task to be performed from mechanics of

creating task allows different strategies for running task

• i.e.Tasks could be scheduled to run periodically

• Posix thread pools

• Windows API supports thread pools.

32

Implicit Threading2: OpenMP

• Set of compiler directives and an

API for C, C++, FORTRAN

• Provides support for parallel

programming in shared-memory

environments

• Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

#pragma omp parallel for

for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

Compile using
gcc -fopenmp openmp.c

Self exercise 3, 4 available now.

33

Implicit Threading3:Grand Central Dispatch

• Apple technology for Mac OS X and iOS
operating systems

• Extensions to C, C++ languages, API, and
run-time library

• Allows identification of parallel sections

• Manages most of the details of threading

• Block is in “^{ }”

 - ˆ{ printf("I am a block"); }

• Blocks placed in dispatch queue
– Assigned to available thread in thread pool when

removed from queue

34

Threading Issues

• Semantics of fork() and exec() system

calls

• Signal handling

– Synchronous and asynchronous

• Thread cancellation of target thread

– Asynchronous or deferred

• Thread-local storage

35

Semantics of fork() and exec()

• Does fork()duplicate only the

calling thread (POSIX) or all threads?

– Some UNIXes (Solaris) have two versions of

fork

– 1. when exec() will replace the entire

process, dup just that thread

– 2. duplicate all threads

• exec() usually works as normal –

replace the running process including

all threads

36

Signal Handling

• Signals are used in UNIX systems to notify a
process that a particular event has occurred.

• A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

• Every signal has default handler that kernel
runs when handling signal

– User-defined signal handler can override default

– For single-threaded, signal delivered to process

37

Signal Handling (Cont.)

• Where should a signal be delivered for
multi-threaded process?

– Deliver the signal to the thread to which the
signal applies?

– Deliver the signal to every thread in the
process?

– Deliver the signal to certain threads in the
process?

– Assign a specific thread to receive all signals
for the process? common

38

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

– Asynchronous cancellation terminates the target

thread immediately

– Deferred cancellation allows the target thread to

periodically check if it should be cancelled

• Pthread code to create and cancel a thread:

pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

39

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but
actual cancellation depends on thread state

 A thread’s cancelation type (mode) and state can be set.
 If thread has cancellation disabled, cancellation remains

pending until thread enables it
 Default type is deferred

 Cancellation only occurs when thread reaches cancellation
point
 I.e. pthread_testcancel()
Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through
signals

40

Thread-Local Storage

Thread-local storage (TLS) allows each thread
to have its own copy of data

• Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)
– Ex: Each transaction has a thread and a transaction

identifier is needed.

• Different from local variables
– Local variables visible only during single function

invocation

– TLS visible across function invocations

• Similar to static data
– TLS is unique to each thread

41

Is complexity always good?

• Is something that is

– More advanced

– More complex

 Generally better?

42

Hyper-threading

“Hyper-threading”: “simultaneous multithreading”:
– Hardware support for multiple threads in the same core

(CPU)

• Performance:
– performance improvements are very application-

dependent

– Higher energy consumption ARM 2006

– Not better than out-of-order execution Intel 2013

– Intel has dropped it in some chips Core i7-9700K 2018 8 cores, 8 threads, Core i-9 10900K 2020 10

cores, 20 threads

– Can cause security issues. Sometimes disabled by default.

– May be enabled/disabled using firmware

43

Forms of Parallelism

– Pipelining: instruction flows though multiple levels

– Multiple issue: Instruction level Parallelism (ILP)

• Multiple instructions fetched at the same time

• Static: compiler scheduling of instructions

• Dynamic: hardware assisted scheduling of operations

– “Superscalar” processors

– CPU decides whether to issue 0, 1, 2, … instructions
each cycle

– Thread or task level parallelism (TLP)

• Multiple processes or threads running at the same time

44

Chapter 5: CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Thread Scheduling

• Multiple-Processor Scheduling

• Real-Time CPU Scheduling

• Operating Systems Examples

• Algorithm Evaluation

45

Diagram of Process State

Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: Input available

	Slide 1
	Slide 2: Today
	Slide 3: UNIX pipe example
	Slide 4
	Slide 5
	Slide 6: Concurrency vs. Parallelism
	Slide 7: Amdahl’s Law: Multicore systems
	Slide 8: Amdahls law: ordinary life example
	Slide 9: User Threads and Kernel Threads
	Slide 10: Multithreading Models
	Slide 11: Many-to-One
	Slide 12: One-to-One
	Slide 13: Many-to-Many Model
	Slide 14: Two-level Model
	Slide 15: Thread Libraries
	Slide 16: POSIX Pthreads
	Slide 17: Some Pthread management functions
	Slide 18: POSIX: Thread creation pthread_create()
	Slide 19: POSIX: Detaching and Joining
	Slide 20: POSIX: Exiting and cancellation
	Slide 21: Pthreads Example (next 2 slides)
	Slide 22: Pthreads Example Pt 1
	Slide 23: Pthreads Example Pt 2
	Slide 24: Pthreads Code for Multiple Threads
	Slide 25: Java Threads
	Slide 26: Java Thread States
	Slide 27: Ex: Using Java Threads (1/3)
	Slide 28: Ex: Using Java Threads (2/3)
	Slide 29: Ex: Using Java Threads (3/3)
	Slide 30: Implicit Threading
	Slide 31: Implicit Threading1: Thread Pools
	Slide 32: Implicit Threading2: OpenMP
	Slide 33: Implicit Threading3:Grand Central Dispatch
	Slide 34: Threading Issues
	Slide 35: Semantics of fork() and exec()
	Slide 36: Signal Handling
	Slide 37: Signal Handling (Cont.)
	Slide 38: Thread Cancellation
	Slide 39: Thread Cancellation (Cont.)
	Slide 40: Thread-Local Storage
	Slide 41: Is complexity always good?
	Slide 42: Hyper-threading
	Slide 43: Forms of Parallelism
	Slide 44: Chapter 5: CPU Scheduling
	Slide 45: Diagram of Process State

