CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 Lecture 8
Scheduling

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Forms of Parallelism

— Pipelining: instruction flows though multiple levels

— Multiple issue: Instruction level Parallelism (ILP)
» Multiple instructions fetched at the same time
 Static: compiler scheduling of instructions

« Dynamic: hardware assisted scheduling of operations
— “Superscalar” processors

— CPU decides whether to issue 0, 1, 2, ... instructions
each cycle

— Thread or task level parallelism (TLP)
* Multiple processes or threads running at the same time

Colorado State University

We have discussed ..

* Multiple threads within a process
 Amdahl’s law

« POSIX Pthreads

« Java threads

* Implicit threading including OpenMP
e Signals

 Hyperthreading

* etc

Colorado State University

Chapter 5: CPU Scheduling

* Basic Concepts

* Scheduling Criteria

* Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Real-Time CPU Scheduling

* Operating Systems Examples

e Algorithm Evaluation

Colorado State University

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Ready to Running: scheduled by scheduler

Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output

Waiting to Ready: Input available

Colorado State University

Basic Concepts

* Maximum CPU
utilization obtained
with multiprogramming

 CPU-I/O Burst Cycle —
Process execution
consists of a cycle of
CPU execution and I/O
wait

* CPU burst followed by
1/0 burst

e CPU burst distribution
is of main concern

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Colorado State University

Histogram of CPU-burst Times

160 |

140 |

120 |

-—t

o

o
]

(0¢]
o

frequency

B (o))
o o
T —

N
o
|

| | | |

0 8 16 24 32 40
burst duration (milliseconds)

]

Typical distribution of CPU bursts. Most CPU bursts are just a few ms.

Colorado State University

O O

CPU Scheduler

Short-term scheduler selects from among the processes
in ready queue, and allocates the CPU to one of them

0 Queue may be ordered in various ways

CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state Not
. . Controlled by
3. Switches from waiting to ready the process

4. Terminates
Scheduling under 1 and 4 is nonpreemns

All other scheduling is preemptive. These need to be
considered

O access to shared data by multiple processes

O preemption while in kernel mode

O interrupts occurring during crucial OS activities

Colorado State University

* Dispatcher module gives control of the
CPU to the process selected by the short-
term scheduler; this involves:

— switching context

— switching to user mode

— jumping to the proper location in the user
program to restart that program

* Dispatch latency — time it takes for the
dispatcher to stop one process and start
another running

Colorado State University

The Dispatcher wemstsoie

r

Colorado State University

10

Scheduling Criteria

11

CPU utilization — keep the CPU as busy as
possible: Maximize

Throughput — # of processes that complete their
execution per time unit: Maximize

Turnaround time —time to execute a process
from submission to completion: Minimize

Waiting time — amount of time a process has
been waiting in the ready queue: Minimize

Response time —time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing
environment): Minimize

Colorado State University

Terms for a single process

command
the first output of finicshes

command dppears E‘}{ECUtinE

command
command begins

dirives running

time
execution time
turnaround time
UCLA

Colorado State University

12

Scheduling Algorithms

We will now examine several major scheduling
approaches

* Decide which process in the ready queue is
allocated the CPU
* Could be preemptive or nonpreemptive

— preemptive: remove in middle of execution
(”forced”) — Involuntary]

. . deboarding!
« Optimize measure of interest =

— We will use Gantt charts to illustrate schedules
— Bar chart with start and finish times for processes

Colorado State University

13

https://www.youtube.com/watch?v=VrDWY6C1178
https://www.youtube.com/watch?v=VrDWY6C1178
https://www.youtube.com/watch?v=VrDWY6C1178

Non-preemptive vs Preemptive scheduling

* Non-preemptive: Process keeps CPU until it
relinquishes it when
— It terminates
— It switches to the waiting state
— Used by initial versions of OSs like Windows 3.x

* Preemptive scheduling

— Pick a process and let it run for a maximum of some
fixed time

— If it is still running at the end of time interval
e Suspend it and pick another process to run

* Aclock interrupt at the end of the time interval
to give control back of CPU back to scheduler

Colorado State University

14

Scheduling Algorithms

15

Basic algorithms

* First- Come, First-Served (FCFS)

e Shortest-Job-First (SJF)

— Shortest-remaining-time-first

* Priority Scheduling

* Round Robin (RR) with time quantum

Advanced algorithms

e Multilevel Queue
— Multilevel Feedback Queue

 “Completely fair”
Comparing Performance
* Average waiting time etc.

Some simplifying assumptions used for clarity.

Colorado State University

First- Come, First-Served (FCFS) Scheduling

* Process requesting CPU first, gets it first

* Managed with a FIFO queue

— When process enters ready queue
* PCB is tacked to the tail of the queue

— When CPU is free

* Itis allocated to process at the head of the queue

* Simple to write and understand

Colorado State University

16

17

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

Henry Gantt, Pl 24
1910s P, 3
P; 3

* Suppose that the processes arrive in the order: P, , P,,
P. but almost the same time.
The Gantt Chart for the schedule is:

P, P, | R
* WaitingtimeforP, = ; P, = ;P,=
e Average waitingtime: (+ +)/ =
* Throughput: / = per unit time

Pause for students to do the computation

Colorado State University

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

Henry Gantt, Pl 24
1910s P, 3
P; 3

* Suppose that the processes arrive in the order: P, , P,,
P. but almost the same time.
The Gantt Chart for the schedule is:

P, P

* Waiting timeforP, = 0; P, = 24; P;= 27
e Average waiting time: (0 + 24 +27)/3=17
* Throughput: 3/ 30 = 0.1 perunittime

Colorado State University

18

FCFS Scheduling (Cont.)

19

Suppose that the processes arrive in the order:

PZ ’ 'D3 ’ 'Dl
The Gantt chart for the schedule is:

0 3 6 30

The Convoy Effect, visualized

Waiting time for P, =6,P,=0.P;=3

Average waiting time: (6+0+3)/3=3
— Much better than previous case

But note -Throughput: 3/30 = 0.1 per unit same

Convoy effect - short processes behind a long process
— Consider one CPU-bound and many |I/O-bound processes

longer shorter jobs

O)__Jeb - e e
T -

Colorado State University

Shortest-Job-First (SJF) Scheduling

e Associate with each process the length of its next
CPU burst
— Use these lengths to schedule the process with the
shortest time
* Reduction in waiting time for short process
GREATER THAN Increase in waiting time for long
process

e SJF is optimal — gives minimum average waiting
time for a given set of processes

— The difficulty is knowing the length of the next CPU
request

— Estimate or could ask the user

Colorado State University

20

Example of SJF

21

Process Burst Time
P, 6
P, 8
P, 7
P, 3

* Allarrive at time 0.
e SJF scheduling chart: Draw it here.

* Average waiting time for P,,P,,P;,P, = (

Pause for students to do the computation

+ + +)/ =

Colorado State University

Example of SJF

Process Burst Time
P, 6
P, 3
P, 7
P, 3
e All arrive at time O.
e SJF scheduling chart
P P P P

4 1

* Average waiting time for P,,P,,P;,P,

22

16 24

=(3+16+9+0)/4=7

Colorado State University

23

Determining Length of Next CPU Burst

Can only estimate the length — should be similar to
the recent bursts

— Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU
bursts, using exponential averaging

1. ¢, =actual length of n” CPU burst
2. 7., =predicted value for the next CPU burst
3. a, 05 a <1

4. Define: 7w =« tn + (1 B a)z-n‘

Commonly, o set to 2

Colorado State University

Prediction of the Length of the Next CPU Burst

12 f
4 10 Blue line: guess
gL Red line: actual
L6 _
[~ a=0.5
4 F
Ex:
2r 0.5x6 +0.5x10 = 8
] |]
fimeg ——
CPU burst (t) 6 4 6 4 13 13 13
"guess" (1) 10 8 6 6 5 9 11 12
y Colorado State University

Examples of Exponential Averaging

* o=0
Toa1 =T Widely used for
— 'n+l T n)
' dicting stock-
— Recent history does not count predicting stoc
market etc
c a=1
— Th1 = A tn

— Only the actual last CPU burst counts
' T, =at +(1—a)rn.

* If we expand the formula, substituting for t,, we
get:
Top=ot+1l-ajot, 1+..
Hl-o)ot, +..
+H1-a)"t

* Since both o and (1 - a) are less than or equal to
1, each successive term has less weight than its
predecessor

Colorado State University

25

26

Shortest-remaining-time-first (preemptive SJF)

Preemptive version called shortest-remaining-time-first

Now we add the concepts of varying arrival times and
preemption to the analysis

Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

Preemptive SJF Gantt Chart

P| P

2

P

1 4

0 1 5 10 17 26
Average waiting time for P1,P2,P3,P4
= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

Colorado State University

Priority Scheduling

27

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority)

— Preemptive

— Nonpreemptive

SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

Problem = Starvation — low priority processes may
never execute

— Solution = Aging — as time progresses increase the priority of
the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094! ©

Colorado State University

Ex Priority Scheduling ...ccv

Process Burst Time Priority
P, 10 3
P2 1 1 (highest)
P, 2 4
P, 1 5
Ps 5 2

« P1,P2, P3, P4,P5 all arrive at time 0.
* Priority scheduling Gantt Chart

0 1 6 16 18 19

* Average waiting time for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec

Variation: Priority scheduling with preemption

Colorado State University

28

Round Robin (RR) with time quantum

29

Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds. After this, the process is
preempted, added to the end of the ready queue.

If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)g time units.

Timer interrupts every quantum to schedule next process

Performance

— g large = FIFO

— g small = g must be large with respect to context switch,
otherwise overhead is too high (overhead typically in 0.5%
range)

Colorado State University

Example of RR with Time Quantum = 4

Process Burst Time
P 24
P, 3
P; 3

0 4 7 10 14 18 22 26 30
Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch < 10 psec

Response time: Arrival to beginning of execution

30

Turnaround time: Arrival to finish of execution Colorado Statel] . ersity

31

RR: different arrival times

Process at the head of the Ready Queue is scheduled
first. You must track the Ready Queue.

* When a process is switched out, it gets into the Ready
Queue.

* When a new process arrives, it gets into the Ready
Queue.

 When a process A gets switched out and a new process
B arrives at the same time, which one gets into the
Ready Queue first?

— Assume the new process is placed first in the ready queue.

Colorado State University

Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Much smaller quantum compared to burst: many switches

. Colorado State University

Turnaround Time Varies With The Time Quantum

process | time
125 @ P, 6
12.0 | P 3
P 1
2 115F P, 7
2 11.0
§ .
€ 105
2 Rule of thumb: 80% of CPU bursts
qé) 100 should be shorter than g
(O]
s 95[Illustration
soll Consider q=7:
: P1,P2,P3,P4: all arrive at time 0 in this
I order.
Turnaround times for P1,P2,P3,P4:
I | I 1 1 1 6,9,10,17 av = 10.5
i 2 3 4 5 6 7 Similarly forq =1, ..6

time quantum

Students: Repeat for g = 1, ..6 at home to verify the plot.

Turnaround time: Arrival to finish of execution

s Colorado State University

Multilevel Queue

34

Ready queue is partitioned into separate queues,
e.g.:

— foreground (interactive)

— background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm, e.g.:
— foreground — RR

— background — FCFS

Scheduling must be done between the queues:

— Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation. Or

— Time slice — each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,
80% to foreground in RR, 20% to background in FCFS

Colorado State University

Multilevel Queue Scheduling

highest priority

| system processes)
) interactive processes ————
e interactive editing processes ——
) batch processes m—
ey student processes ————

lowest priority

Real-time processes may have the highest priority.

Colorado State University

35

Multilevel Feedback Queue

36

e A process can move between the various queues;
aging can be implemented this way

* Multilevel-feedback-queue scheduler defined by

the following parameters:
— number of queues

— scheduling algorithms for each queue
— method used to determine when to upgrade a process

— method used to determine when to demote a process

— method used to determine which queue a process will
enter when that process needs service

— Details at ARPACI-DUSSEAU

Inventor FJ Corbatd won the Touring award!

Colorado State University

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

Example of Multilevel Feedback Queue

 Three queues:

— Q,— RR with time quantum 8 milliseconds
— Q, —RR time quantum 16 milliseconds

il

Y

— @, —FCFS (no time quantum limit)

A 4

quantum = 8

* Scheduling

— A new job enters queue Q, which is served
FCES quantum = 16

L 4

Y

* When it gains CPU, job receives 8
milliseconds

* Ifitdoes not finish in 8 milliseconds, il
job is moved to queue Q,

k 4

Y

FCFS

— At Q, job is again served FCFS and receives
16 additional milliseconds

* Ifitstill does not complete, it is
preempted and moved to queue Q,

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

Colorado State University

37

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (con kolivas, Anaesthetist)
Variable time-slice based on number and priority of the tasks in
the queue.

— Maximum execution time based on waiting processes (Q/n).

— Fewer processes waiting, they get more time each

e Queue ordered in terms of “virtual run time”
e execution time on CPU added to value
— smallest value picked for using CPU

— small values: tasks have received less time on CPU
— 1/0 bound tasks (shorter crubursts Will have smaller values
* Balanced (red-black) tree to implement a ready queue;
— Efficient. O(log n) insert or delete time
* Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
— virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

Colorado State University

38

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

	Slide 1
	Slide 2: Forms of Parallelism
	Slide 3: We have discussed ..
	Slide 4: Chapter 5: CPU Scheduling
	Slide 5: Diagram of Process State
	Slide 6: Basic Concepts
	Slide 7: Histogram of CPU-burst Times
	Slide 8: CPU Scheduler
	Slide 9: Dispatcher
	Slide 10: The Dispatcher (dentist’s office)
	Slide 11: Scheduling Criteria
	Slide 12: Terms for a single process
	Slide 13: Scheduling Algorithms
	Slide 14: Non-preemptive vs Preemptive scheduling
	Slide 15: Scheduling Algorithms
	Slide 16: First- Come, First-Served (FCFS) Scheduling
	Slide 17: First- Come, First-Served (FCFS) Scheduling
	Slide 18: First- Come, First-Served (FCFS) Scheduling
	Slide 19: FCFS Scheduling (Cont.)
	Slide 20: Shortest-Job-First (SJF) Scheduling
	Slide 21: Example of SJF
	Slide 22: Example of SJF
	Slide 23: Determining Length of Next CPU Burst
	Slide 24: Prediction of the Length of the Next CPU Burst
	Slide 25: Examples of Exponential Averaging
	Slide 26: Shortest-remaining-time-first (preemptive SJF)
	Slide 27: Priority Scheduling
	Slide 28: Ex Priority Scheduling non-preemptive
	Slide 29: Round Robin (RR) with time quantum
	Slide 30: Example of RR with Time Quantum = 4
	Slide 31: RR: different arrival times
	Slide 32: Time Quantum and Context Switch Time
	Slide 33: Turnaround Time Varies With The Time Quantum
	Slide 34: Multilevel Queue
	Slide 35: Multilevel Queue Scheduling
	Slide 36: Multilevel Feedback Queue
	Slide 37: Example of Multilevel Feedback Queue
	Slide 38: Completely fair scheduler Linux 2.6.23

