CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L9
Scheduling, Synchronization

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

See Schedule/Proj Proposal or Canvas/Assignments

Choices: Research (topics provided) or development (IoT). Some
research/original thinking required for either.

* Deadlines: subject to revision.
— D1. Team composition and idea proposal, 10/04/25
— D2. Progress report, 10/25/25
— D3. Slides and final reports, 12/01/25
— DA4. Presentations/demos 12/8-12/11 as arranged
— D5: Peer Reviews due 12/13/25

* Teams: 2-3 students (see Teams channel “Project Teams”).
Separate for each section (001, 801)

, Colorado State University

CPU Scheduling

* Objective: maximize/minimize one or more metrics

— Average waiting time, CPU utilization, throughput etc..
* First Come First Served

* Shortest time first

— Without and with pre-emption
* Priority

— Without and with pre-emption

Colorado State University

Round Robin (RR) with time quantum

e Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds. After this, the process is
preempted, added to the end of the ready queue.

* If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)g time units.

 Timer interrupts every quantum to schedule next process

e Performance

— g large = FIFO

— g small = g must be large with respect to context switch,
otherwise overhead is too high (overhead typically in 0.5%
range)

Colorado State University

Example of RR with Time Quantum = 4

Process Burst Time
P 24
P, 3
P; 3

0 4 7 10 14 18 22 26 30
Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch < 10 psec

Response time: Arrival to beginning of execution

Turnaround time: Arrival to finish of execution Colorado Statel] . ersity

RR: different arrival times

Process at the head of the Ready Queue is scheduled
first. You must track the Ready Queue.

* When a process is switched out, it gets into the Ready
Queue.

* When a new process arrives, it gets into the Ready
Queue.

 When a process A gets switched out and a new process
B arrives at the same time, which one gets into the
Ready Queue first?

— Assume the new process is placed first in the ready queue.

Colorado State University

Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Much smaller quantum compared to burst: many switches

Colorado State University

Turnaround Time Varies With The Time Quantum

process | time
125 @ P, 6
12.0 | P 3
P 1
2 115F P, 7
2 11.0
§ .
€ 105
2 Rule of thumb: 80% of CPU bursts
% 100 should be shorter than g
(O]
s 95[Illustration
soll Consider q=7:
: P1,P2,P3,P4: all arrive at time 0 in this
I order.
Turnaround times for P1,P2,P3,P4:
I 1 I 1 I 1 6,9,10,17 av = 10.5
i 2 3 4 5 6 7 Similarly forq =1, ..6

time quantum

Students: Repeat for g = 1, ..6 at home to verify the plot.

Turnaround time: Arrival to finish of execution

Colorado State University

Tracking Preemptive Scheduling

e Shortest remaining time first (Preemptive SJF)

— Need to track the remaining time for all processes
— Similarly for preemptive priority

e Round Robin

— Need to track the position of the processes in the Ready
Queue

— Also need to track the remaining time needed
— lllustration on youtube
— Animation CPU Scheduling Algorithm Visualization

* Time quantum- How to decide?
— Rule of thumb: 80% of CPU bursts should be shorter than q

Disclaimer: | have not verified the accuracy of the on-line sources.

Colorado State University

https://www.youtube.com/watch?v=3N2t9_6Co3U
https://codepen.io/faso/pen/zqWGQW

Multilevel Queue

10

Ready queue is partitioned into separate queues,
e.g.:

— foreground (interactive)

— background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm, e.g.:
— foreground — RR

— background — FCFS

Scheduling must be done between the queues:

— Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation. Or

— Time slice — each queue gets a certain amount of CPU
time which it can schedule amongst its processes; i.e.,
80% to foreground in RR, 20% to background in FCFS

Colorado State University

Multilevel Queue Scheduling

highest priority

| system processes)
) interactive processes ————
e interactive editing processes ——
) batch processes m—
ey student processes ————

lowest priority

Real-time processes may have the highest priority.

Colorado State University

11

Multilevel Feedback Queue

12

e A process can move between the various queues;
aging can be implemented this way

* Multilevel-feedback-queue scheduler defined by

the following parameters:
— number of queues

— scheduling algorithms for each queue
— method used to determine when to upgrade a process

— method used to determine when to demote a process

— method used to determine which queue a process will
enter when that process needs service

— Details at ARPACI-DUSSEAU

Inventor FJ Corbatd won the Touring award!

Colorado State University

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

Example of Multilevel Feedback Queue

 Three queues:

— Q,— RR with time quantum 8 milliseconds
— Q, —RR time quantum 16 milliseconds

il

Y

— @, —FCFS (no time quantum limit)

A 4

quantum = 8

* Scheduling

— A new job enters queue Q, which is served
FCES quantum = 16

L 4

Y

* When it gains CPU, job receives 8
milliseconds

* Ifitdoes not finish in 8 milliseconds, il
job is moved to queue Q,

k 4

Y

FCFS

— At Q, job is again served FCFS and receives
16 additional milliseconds

* Ifitstill does not complete, it is
preempted and moved to queue Q,

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

Colorado State University

13

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (con kolivas, Anaesthetist)
Variable time-slice based on number and priority of the tasks in
the queue.

— Maximum execution time based on waiting processes (Q/n).

— Fewer processes waiting, they get more time each

e Queue ordered in terms of “virtual run time”
e execution time on CPU added to value
— smallest value picked for using CPU

— small values: tasks have received less time on CPU
— 1/0 bound tasks (shorter crubursts Will have smaller values
* Balanced (red-black) tree to implement a ready queue;
— Efficient. O(log n) insert or delete time
* Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
— virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

Colorado State University

14

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

Real-Time CPU Scheduling

* Can present obvious challenges

— Soft real-time systems — no guarantee as to when critical
real-time process will be scheduled

— Hard real-time systems — task must be serviced by its
deadline

* For real-time scheduling, scheduler must support

preemptive, priority-based scheduling
— But only guarantees soft real-time

* For hard real-time must also provide ability to
meet deadlines

— periodic ones require CPU at constant intervals

RTOS: real-time OS. QNX in automotive, FreeRTOS etc.

Colorado State University

15

Virtualization and Scheduling

* Virtualization software schedules multiple
guests OSs onto CPU(s)

* Each guest doing its own scheduling
— Not knowing it doesn’t own the CPUs
— Can affect time-of-day clocks in guests

* Virtual Machine Monitor has its own scheduler
e Various approaches have been used

— Workload aware, Guest OS cooperation, etc.

Colorado State University

16

Algorithm Evaluation

17

How to select CPU-scheduling algorithm for an OS?
Determine criteria, then evaluate algorithms

Deterministic modeling
— Type of analytic evaluation

— Takes a particular predetermined workload and defines the
performance of each algorithm for that workload

Consider 5 processes arriving at time O:

Process

Burst Time

P
P,
Ps
P,
Ps

10
29
3
7
12

Colorado State University

18

Deterministic Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies only

to those inputs Process Burst Time

— FCSis 28ms: P 10
p, 29
P1 P2 P3 P4 P5 P3 3
0 10 39 42 49 61 Py 7
— Non-preemptive SFJ is 13ms: Bs 12
P, P, P, P, P,
0 3 10 20 32 61
— RRis 23ms:
P, P, |P;| P, P, P, |Ps| P,
0 10 20 23 30 40 50 52 61

Colorado State University

Probabilitistic Models

« Assume that the arrival of processes, and CPU
and |/O bursts are random

— Repeat deterministic evaluation for many random
cases and then average

« Approaches:
— Analytical: Queuing models
— Simulation: simulate using realistic assumptions

Colorado State University

19

Queueing Models

* Describes the arrival of processes, and CPU
and I/O bursts probabilistically mathematically
— Commonly exponential, and described by mean
— Computes average throughput, utilization, waiting

time, etc

» Computer system described as network of
servers, each with queue of waiting
processes
— Knowing arrival rates and service rates

— Computes utilization, average queue length,
average wait time, etc

Queueing Theory

Colorado State University

20

Little’s Formula for av Queue Length

« Little’ s law — in steady state, processes
leaving queue must equal processes arriving,
thus:

— n = average queue length
— W = average waiting time in queue
— A = average arrival rate into queue

_ Each process takes 1/ A time to move one position.
n = A X W Beginning to end delay W = nx(1/A)

— Valid for any scheduling algorithm and arrival
distribution

 Example: average 7 processes arrive per sec,
and 14 processes in queue,

— then average wait time per process W= n/A = 14/7=
2 secC

Colorado State University

21

Simulations

* Queueing models limited

« Simulations more versatile
— Programmed model of computer system
— Clock is a variable
— Gather statistics indicating algorithm performance

— Data to drive simulation gathered via
 Random number generator according to probabilities
« Distributions defined mathematically or empirically
 Trace tapes record sequences of real events in real systems

— |llustration

Colorado State University

22

https://staff.um.edu.mt/jskl1/simweb/sq1/sq1.html
https://staff.um.edu.mt/jskl1/simweb/sq1/sq1.html

Evaluation of CPU Schedulers by Simulation

. _ performance
simulation —)» statistics
’J—|_‘ for FCFS
FCFS
CPU 10
/0 213
actual CPU 12 performance
process /0 112 ==) Simulation =) statistics
execution CPU 2 for SJF
/0 147
CPU 173 SIF
trace tape
performance
simulaton =» statistics
for RR (g = 14)
RR (g = 14)

Simulation using real data

) Colorado State University

Actual Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems
High cost, high risk
Environments vary

Considerations

Most flexible schedulers can be modified per-site or per-
system

Or APIs to modify priorities
Environments can vary

Colorado State University

24

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Synchronization

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

25

Process Synchronization: Objectives

0 Concept of process synchronization.

O The critical-section problem, whose solutions
can be used to ensure the consistency of shared
data

0 Software and hardware solutions of the critical-
section problem

0 Classical process-synchronization problems

O Tools that are used to solve process
synchronization problems

Colorado$tate University

Process Synchronization

EW Dijkstra Go To Statement Considered Harmful

Colorado State University

27

https://stackoverflow.com/questions/46586/goto-still-considered-harmful

Process Synchronization

Overview
* We synchronization is needed

* Critical section: access controlled to permit just one
process

— How the critical section be implemented
— Mutex locks and semaphores

* Classic synchronization problems
 Will a solution cause a deadlock?

Colorado State University

28

Too Much Milk Example

29

12:30
12:35
12:40
12:45
12:50
12:55

Person A

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.

Person B

Look in fridge. Out of milk.
Leave for store

Arrive at store.

Buy milk

Arrive home, put milk away.
Oh no!

Colorado State University

Background

30

Processes can execute concurrently

— May be interrupted at any time, partially completing
execution

Concurrent access to shared data may result in data
inconsistency

Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

Illustration: we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.

— have an integer counter that keeps track of the number of
full buffers.

— Initially, counter issettoO.

— It is incremented by the producer after it produces a new
buffer

— decremented by the consumer after it consumes a buffer.
Will it work without any problems?

Colorado State University

Consumer-producer problem

Producer Consumer
while (true) { while (true) {
/* produce an item*/ while (counter == 0);
while (counter == BUFFER SIZE) ; /* do nothing */
/* do nothing */ next consumed = buffer[out];
buffer[in] = next produced; out = (out + 1) % BUFFER SIZ
counter++; /* consume the item in
} next consumed */

}

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

In, out: indices of empty and filled items in the buffer.

Colorado$tate University

31

32

Race Condition

counter++ could be compiled as counter-- could be compiled as
registerl = counter register2 = counter
registerl = registerl + 1 register2 = register2 -1
counter = registerl counter = register2

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count =5 initially:

SO: producer execute registerl = counter {registerl =5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 ({register2 =4}
S4: producer execute counter = registerl {counter =6}
S5: consumer execute counter = register2 {counter = 4}

Overwrites!

Critical Section Problem

33

We saw race condition between counter ++ and counter —

Solution to the “race condition” problem: critical section
* Consider system of n processes {pg P, - Pp.1}

e Each process has critical section segment of code

— Process may be changing common variables, updating table, writing
file, etc

— When one process in critical section, no other may be in its critical
section

* Critical section problem is to design protocol to solve this

e Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable

Colorado State University

Process Synchronization: Outline

0 Critical-section problem to ensure the consistency of
shared data

0 Software and hardware solutions of the critical-section
problem

0 Peterson’s solution

0 Atomic instructions

0 Mutex locks and semaphores
0 Classical process-synchronization problems

0 Bounded buffer, Readers Writers, Dining Philosophers
0 Another approach: Monitors

Colorado State University

34

General structure: Critical section

Request permission
to enter

entry section

critical section

exit section

Housekeeping to let
remainder section

other processes to
enter

} while (true);

A process is prohibited from entering the critical section while another
processisin it.

Multiple processes are trying to enter the critical section concurrently by
executing the same code.

s Colorado State University

36

Solution to Critical-Section Problem

A good solution to the critical-section problem should have these
attributes

1. Mutual Exclusion - If process P; is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the n processes

Colorado State University

Peterson’ s Solution

38

Good algorithmic description of solving the problem
Two process solution only

Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted
The two processes share two variables:

— int turn;

— Boolean flag[2]

— The variable turn indicates whose turn it is to enter the
critical section

— The £1lag array is used to indicate if a process is ready to
enter the critical section. £flag[1i] = true impliesthat
process P; is ready to enter!

Colorado State University

39

Algorithm for Process P:

For process Pi,

Pj runs the same code
concurrently

do {

flag[i] = true;
turn = j;
while (flag[j] && turn = = j);
critical section
flag[i] = false;

/*Wait*/

remainder section
} while (true);

The variable turn indicates whose turn it is to enter the critical
section

The £1ag array is used to indicate if a process is ready to enter the
critical section. £flag[i] = true implies that process P; is ready!

Note: Entry section- Critical section-Exist section

These algorithms assume 2 or more processes are trying to get in the
critical section.

Colorado State University

Peterson’ s Solution (Cont.)

Provable that the three CS requirement are met:
1. Mutual exclusion is preserved
P. enters CS only if:
either flag[j] = false or turn = i
2. Progress requirement is satisfied

If a process wants to enter, it only has to wait until the other finishes.

3. Bounded-waiting requirement is met.

A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is
not assured. May not work in multiple processor systems, turn may be modified by by both processors.

Colorado State University

40

Synchronization: Hardware Support

 Modern systems provide hardware support
for implementing the critical section code.

e All solutions below based on idea of locking
— Protecting critical regions via locks

e Modern machines provide special atomic

hardware instructions
* Atomic = non-interruptible

— test memory word and set value
— swap contents of two memory words
— Other

Colorado State University

41

42

Solution 1: using test and set()

Lock TRUE: locked, Lock FALSE: not locked. Lock is a shared variable.
test_and_set(&lock) returns the lock value and then sets it to True.

Shared Boolean variable lock, initialized to FALSE

Solution:

do {
while (test and set(&lock)) ; /* do nothing */

To break out:
Return value of
TestAndSet should be

FALSE

/* critical section */

lock = false;
/* remainder section */

} while (true);

If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

Colorado State University

43

test and set(&lock)

Shared variable lock is initially FALSE

Process O Lock

test_and_set(&Iock)

Y

Process 1

test_and_set(&lock)

Critical section Locked by Process 0

lock = false

\ 4

&
hl

&
«

Busy waiting

. test_and_set(&lock)

Locked by Process 1

Critical section

lock = false

while (test_and set(&lock)) ; /* do nothing */

/* critical section */

lock = false;
/* remainder section */

<

Colorado State University

	Slide 1
	Slide 2: Project
	Slide 3: CPU Scheduling
	Slide 4: Round Robin (RR) with time quantum
	Slide 5: Example of RR with Time Quantum = 4
	Slide 6: RR: different arrival times
	Slide 7: Time Quantum and Context Switch Time
	Slide 8: Turnaround Time Varies With The Time Quantum
	Slide 9: Tracking Preemptive Scheduling
	Slide 10: Multilevel Queue
	Slide 11: Multilevel Queue Scheduling
	Slide 12: Multilevel Feedback Queue
	Slide 13: Example of Multilevel Feedback Queue
	Slide 14: Completely fair scheduler Linux 2.6.23
	Slide 15: Real-Time CPU Scheduling
	Slide 16: Virtualization and Scheduling
	Slide 17: Algorithm Evaluation
	Slide 18: Deterministic Evaluation
	Slide 19: Probabilitistic Models
	Slide 20: Queueing Models
	Slide 21: Little’s Formula for av Queue Length
	Slide 22: Simulations
	Slide 23: Evaluation of CPU Schedulers by Simulation
	Slide 24: Actual Implementation
	Slide 25
	Slide 26
	Slide 27: Process Synchronization
	Slide 28: Process Synchronization
	Slide 29: Too Much Milk Example
	Slide 30: Background
	Slide 31: Consumer-producer problem
	Slide 32: Race Condition
	Slide 33: Critical Section Problem
	Slide 34: Process Synchronization: Outline
	Slide 35: General structure: Critical section
	Slide 36: Solution to Critical-Section Problem
	Slide 38: Peterson’s Solution
	Slide 39: Algorithm for Process Pi
	Slide 40: Peterson’s Solution (Cont.)
	Slide 41: Synchronization: Hardware Support
	Slide 42: Solution 1: using test_and_set()
	Slide 43: test_and_set(&lock)

