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Process Synchronization: Outline

Critical-section problem to ensure the consistency of
shared data

Software and hardware solutions of the critical-section
problem

0 Peterson’s solution

0 Atomic instructions

0 Mutex locks and semaphores
Classical process-synchronization problems

0 Bounded buffer, Readers Writers, Dining Philosophers
Another approach: Monitors
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Process Synchronization

EW Dijkstra Go To Statement Considered Harmful
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https://stackoverflow.com/questions/46586/goto-still-considered-harmful

Process Synchronization

Overview
* We synchronization is needed

* Critical section: access controlled to permit just one
process

— How the critical section be implemented
— Mutex locks and semaphores

* Classic synchronization problems
 Will a solution cause a deadlock?
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Too Much Milk Example

12:30
12:35
12:40
12:45
12:50
12:55

Person A

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.

Person B

Look in fridge. Out of milk.
Leave for store

Arrive at store.

Buy milk

Arrive home, put milk away.
Oh no!

Colorado State University



Background

Processes can execute concurrently

— May be interrupted at any time, partially completing
execution

Concurrent access to shared data may result in data
inconsistency

Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

Illustration: we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.

— have an integer counter that keeps track of the number of
full buffers.

— Initially, counter issettoO.

— It is incremented by the producer after it produces a new
buffer

— decremented by the consumer after it consumes a buffer.
Will it work without any problems?
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Consumer-producer problem

Producer Consumer
while (true) { while (true) {
/* produce an item*/ while (counter == 0);
while (counter == BUFFER SIZE) ; /* do nothing */
/* do nothing */ next consumed = buffer[out];
buffer[in] = next produced; out = (out + 1) % BUFFER SIZ
counter++; /* consume the item in
} next consumed */

}

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

In, out: indices of empty and filled items in the buffer.

Colorado/State University



Race Condition

counter++ could be compiled as counter-- could be compiled as
registerl = counter register2 = counter
registerl = registerl + 1 register2 = register2 -1
counter = registerl counter = register2

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count =5 initially:

SO: producer execute registerl = counter {registerl =5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 ({register2 =4}
S4: producer execute counter = registerl {counter =6}
S5: consumer execute counter = register2 {counter = 4}

Overwrites!




Critical Section Problem

We saw race condition between counter ++ and counter —

Solution to the “race condition” problem: critical section
* Consider system of n processes {pg P, - Pp.1}

e Each process has critical section segment of code

— Process may be changing common variables, updating table, writing
file, etc

— When one process in critical section, no other may be in its critical
section

* Critical section problem is to design protocol to solve this

e Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section follows.

Race condition: when outcome depends on timing/order that is not predictable

Colorado State University



Process Synchronization: Outline

0 Critical-section problem to ensure the consistency of
shared data

0 Software and hardware solutions of the critical-section
problem

0 Peterson’s solution

0 Atomic instructions

0 Mutex locks and semaphores
0 Classical process-synchronization problems

0 Bounded buffer, Readers Writers, Dining Philosophers
0 Another approach: Monitors
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General structure: Critical section

Request permission
to enter

entry section

critical section

exit section

Housekeeping to let
remainder section

other processes to
enter

} while (true);

A process is prohibited from entering the critical section while another
processisin it.

Multiple processes are trying to enter the critical section concurrently by
executing the same code.

" Colorado State University
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Solution to Critical-Section Problem

A good solution to the critical-section problem should have these
attributes

1. Mutual Exclusion - If process P; is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the n processes

Colorado State University



Peterson’ s Solution
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Good algorithmic description of solving the problem
Two process solution only

Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted
The two processes share two variables:

— int turn;

— Boolean flag[2]

— The variable turn indicates whose turn it is to enter the
critical section

— The £1lag array is used to indicate if a process is ready to
enter the critical section. £flag[1i] = true impliesthat
process P; is ready to enter!

Colorado State University
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Algorithm for Process P:

For process Pi,

Pj runs the same code
concurrently

do {

flag[i] = true;
turn = j;
while (flag[j] && turn = = j);
critical section
flag[i] = false;

/*Wait*/

remainder section
} while (true);

The variable turn indicates whose turn it is to enter the critical
section

The £1ag array is used to indicate if a process is ready to enter the
critical section. £flag[i] = true implies that process P; is ready!

Note: Entry section- Critical section-Exist section

These algorithms assume 2 or more processes are trying to get in the
critical section.

Colorado State University



Peterson’ s Solution (Cont.)

Provable that the three CS requirement are met:
1. Mutual exclusion is preserved
P. enters CS only if:
either flag[j] = false or turn = i
2. Progress requirement is satisfied

If a process wants to enter, it only has to wait until the other finishes.

3. Bounded-waiting requirement is met.

A process waits only one turn.

Detailed proof in the text.

Note: there exists a generalization of Peterson’s solution for more than 2 processes, but bounded waiting is
not assured. May not work in multiple processor systems, turn may be modified by by both processors.

Colorado State University
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Synchronization: Hardware Support

 Most modern processors provide hardware
support (/SA) for implementing the critical
section code. ma

e All solutions below based on idea of locking
— Protecting critical regions via locks

e Modern machines provide special atomic
hardwa e inStrUCtionS (binary machine instructions, not high-

level like C)
* Atomic = non-interruptible

— test memory word and set value
— swap contents of two memory words
— others

Colorado State University
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Solution 1: using test and set()

Lock TRUE: locked, Lock FALSE: not locked. Lock is a shared variable.
test_and_set(&lock) returns the lock value and then sets it to True.

Shared Boolean variable lock, initialized to FALSE

Solution:

do {
while (test and set(&lock)) ; /* do nothing */

To break out:
Return value of
TestAndSet should be

FALSE

/* critical section */

lock = false;
/* remainder section */

} while (true);

If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

Colorado State University



test and set(&lock)

Shared variable lock is initially FALSE

Process O Lock

test_and_set(&Iock)

Y

Process 1

test_and_set(&lock)

Critical section Locked by Process 0

lock = false

\ 4

&
hl

&
«

Busy waiting

. test_and_set(&lock)

Locked by Process 1

Critical section

lock = false

while (test_and set(&lock)) ; /* do nothing */

/* critical section */

lock = false;
/* remainder section */

<

” Colorado State University
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Solution 2: Swap: Hardware implementation

Another way of sensing/setting the lock (next slide).
Background: Remember this C code?

void Swap(boolean *a, boolean *b ) {

boolean temp = *3a;
*3 = *:

*b = temp;

Colorado State University



20

U Sl ng Swa p (concurrently executed by both)

do {
key = TRUE:
while (key == TRUE) {
Swap(&Ilock, &key)
}

critical section
lock = FALSE;

remainder section

} while (TRUE);

Lock is a SHARED variable.
Key is a variable local to the process.

Lock == false when no process is in
critical section.

Cannot enter critical section UNLESS
lock == FALSE by other process or initially

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

Colorado State University
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Swap()

Process O Lock Process 1
Key = TRUE
Swap ( ) Lock = FALSE
Key ==FALSE, enter

Key = TRUE
Swap ()
Key == TRUE, wait

Y

Critical section Locked by Process Of  |.ock = TRUE Busy waiting

Lock = FALSE

\ 4

- Swap ( ), Key ==False

&
hl

Locked by Process 1 Critical section

Lock =FALSE

Note: | created this to visualize the mechanism. It is not in the book. - Yashwant

Colorado State University



Bounded-waiting Mutual Exclusion with test_and_set

For process 1i:
do {

waiting[i] = true;

key = true;

while (waiting[i] && key)

key = test and set(&lock) ; The entry section for processi :

waiting[i] = false; *  First process to execute TestAndSet will find key ==

false ; ENTER critical section,

. EVERYONE else must wait

Shared Data structures initialized to FALSE
. boolean waiting[n]; Prnwants to enter
. boolean lock;

/* critical section */

[o)

j=(i+1) % n;

while ((j '= i) && 'waiting[]j])

., o . The exit section for process i:

J= (0 +1) %n; o : » —
if (5 == i) Attempts to finding a suitable waiting process j (while

loop) and enable it,

lock = false; . . .
1 or if there is no suitable process, make lock FALSE.
else

waiting[j] = false;
/* remainder section */
} while (true);

Colorado State University
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Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements

* Mutual Exclusion: The first process to execute TestAndSet(lock)
when lock is false, will set lock to true so no other process can
enter the CS.

* Progress: When a process i exits the CS, it either sets lock to
false, or waiting[i] to false (allowing j to get in) , allowing the
next process to proceed.

* Bounded Waiting: When a process exits the CS, it examines all
the other processes in the waiting array in a circular order. Any
process waiting for CS will have to wait at most n-1 turns

Colorado State University
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Mutex Locks
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Previous solutions are complicated and generally
inaccessible to application programmers

OS designers build software tools to solve critical
section problem

Slmp|ESt |S muteX |0Ck (boolean mutual exclusion)

Protect a critical section by first acquire () a lock
then release () the lock
Boolean variable indicating if lock is available or not

Calls to acquire () and release () must be atomic
Usually implemented via hardware atomic instructions

But this solution requires busy waiting
This lock therefore called a spinlock

Colorado State University



acquire() and release()

acquire () { release () {
while ('available) available = true;
; /* busy wait */ }
*Usage
do_{

acquire lock

critical section

release lock

remalnder section

} while (true);

Colorado State University
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acquire() and release()

Process O

Start acquire, get lock

Lock

Critical section

Release lock

>

\ 4

Locked by Process 0

Process 1

Start acquire

26

&
hl

&
«

Busy waiting

. Gets lock

Locked by Process 1

Critical section

Release lock

<
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How are locks supported by hardware?

* Atomic read-modify-write
* Atomic instructions in x86

— LOCK instruction prefix, which applies to an instruction does a
read-modify-write on memory (INC, XCHG, CMPXCHG etc)

— Ex: lock cmpxchg <dest>, <source>

* |In RISK processors? Instruction-pairs

— LL (Load Linked Word), SC (Store ConditionaIWord) instructions in MIPS
— LDREX, STREXin ARM
— Creates an atomic sequence

Colorado State University
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Semaphores u vist-

Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

Semaphore § — integer variable
Can only be accessed via two indivisible (atomic) operations
— wait () and signal ()
* Originally called P () and V() based on Dutch words

Definition of thewait () operation

wait(S) ¢ Waits until
while (S <= 0) another process
; // busy wait makes S=1
S--;
} Binary semaphore:
Definition of the signal () operation Whens isOor 1, itis
signal (S) { a mutex lock
S++;

Colorado State University



Wait(S) and Signal (S)

Process O Semaphore S Process 1
Wait(S) >=1
> Wait (S)
&
Critical section S -0 | Busy waiting
|
Signal (S) |
- . Gets lock, S- -
s=1 ¢ «
S =0 |Locked by Process 1 Critical section
Signal (S)
S=1

Colorado State University
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Semaphores
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I was hoping the distance learning service
might use more up-to-date technology
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Semaphore Usage

Counting semaphore — integer value can range over an unrestricted
domain

Binary semaphore — integer value can range only between 0 and 1
— Practically same as a mutex lock

Can solve various synchronization problems

Ex: Consider P; and P, that requires event S, to happen before S,
Create a semaphore “synch” initialized to Oi.c not available

Pl: P2:
S17 wait (synch);
signal (synch) ; S,

Can implement a counting semaphore S as a binary semaphore

Colorado State University



The counting semaphore

e Controls access to a finite set of resources
* I|nitialized to the number of resources
* Usage:

— Wait (S): to use a resource

— Signal (S): to release a resource

* When all resources are being used: S ==
— Block until S >0 to use the resource

Applicable to different types of synchronization problems.
0: no waiting threads (or processes)

Positive: no waiting threads, a wait operation would not put the invoking thread in queue.
Negative: number of threads waiting

. Colorado State University
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Semaphore Implementation

Must guarantee that no two processes can execute
thewait () and signal () on the same semaphore
at the same time

Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section

— Could now have busy waiting in critical section
implementation

* But implementation code is short
* Little busy waiting if critical section rarely occupied

Note that some applications may spend lots of time
in critical sections and therefore this is not a good

solution
Alternative: block and wakeup (next slide)

Colorado State University
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Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue
Each entry in a waiting queue has two data items:

— value (of type integer)

— pointer to next record in the list
Two operations:

— block — place the process invoking the operation on the
appropriate waiting queue

— wakeup — remove one of processes in the waiting queue and
place it in the ready queue

typedef struct{

int value;

struct process *list;
} semaphore;

Colorado State University
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Implementation with no Busy waiting (Cont.)

wait (semaphore *S) ({ If value< 0

S->value--: abs(value) is the number
if (S->value < 0) ({ of waiting processes
add this process to S->list;
block () ;

typedef struct{
int value;
struct process *list;
} semaphore;

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->list;

wakeup (P) ;

Colorado State University



Deadlock and Starvation

* Deadlock —two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

 Let sand ¢ be two semaphores initialized to 1

wait (S) ; wait (Q) ;
wait (Q) ; wait (S) ;
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

— PO executes wait(s), P1 executes wait(Q)
* PO must wait till P1 executes signal(Q)
* P1 must wait till PO executes signal(S)  Deadlock!

Colorado State University
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Priority Inversion

* Priority Inversion — Scheduling problem when
lower-priority process P, holds a lock needed by
higher-priority process P,,.

— The low priority task may be preempted by a medium
priority task Py, which does not use the lock, causing

P, to wait because of P,. Mars pathfinder

Mission problem 1997

e Solved via priority-inheritance protocol

— Process accessing resource needed by higher priority process
Inherits higher priority till it finishes resource use

— Once done, process reverts to lower priority

Colorado State University
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Classical Problems of Synchronization

e Classical problems used to test newly-proposed
synchronization schemes
— Bounded-Buffer Problem
— Readers and Writers Problem
— Dining-Philosophers Problem

* Monitors: higher level handling of
synchronization

Colorado State University
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Bounded-Buffer Problem

* n buffers, each can hold one item
e Binary semaphore (mutex)

— Provides mutual exclusion for accesses to buffer

pool
3 semaphores needed,

— Initialized to 1 1 binary, 2 counting

* Counting semaphores
— empty: Number of empty slots available
* Initialized to n

— full: Number of filled slots available n

e |nitializedto 0

Colorado State University
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Bounded-Buffer : Note

* Producer and consumer must be ready before they
attempt to enter critical section

* Producer readiness?

— When a slot is available to add produced item
* wait(empty)

e e e 1. empty: Number of empty slots available
— empty s initialized to n wait(empty) wait until at least 1 empty

e Consumer readiness? full: Number of filled slots available

wait(full) wait until at least 1 full

— When a producer has added new itemtothe ==
* wait(full)
— fullinitialized to O

Colorado State University
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Bounded Buffer Problem (Cont.)

The structure of the producer process Elirfpiaf: el
full: initialized to O

do {

/* produce an item in next produced */

wait(empty) ; wait till slot available

walit (mutex) ; Allow producer OR consumer to (re)enter critical section

/* add next produced to the buffer */

signal (mutex) ; Allow producer OR consumer to (re)enter critical section

signal (full) ; signal consumer that a slot is available
} while (true);

Colorado State University
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Bounded Buffer Problem (Cont.)

The structure of the consumer process empty: initialized to n

full: initialized to O

Do {
wait (full) ; waittill slot available for consumption

walt (mutex) ; Only producer OR consumer can be in critical section

/* remove an item from buffer to next_consumed * /

signal (mutex) ; Allow producer OR consumer to (re)enter critical section

signal (empty) ; signal producer that a slot is available to add
/* consume the item in next consumed */

} while (true);

Colorado State University
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Readers-Writers Problem

A data setis shared among a number of
concurrent processes

— Readers — only read the data set; they do not perform
any updates

— Writers — can both read and write

* Problem

— allow multiple readers to read at the same time

— Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

e Several variations of how readers and writers are
considered — all involve some form of priorities

Colorado State University
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Readers-Writers Problem

e Shared Data

— Data set

— Semaphore rw_mutex initialized to 1 (mutual exclusion
for writer)

— Semaphore mutex initializedto 1l (mutual exclusion for
read_count)

— Integer read count initialized to O  (how many readers?)

Colorado State University
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Readers-Writers Problem (Cont.)

* The structure of a writer process

do {
wait (rw _mutex) ;

/* writing is performed */

signal (rw_mutex) ;
} while (true);

Colorado State University
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Readers-Writers Problem (Cont.)

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader

 The structure of a reader process reeeieenn

wait(mutex) ;
read count++; mutex for mutual
if (;ead count == 1) exclusion to read_count

Cannot read wait(rw_mutex) ;

if writer is signal (mutex) ; When:
- writer in critical section
ertlng

... and if n readers waiting
/* reading is performed */ 1is queued on rw_mutex
(n-1) queued on mutex

do {

wait (mutex) ;
read count--;
if (read count == 0)

signal (rw_mutex) ;
signal (mutex) ;
} while (true);

When the last reader leaves, a writer can go in.

Colorado State University
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Readers-Writers Problem Variations

e First variation — no reader kept waiting
unless writer has already obtained
permission to use shared object

* Second variation —once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

* Both may have starvation leading to even
more variations

* Problem is solved on some systems by
kernel providing reader-writer locks

Colorado State University
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