
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L11
Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Semaphores by Dijkstra

• Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()

• Originally called P() and V()based on Dutch words

• Definition of the wait() operation

wait(S) {

 while (S <= 0)

 ; // busy wait

 S--;

}

• Definition of the signal() operation

signal(S) {

 S++;

}

Binary semaphore:
When s is 0 or 1, it is
a mutex lock

Waits until
another process

makes S=1

3

Wait(S) and Signal (S)

Process 0 Process 1Semaphore S

Wait(S)

Critical section

Signal (S)

Wait (S)

Busy waiting

Gets lock, S- -

Critical section

Signal (S)

S =0

Locked by Process 1

S =1

S =0

S =1

S =1

4

Semaphores

5

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1

– Practically same as a mutex lock

• Can solve various synchronization problems

• Ex: Consider P1 and P2 that requires event S1 to happen before S2

 Create a semaphore “synch” initialized to 0 i.e not available

• Can implement a counting semaphore S as a binary semaphore

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

6

The counting semaphore

• Controls access to a finite set of resources

• Initialized to the number of resources

• Usage:

– Wait (S): to use a resource

– Signal (S): to release a resource

• When all resources are being used: S == 0

– Block until S > 0 to use the resource

Applicable to different types of synchronization problems.
0: no waiting threads (or processes)
Positive: no waiting threads, a wait operation would not put the invoking thread in queue.
Negative: number of threads waiting

7

Semaphore Implementation

• Must guarantee that no two processes can execute
the wait() and signal() on the same semaphore
at the same time

• Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that some applications may spend lots of time
in critical sections and therefore this is not a good
solution

• Alternative: block and wakeup (next slide)

8

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue
• Each entry in a waiting queue has two data items:

– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue and

place it in the ready queue

• typedef struct{

 int value;

 struct process *list;

 } semaphore;

9

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

}

typedef struct{

 int value;

 struct process *list;

 } semaphore;

If value < 0
abs(value) is the number

of waiting processes

10

Deadlock and Starvation

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

• Let S and Q be two semaphores initialized to 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

– P0 executes wait(s), P1 executes wait(Q)
• P0 must wait till P1 executes signal(Q)

• P1 must wait till P0 executes signal(S) Deadlock!

11

Priority Inversion

• Priority Inversion – Scheduling problem when
lower-priority process PL holds a lock needed by
higher-priority process PH.
– The low priority task may be preempted by a medium

priority task PM which does not use the lock, causing
PH to wait because of PM.

• Solved via priority-inheritance protocol
– Process accessing resource needed by higher priority process

Inherits higher priority till it finishes resource use

– Once done, process reverts to lower priority

Mars pathfinder
Mission problem 1997

12

Classical Problems of Synchronization

• Classical problems used to test newly-proposed
synchronization schemes

– Bounded-Buffer Problem

– Readers and Writers Problem

– Dining-Philosophers Problem

• Monitors: higher level handling f
synchronization

13

Bounded-Buffer Problem

• n buffers, each can hold one item

• Binary semaphore (mutex)

– Provides mutual exclusion for accesses to buffer
pool

– Initialized to 1

• Counting semaphores

– empty: Number of empty slots available
• Initialized to n

– full: Number of filled slots available n
• Initialized to 0

3 semaphores needed,
1 binary, 2 counting

14

Bounded-Buffer : Note

• Producer and consumer must be ready before they
attempt to enter critical section

• Producer readiness?
– When a slot is available to add produced item

• wait(empty)

– empty is initialized to n

• Consumer readiness?
– When a producer has added new item to the buffer

• wait(full)

– full initialized to 0

empty: Number of empty slots available
 wait(empty) wait until at least 1 empty

full: Number of filled slots available
wait(full) wait until at least 1 full

15

Bounded Buffer Problem (Cont.)

The structure of the producer process

 do {

 ...

 /* produce an item in next_produced */

 ...

 wait(empty); wait till slot available

 wait(mutex); Allow producer OR consumer to (re)enter critical section

 ...

 /* add next produced to the buffer */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(full); signal consumer that a slot is available

 } while (true);

empty: initialized to n
full: initialized to 0

16

Bounded Buffer Problem (Cont.)

The structure of the consumer process

 Do {

 wait(full); wait till slot available for consumption

 wait(mutex); Only producer OR consumer can be in critical section

 ...

 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex); Allow producer OR consumer to (re)enter critical section

 signal(empty); signal producer that a slot is available to add

 ...

 /* consume the item in next consumed */

 ...

 } while (true);

empty: initialized to n
full: initialized to 0

17

Readers-Writers Problem

• A data set is shared among a number of
concurrent processes
– Readers – only read the data set; they do not perform

any updates

– Writers – can both read and write

• Problem
– allow multiple readers to read at the same time

– Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

• Several variations of how readers and writers are
considered – all involve some form of priorities

18

Readers-Writers Problem

• Shared Data

– Data set

– Semaphore rw_mutex initialized to 1 (mutual exclusion

for writer)

– Semaphore mutex initialized to 1 (mutual exclusion for

read_count)

– Integer read_count initialized to 0 (how many readers?)

19

Readers-Writers Problem (Cont.)

• The structure of a writer process

 do {

 wait(rw_mutex);

 ...

 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

20

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {

 wait(mutex);

 read_count++;

 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...

 /* reading is performed */

 ...

 wait(mutex);

 read count--;

 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

mutex for mutual
exclusion to read_count

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

Cannot read
if writer is

writing

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader
Process just goes in.

When the last reader leaves, a writer can go in.

21

Readers-Writers Problem Variations

• First variation – no reader kept waiting
unless writer has already obtained
permission to use shared object

• Second variation – once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

• Both may have starvation leading to even
more variations

• Problem is solved on some systems by
kernel providing reader-writer locks

22

Project

Options

• A. Research

• B. Development

Deliverable D1 Team composition and idea proposal
specified separately in the document Fall 2025 Term Project .
Similarly, D2, D3, D4 and D5 are specified.

You have to do some research for both of them.

https://www.cs.colostate.edu/~cs370/Fall22/assignments/TermPaperF22.pdf

23 September 30, 2025

Fault Tolerant Computing
©Y.K. Malaiya

23

Research: Search Databases

Specific sources: database indexes

• Google Scholar
– Forward links: Paper X Cited by

– Backward Links: Paper X cites

• Researcher sites
– Personal/Group Website

– DBLP

– Google Scholar: researcher

• CSU Library etc.

General (accessible through CSU Library)

• ACM Digital Library

• IEEEXplore Digital Library

• ScienceDirect etc

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations#citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

24 September 30, 2025

Fault Tolerant Computing
©Y.K. Malaiya

24

Research: Source types

• Journals: published several times a year

– Rigorously reviewed, long publication delay

– Journal, Transactions, …

• Conferences: held once a year, proceedings published
– Conference, Symposium, …

• Research groups

– Industry, academic, consultants: web site

• News, Industry publications

– Magazines, blogs, white papers, product website

• Books: often well-known stuff

25 September 30, 2025

Fault Tolerant Computing
©Y.K. Malaiya

25

Research: How to Read a Paper: THE THREE-PASS

APPROACH

• The first pass: Read
– the title, abstract, and introduction

– section and sub-section headings, but ignore everything else

– the conclusions

• The second pass: Read
– figures, diagrams and other illustrations

– mark relevant unread references for further reading

– Do you need to read it in detail?

• The third pass: Read critically
– identify and challenge assumption and views

– Loop up references needed
Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

26 September 30, 2025

Fault Tolerant Computing
©Y.K. Malaiya

26

Research: Avoid Prior Bias

27

Evaluating research

• These are the attributes generally evaluated

• Novelty/interest/Applicability

• Technical: Extent of research/contribution

– Key sources? Recent developments?

– citations

• Presentation

– Visuals: Non-text: diagrams, charts, algorithms

– Systematic/quantitative: tables, numbers

– Readability, coherence

• Overall

28

Course Notes
• The Midterm and the Final will use the Respondus Lockdown

Browser with camera recording.
– You must use a laptop with the Respondus Lockdown Browser installed

and tested. A trial quiz is available.

• The Sec 001 students will bring the fully charged and tested
laptop to the designated room.
– The 1 hour 15 min Midterm will be on Tues Oct 14 during the regular

class time.

• The Sec 801 students will take their Midterm on Oct 15 any time
from 12:10 AM (early morning) to 11:50 PM.

• Anyone with a significant conflict should contact me directly.

• Quizzes: available Mondays 12:10 AM (early morning) to 11:50
PM.

29

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

– Need both to eat,

– then release both when done

• Each chopstick is a semaphore

– Grab by executing wait ()

– Release by executing signal ()

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

30

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes

31

Dining-Philosophers Problem Algorithm: Simple solution?

• The structure of Philosopher i:
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

• What is the problem with this algorithm?
– If all of them pick up the the left chopstick first -

Deadlock

32

Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling

– Allow at most 4 philosophers to be sitting
simultaneously at the table (with the same 5 forks).

– Allow a philosopher to pick up the forks only if
both are available (picking must be done in a critical
section.

– Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick.

33

Problems with Semaphores

• Incorrect use of semaphore operations:

– Omitting of wait (mutex)

• Violation of mutual exclusion

– or signal (mutex)
• Deadlock!

• Solution:

– Monitors: a higher-level implementation of
synchronization

34

Monitors

35

Monitors

Monitor: A high-level abstraction that provides a
convenient and effective mechanism for process
synchronization
• Abstract data type, internal variables only accessible by

code within the procedure
• Only one process may be active within the monitor at a

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
 - for entry
 - for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C

36

Monitors

• Only one process may be actively under execution in the
monitor.

• A generic monitor construct is used here. Implementation
varies by language.

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }

 }

}

37

Preliminary Schematic view of a Monitor

Only one process/thread in
the Monitor

• Provides an easy way to
achieve mutual exclusion

But … we also need a way for
processes to block
when they cannot proceed.

• Refinement next …

Shows 4 processes waiting in the queue.

38

Condition Variables

Some actions need some conditions to go ahead.

The condition construct

• condition x, y;

• Two operations are allowed on a condition
variable:

– x.wait() – a process that invokes the operation
is suspended until x.signal()

– x.signal() – resumes one of processes (if any)
that invoked x.wait()
• If no x.wait() on the condition variable, then it has no

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is

associated.

39

Difference between the signal() in semaphores and monitors

• Condition variables in Monitors: Not persistent

– If a signal is performed and no waiting threads?

• Signal is simply ignored

– During subsequent wait operations

• Thread (or process) blocks

• Compare with semaphores

– Signal increments semaphore value even if there
are no waiting threads

• Future wait operations would immediately
succeed!

40

Monitor with Condition Variables

41

Condition Variables Choices

• If process P invokes x.signal(), and process Q is
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed,

then P must wait

• Options include
– Signal and wait – P waits until Q either leaves the monitor or

it waits for another condition
– Signal and continue – Q waits until P either leaves the

monitor or it waits for another condition
– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75)

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java

42

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING && state[(i+1)%5] != EATING

• condition self[5]

– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

think

43

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i
Process
(i+1)%5

Process
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait

44

The pickup() and putdown() operations

monitor DiningPhilosophers

{

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i); //below

 if (state[i] != EATING) self[i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 } void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

Suspend self if
unable to acquire

chopstick

Check to see if person
on left or right can use

the chopstick

Eat only if HUNGRY
and Person on Left

AND Right
are not eating

Signal a process that
was suspended while

trying to eat

45

• Philosopher i can starve if eating periods of
 philosophers on left and right overlap
• Possible solution

– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

Possibility of starvation

46

Monitor Implementation of Mutual Exclusion

For each monitor
• Semaphore mutex initialized to 1
• Process must execute

– wait(mutex) : Before entering the monitor
– signal(mutex): Before leaving the monitor

47

Resuming Processes within a Monitor

• If several processes queued on condition
x, and x.signal() is executed, which should
be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority)
is scheduled next

48

• Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

 R.acquire(t);
 ...
 access the resource;
 ...

 R.release;

• Where R is an instance of type ResourceAllocator

• A monitor based solution next.

Single Resource allocation

49

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

 initialization code() {

 busy = FALSE;

 }

}

Sleep, Time used
to prioritize

waiting
processes

Wakes up
one of the
processes

50

Java Synchronization
• For simple synchronization, Java provides the synchronized keyword

– synchronizing methods
public synchronized void increment() { c++; }
– synchronizing blocks

synchronized(this) {
 lastName = name;
 nameCount++;
 }

• wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

51

Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

• wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify

52

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
 throws InterruptedException {
 setState(i, State.HUNGRY);
 test(i);
 while (state[i] != State.EATING) {
 this.wait();
 // Recheck condition in loop,
 // since we might have been notified
 // when we were still hungry
 }
 }

private synchronized void test(int i) {
 if (state[left(i)] != State.EATING &&
 state[right(i)] != State.EATING &&
 state[i] == State.HUNGRY)
 {
 setState(i, State.EATING);
 // Wake up all waiting threads
 this.notifyAll();
 }
 }

public synchronized void putdown(int i) {
 setState(i, State.THINKING);
 test(right(i));
 test(left(i));
 }

	Slide 1
	Slide 2: Semaphores by Dijkstra
	Slide 3: Wait(S) and Signal (S)
	Slide 4: Semaphores
	Slide 5: Semaphore Usage
	Slide 6: The counting semaphore
	Slide 7: Semaphore Implementation
	Slide 8: Semaphore Implementation with no Busy waiting
	Slide 9: Implementation with no Busy waiting (Cont.)
	Slide 10: Deadlock and Starvation
	Slide 11: Priority Inversion
	Slide 12: Classical Problems of Synchronization
	Slide 13: Bounded-Buffer Problem
	Slide 14: Bounded-Buffer : Note
	Slide 15: Bounded Buffer Problem (Cont.)
	Slide 16: Bounded Buffer Problem (Cont.)
	Slide 17: Readers-Writers Problem
	Slide 18: Readers-Writers Problem
	Slide 19: Readers-Writers Problem (Cont.)
	Slide 20: Readers-Writers Problem (Cont.)
	Slide 21: Readers-Writers Problem Variations
	Slide 22: Project
	Slide 23: Research: Search Databases
	Slide 24: Research: Source types
	Slide 25: Research: How to Read a Paper: THE THREE-PASS APPROACH
	Slide 26: Research: Avoid Prior Bias
	Slide 27: Evaluating research
	Slide 28: Course Notes
	Slide 29: Dining-Philosophers Problem
	Slide 30: Dining-Philosophers Problem
	Slide 31: Dining-Philosophers Problem Algorithm: Simple solution?
	Slide 32: Dining-Philosophers Problem Algorithm (Cont.)
	Slide 33: Problems with Semaphores
	Slide 34: Monitors
	Slide 35: Monitors
	Slide 36: Monitors
	Slide 37: Preliminary Schematic view of a Monitor
	Slide 38: Condition Variables
	Slide 39: Difference between the signal() in semaphores and monitors
	Slide 40: Monitor with Condition Variables
	Slide 41: Condition Variables Choices
	Slide 42: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 43: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 44: The pickup() and putdown() operations
	Slide 45
	Slide 46: Monitor Implementation of Mutual Exclusion
	Slide 47: Resuming Processes within a Monitor
	Slide 48
	Slide 49: A Monitor to Allocate Single Resource
	Slide 50: Java Synchronization
	Slide 51: Java Synchronization
	Slide 52: Java Synchronization: Dining Philosophers

