CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L11
Synchronization

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Semaphores u viist-

Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

Semaphore § — integer variable
Can only be accessed via two indivisible (atomic) operations
— wait () and signal ()
* Originally called P () and V() based on Dutch words

Definition of thewait () operation

wait(S) ¢ Waits until
while (S <= 0) another process
; // busy wait makes S=1
S--;
} Binary semaphore:
Definition of the signal () operation Whens isOor 1, itis
signal (S) { a mutex lock
S++;

Colorado State University

Wait(S) and Signal (S)

Process O Semaphore S Process 1
Wait(S) >=1
> Wait (S)
&
Critical section S -0 | Busy waiting
|
Signal (S) |
- . Gets lock, S- -
s=1 ¢ «
S =0 |Locked by Process 1 Critical section
Signal (S)
S=1

Colorado State University

Semaphores

L

o e
v
L

A

3 B v W v
R N :
| SIn NRUNIVERSITY | F N
e L 1 BR ALY ol O A
T =AY el e &
| ———flal = X
VT s TR om | i AR
) T f . - - y

I was hoping the distance learning service
might use more up-to-date technology

Colorado State University

Semaphore Usage

Counting semaphore — integer value can range over an unrestricted
domain

Binary semaphore — integer value can range only between 0 and 1
— Practically same as a mutex lock

Can solve various synchronization problems

Ex: Consider P; and P, that requires event S, to happen before S,
Create a semaphore “synch” initialized to Oi.c not available

Pl: P2:
S17 wait (synch);
signal (synch) ; S,

Can implement a counting semaphore S as a binary semaphore

Colorado State University

The counting semaphore

e Controls access to a finite set of resources
* I|nitialized to the number of resources
* Usage:

— Wait (S): to use a resource

— Signal (S): to release a resource

* When all resources are being used: S ==
— Block until S >0 to use the resource

Applicable to different types of synchronization problems.
0: no waiting threads (or processes)

Positive: no waiting threads, a wait operation would not put the invoking thread in queue.
Negative: number of threads waiting

Colorado State University

Semaphore Implementation

Must guarantee that no two processes can execute
thewait () and signal () on the same semaphore
at the same time

Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section

— Could now have busy waiting in critical section
implementation

* But implementation code is short
* Little busy waiting if critical section rarely occupied

Note that some applications may spend lots of time
in critical sections and therefore this is not a good

solution
Alternative: block and wakeup (next slide)

Colorado State University

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue
Each entry in a waiting queue has two data items:

— value (of type integer)

— pointer to next record in the list
Two operations:

— block — place the process invoking the operation on the
appropriate waiting queue

— wakeup — remove one of processes in the waiting queue and
place it in the ready queue

typedef struct{

int value;

struct process *list;
} semaphore;

Colorado State University

Implementation with no Busy waiting (Cont.)

wait (semaphore *S) ({ If value< 0

S->value--: abs(value) is the number
if (S->value < 0) ({ of waiting processes
add this process to S->list;
block () ;

typedef struct{
int value;
struct process *list;
} semaphore;

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->list;

wakeup (P) ;

Colorado State University

Deadlock and Starvation

* Deadlock —two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

 Let sand ¢ be two semaphores initialized to 1

wait (S) ; wait (Q) ;
wait (Q) ; wait (S) ;
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

— PO executes wait(s), P1 executes wait(Q)
* PO must wait till P1 executes signal(Q)
* P1 must wait till PO executes signal(S) Deadlock!

Colorado State University

10

Priority Inversion

* Priority Inversion — Scheduling problem when
lower-priority process P, holds a lock needed by
higher-priority process P,,.

— The low priority task may be preempted by a medium
priority task Py, which does not use the lock, causing

P, to wait because of P,. Mars pathfinder

Mission problem 1997

e Solved via priority-inheritance protocol

— Process accessing resource needed by higher priority process
Inherits higher priority till it finishes resource use

— Once done, process reverts to lower priority

Colorado State University

11

Classical Problems of Synchronization

e Classical problems used to test newly-proposed
synchronization schemes
— Bounded-Buffer Problem
— Readers and Writers Problem
— Dining-Philosophers Problem

* Monitors: higher level handling f
synchronization

Colorado State University

12

Bounded-Buffer Problem

* n buffers, each can hold one item
e Binary semaphore (mutex)

— Provides mutual exclusion for accesses to buffer

pool
3 semaphores needed,

— Initialized to 1 1 binary, 2 counting

* Counting semaphores
— empty: Number of empty slots available
* Initialized to n

— full: Number of filled slots available n

e |nitializedto 0

Colorado State University

13

Bounded-Buffer : Note

* Producer and consumer must be ready before they
attempt to enter critical section

* Producer readiness?

— When a slot is available to add produced item
* wait(empty)

e e e 1. empty: Number of empty slots available
— empty s initialized to n wait(empty) wait until at least 1 empty

e Consumer readiness? full: Number of filled slots available

wait(full) wait until at least 1 full

— When a producer has added new itemtothe ==
* wait(full)
— fullinitialized to O

Colorado State University

14

Bounded Buffer Problem (Cont.)

The structure of the producer process Elirfpiaf: el
full: initialized to O

do {

/* produce an item in next produced */

wait(empty) ; wait till slot available

walit (mutex) ; Allow producer OR consumer to (re)enter critical section

/* add next produced to the buffer */

signal (mutex) ; Allow producer OR consumer to (re)enter critical section

signal (full) ; signal consumer that a slot is available
} while (true);

Colorado State University

15

Bounded Buffer Problem (Cont.)

The structure of the consumer process empty: initialized to n

full: initialized to O

Do {
wait (full) ; waittill slot available for consumption

walt (mutex) ; Only producer OR consumer can be in critical section

/* remove an item from buffer to next_consumed * /

signal (mutex) ; Allow producer OR consumer to (re)enter critical section

signal (empty) ; signal producer that a slot is available to add
/* consume the item in next consumed */

} while (true);

Colorado State University

16

Readers-Writers Problem

A data setis shared among a number of
concurrent processes

— Readers — only read the data set; they do not perform
any updates

— Writers — can both read and write

* Problem

— allow multiple readers to read at the same time

— Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

e Several variations of how readers and writers are
considered — all involve some form of priorities

Colorado State University

17

Readers-Writers Problem

e Shared Data

— Data set

— Semaphore rw_mutex initialized to 1 (mutual exclusion
for writer)

— Semaphore mutex initializedto 1l (mutual exclusion for
read_count)

— Integer read count initialized to O (how many readers?)

Colorado State University

18

Readers-Writers Problem (Cont.)

* The structure of a writer process

do {
wait (rw _mutex) ;

/* writing is performed */

signal (rw_mutex) ;
} while (true);

Colorado State University

19

Readers-Writers Problem (Cont.)

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader

 The structure of a reader process reeeieenn

wait(mutex) ;
read count++; mutex for mutual
if (;ead count == 1) exclusion to read_count

Cannot read wait(rw_mutex) ;

if writer is signal (mutex) ; When:
- writer in critical section
ertlng

... and if n readers waiting
/* reading is performed */ 1is queued on rw_mutex
(n-1) queued on mutex

do {

wait (mutex) ;
read count--;
if (read count == 0)

signal (rw_mutex) ;
signal (mutex) ;
} while (true);

When the last reader leaves, a writer can go in.

Colorado State University

20

Readers-Writers Problem Variations

e First variation — no reader kept waiting
unless writer has already obtained
permission to use shared object

* Second variation —once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

* Both may have starvation leading to even
more variations

* Problem is solved on some systems by
kernel providing reader-writer locks

Colorado State University

21

Options

e A. Research
* B. Development

Deliverable D1 Team composition and idea proposal

specified separately in the document Fall 2025 Term Project .
Similarly, D2, D3, D4 and D5 are specified.

You have to do some research for both of them.

Colorado State University

22

https://www.cs.colostate.edu/~cs370/Fall22/assignments/TermPaperF22.pdf

Research: Search Databases

Specific sources: database indexes

* Google Scholar
— Forward links: Paper X Cited by
— Backward Links: Paper X cites

* Researcher sites
— Personal/Group Website
— DBLP
— Google Scholar: researcher

 (CSU Library etc.

General (accessible through CSU Library)
 ACM Digital Library

* |EEEXplore Digital Library

* ScienceDirect etc

Fault Tolerant Computing COlome State l]ni\feizSit)’

23 September 30, 2025 OY K. Malaiya

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations#citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

Research: Source types

* Journals: published several times a year

— Rigorously reviewed, long publication delay
— Journal, Transactions, ...

* Conferences: held once a year, proceedings published

— Conference, Symposium, ...
* Research groups
— Industry, academic, consultants: web site

* News, Industry publications

— Magazines, blogs, white papers, product website

e Books: often well-known stuff

Fault Tolerant Computing COlome State lmi\’%it)’

24 September 30, 2025 OY K. Malaiya

* The first pass: Read
— the title, abstract, and introduction
— section and sub-section headings, but ignore everything else
— the conclusions

 The second pass: Read
— figures, diagrams and other illustrations

— mark relevant unread references for further reading
— Do you need to read it in detail?

* The third pass: Read critically
— identify and challenge assumption and views

— Loop up references needed

Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

Fault Tolerant Computing COlome State l]ni\feisSit)’

25 September 30, 2025 OY K. Malaiya

Research: Avoid Prior Bias

LoOK, UWALF THE WORK 5 Dok !

ALLNoU NEED To Do 15 FILL IN THE
©P PART ¢0 WE CAN LEGALLY
SN TUE BaTToN\ PART

L!M_gle’s f I“l.' |;' IE -Y

PAC CARTOONSTOCK:
ETOONST

~ A‘-‘:{ - - 5

—

N s

———
L1
iy
W 2§

@ Wiley Ink, inc./Distributed by Universal Uclick via Cartoonstock

Fault Tolerant Computing COlome State l]ni\feiESit)’

26 September 30, 2025 OY K. Malaiya

Evaluating research

 These are the attributes generally evaluated
* Novelty/interest/Applicability
* Technical: Extent of research/contribution

— Key sources? Recent developments?
— citations
* Presentation

— Visuals: Non-text: diagrams, charts, algorithms
— Systematic/quantitative: tables, numbers
— Readability, coherence

e Qverall

Colorado State University

27

28

The Midterm and the Final will use the Respondus Lockdown
Browser with camera recording.

— You must use a laptop with the Respondus Lockdown Browser installed
and tested. A trial quiz is available.

The Sec 001 students will bring the fully charged and tested
laptop to the designated room.

— The 1 hour 15 min Midterm will be on Tues Oct 14 during the regular
class time.

The Sec 801 students will take their Midterm on Oct 15 any time
from 12:10 AM (early morning) to 11:50 PM.

Anyone with a significant conflict should contact me directly.

Quizzes: available Mondays 12:10 AM (early morning) to 11:50
PM.

Colorado State University

Dining-Philosophers Problem

* Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

— Need both to eat,
— then release both when done
e Each chopstick is a semaphore
— Grab by executing wait ()
— Release by executing signal ()
e Shared data
* Bowl of rice (data set)

* Semaphore chopstick [5] initialized to 1

Colorado State University

29

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes

Colorado State University

30

Dining-Philosophers Problem Algorithm: Simple solution?

 The structure of Philosopher i:

do {
wait (chopstick[i])
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i])
signal (chopstick[(1 + 1) % 5])

// think

} while (TRUE) ;
* What is the problem with this algorithm?

— If all of them pick up the the left chopstick first -
Deadlock

Colorado State University

31

Dining-Philosophers Problem Algorithm (Cont.)

32

 Deadlock handling

— Allow at most 4 philosophers to be sitting
simultaneously at the table (with the same 5 forks).

— Allow a philosopher to pick up the forks only if
both are available (picking must be done in a critical

section.

— Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick.

Colorado State University

Problems with Semaphores

* Incorrect use of semaphore operations:

— Omitting of wait (mutex)
* Violation of mutual exclusion
— or signal (mutex)
e Deadlock!

e Solution:

— Monitors: a higher-level implementation of
synchronization

Colorado State University

33

Colorado State University

34

35

Monitor: A high-level abstraction that provides a
convenient and effective mechanism for process
synchronization

* Abstract data type, internal variables only accessible by
code within the procedure

* Only one process may be active within the monitor at a
time
— Automatically provide mutual exclusion
— Implement waiting for conditions

* Queues:
- for entry
- for each condition
* Originally proposed for Concurrent Pascal 1975

* Directly supported by Java (se seifexercise) but not C

Colorado State University

Monitors

* Only one process may be actively under execution in the
monitor.

e A generic monitor construct is used here. Implementation
varies by language.

monitor monitor-name

{

// shared variable declarations

procedure P1 (..) { ... }
procedure Pn (..) {...}

Initialization code (..) { .. }

}
}

Colorado State University

36

Preliminary Schematic view of a Monitor

entry queue

shared data

Only one process/thread in
the Monitor

* Provides an easy way to
achieve mutual exclusion

But ... we also need a way for
N y processes to block

v

operations when they cannot proceed.

initialization * Refinement next ...
code

Shows 4 processes waiting in the queue.

Colorado State University

37

Condition Variables

38

Some actions need some conditions to go ahead.

The condition construct Comparewlthsemaphqre.
Here no integer value is
* condition x, y;, associated.

 Two operations are allowed on a condition
variable:

— x.wait () — a processthatinvokes the operation
is suspended until x.signal ()

— x.signal () —resumes one of processes (if any)
that invoked x.wait ()

* Ifnox.wait () on the condition variable, then it has no
effect on the variable. Signal is lost.

Colorado State University

Difference between the signal() in semaphores and monitors

* Condition variables in Monitors: Not persistent
— If a signal is performed and no waiting threads?
 Signal is simply ignored
— During subsequent wait operations
* Thread blocks

 Compare with semaphores

— Signal increments semaphore value even if there
are no waiting threads

* Future wait operations would immediately
succeed!

Colorado State University

39

Monitor with Condition Variables

entry queue

shared data

queues associated with

X, y conditions y i _

~

operations
initialization
code

Colorado State University

40

Condition Variables Choices

* If process P invokes x.signal (), and process Q is
suspended in x.wait (), what should happen next?

— Both Q and P cannot execute in parallel. If Q is resumed,
then P must wait

* Options include

— Signal and wait — P waits until Q either leaves the monitor or
it waits for another condition

— Signal and continue — Q waits until P either leaves the
monitor or it waits for another condition

— Both have pros and cons — language implementer can decide

— Monitors implemented in Concurrent Pascal (75)
compromise
e P executing signal immediately leaves the monitor, Q is resumed
* Implemented in other languages including C#, Java

Colorado State University

41

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} statel[5];

e state[i] = EATING onlyif
— state[(1+4)%5] != EATING && state[(1+1)%5] != EATING

* condition self[5]
— Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

» Before eating, must invoke pickup()
— May result in suspension of philosopher process
— After completion of operation, philosopher may eat

think
DiningPhilosophers.pickup (1) ;
DiningPhilosophers.putdown (1) ;

think

Colorado State University

42

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} statel[5];

state((i+4)%5) state(i) state((i+1)%5)

Process Process

(i+4)%5

Process i (1+1)%5

test((i+4)%5) test(i) test((i+1)%5)

Canl eat? If not, I'll wait

Colorado State University

43

44

The pickup() and putdown() operations

monitor DiningPhilosophers

{

enum { THINKING, HUNGRY, EATING} state [5] ; Suspend self if
condition self [5];

unable to acquire

void pickup (int i) { Chopstlck

state[i] = HUNGRY;

test (1) ; //below

if (state[i] != EATING) self[i] .wait;
} Eat only if HUNGRY

and Person on Left

void putdown (int i) { ANE)R@ht

state[i] = THINKING; .

// test left and right neighbors are not eating

test((i1 + 4) % 5);
test((1 + 1) % 5);

void test (int 1) {

if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(1 + 1) $ 5] != EATING)) {
state[i] = EATING ;
Check to see if person self[i].signal ()
!) :
on left or right can use } Signal a process that
the chopstick was suspended while
initialization code() { trving t t
for (int i = 0; i < 5; i++) ying to ea
state[i1i] = THINKING;

}

Colorado Ytate university

Possibility of starvation

* Philosopher i can starve if eating periods of
philosophers on left and right overlap

e Possible solution
— Introduce new state: STARVING

— Chopsticks can be picked up if no neighbor is
starving
* Effectively wait for neighbor’s neighbor to stop eating
* REDUCES concurrency!

Colorado State University

45

Monitor Implementation of Mutual Exclusion

For each monitor

 Semaphore mutex initialized to 1

* Process must execute
— wait(mutex) : Before entering the monitor
— signal(mutex): Before leaving the monitor

Colorado State University

46

Resuming Processes within a Monitor

* |f several processes queued on condition
X, and x.signal() is executed, which should

be resumed?
* FCFS frequently not adequate

e conditional-wait construct of the form
X.wait(c)
— Where c is priority number

— Process with lowest number (highest priority)
is scheduled next

Colorado State University

47

Single Resource allocation

48

Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

R.acquire(t) ;

access the resource;

R.release;

Where R is an instance of type ResourceAllocator
A monitor based solution next.

Colorado State University

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;
condition x;

Sleep, Time used
{ to prioritize
if (busy) waiting
x.wait (time) Processes
busy = TRUE;

void acquire (int time)

}

vold release () {
busy = FALSE;
X.signal ()

Wakes up

one of the

DO CE

}

initialization code () {
busy = FALSE;
}

Colorado State University

49

Java Synchronization

50

For simple synchronization, Java provides the synchronized keyword
— synchronizing methods
public synchronized void increment() { c++; }

— synchronizing blocks

synchronized(this) {
lastName = name;
nameCount++;

}

wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

Colorado State University

51

Java Synchronization

New Terminated

admitted exit
interrupt
Runnable Running
notify() Scheduler dispatcher Wait()

Non-
Runnable

https://www.baeldung.com/java-wait-notify

Each object automatically has a monitor (mutex) associated with it

When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

Colorado State University

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
throws InterruptedException {

setState(i, State. HUNGRY);

test(i);

while (state[i] != State.EATING) {
this.wait();
// Recheck condition in loop,
// since we might have been notified
// when we were still hungry

}
}

public synchronized void putdown(int i) {
setState(i, State.THINKING);
test(right(i));
test(left(i));
}

52

private synchronized void test(int i) {
if (state[left(i)] != State.EATING &&
state[right(i)] != State.EATING &&
state[i] == State. HUNGRY)

{
setState(i, State.EATING);

// Wake up all waiting threads
this.notifyAll();
}
}

Colorado State University

	Slide 1
	Slide 2: Semaphores by Dijkstra
	Slide 3: Wait(S) and Signal (S)
	Slide 4: Semaphores
	Slide 5: Semaphore Usage
	Slide 6: The counting semaphore
	Slide 7: Semaphore Implementation
	Slide 8: Semaphore Implementation with no Busy waiting
	Slide 9: Implementation with no Busy waiting (Cont.)
	Slide 10: Deadlock and Starvation
	Slide 11: Priority Inversion
	Slide 12: Classical Problems of Synchronization
	Slide 13: Bounded-Buffer Problem
	Slide 14: Bounded-Buffer : Note
	Slide 15: Bounded Buffer Problem (Cont.)
	Slide 16: Bounded Buffer Problem (Cont.)
	Slide 17: Readers-Writers Problem
	Slide 18: Readers-Writers Problem
	Slide 19: Readers-Writers Problem (Cont.)
	Slide 20: Readers-Writers Problem (Cont.)
	Slide 21: Readers-Writers Problem Variations
	Slide 22: Project
	Slide 23: Research: Search Databases
	Slide 24: Research: Source types
	Slide 25: Research: How to Read a Paper: THE THREE-PASS APPROACH
	Slide 26: Research: Avoid Prior Bias
	Slide 27: Evaluating research
	Slide 28: Course Notes
	Slide 29: Dining-Philosophers Problem
	Slide 30: Dining-Philosophers Problem
	Slide 31: Dining-Philosophers Problem Algorithm: Simple solution?
	Slide 32: Dining-Philosophers Problem Algorithm (Cont.)
	Slide 33: Problems with Semaphores
	Slide 34: Monitors
	Slide 35: Monitors
	Slide 36: Monitors
	Slide 37: Preliminary Schematic view of a Monitor
	Slide 38: Condition Variables
	Slide 39: Difference between the signal() in semaphores and monitors
	Slide 40: Monitor with Condition Variables
	Slide 41: Condition Variables Choices
	Slide 42: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 43: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 44: The pickup() and putdown() operations
	Slide 45
	Slide 46: Monitor Implementation of Mutual Exclusion
	Slide 47: Resuming Processes within a Monitor
	Slide 48
	Slide 49: A Monitor to Allocate Single Resource
	Slide 50: Java Synchronization
	Slide 51: Java Synchronization
	Slide 52: Java Synchronization: Dining Philosophers

