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Monitors

Monitor: A high-level abstraction that provides a 
convenient and effective mechanism for process 
synchronization
• Abstract data type, internal variables only accessible by 

code within the procedure
• Only one process may be active within the monitor at a 

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
 - for entry
 - for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C
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Condition Variables

Some actions need some conditions to go ahead. 

The condition construct

• condition x, y;

• Two operations are allowed on a condition 
variable:

– x.wait() –  a process that invokes the operation 
is suspended until x.signal() 

– x.signal() – resumes one of processes (if any) 
that invoked x.wait()
• If no x.wait() on the condition variable, then it has no 

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is 

associated.
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Monitor with Condition Variables
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Condition Variables Choices

• If process P invokes x.signal(), and process Q is 
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed, 

then P must wait

• Options include
– Signal and wait – P waits until Q either leaves the monitor or 

it waits for another condition
– Signal and continue – Q waits until P either leaves the 

monitor or it  waits for another condition
– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75) 

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java
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Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING &&   state[(i+1)%5] != EATING 

• condition self[5]

– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

think



7

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i
Process 
(i+1)%5

Process 
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait
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The pickup() and putdown()   operations

monitor DiningPhilosophers

{ 

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) { 

        state[i] = HUNGRY;

        test(i);   //below

        if (state[i] != EATING) self[i].wait;

   }

 

   void putdown (int i) { 

        state[i] = THINKING;

                   // test left and right neighbors

         test((i + 4) % 5);

         test((i + 1) % 5);

   }  void test (int i) { 

         if ((state[(i + 4) % 5] != EATING) &&

         (state[i] == HUNGRY) &&

         (state[(i + 1) % 5] != EATING) ) { 

              state[i] = EATING ;

      self[i].signal () ;

         }

   }

       initialization_code() { 

        for (int i = 0; i < 5; i++)

        state[i] = THINKING;

      }

}

Suspend self if 
unable  to acquire 

chopstick

Check to see if person 
on left or right can use 

the chopstick

Eat only if HUNGRY 
and Person on Left 

AND Right
are not eating

Signal a process that 
was suspended while 

trying to eat
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• Philosopher i can starve if eating periods of
    philosophers on left and right overlap
• Possible solution

– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is 

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

       

Possibility of starvation
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Monitor Implementation of Mutual Exclusion

For each monitor  
• Semaphore mutex initialized to 1  
• Process must execute 

– wait(mutex)  :  Before entering the monitor 
– signal(mutex):  Before leaving the monitor 
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Resuming Processes within a Monitor

• If several processes queued on condition 
x, and x.signal() is executed, which should 
be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form 
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority) 
is scheduled next
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• Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  plans to 
use the resource

          R.acquire(t);
                   ...
           access the resource;
                   ...

           R.release;

• Where R is an instance of  type ResourceAllocator

• A monitor based solution next.

       

Single Resource allocation 
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A Monitor to Allocate Single Resource
monitor ResourceAllocator 

{ 

 boolean busy; 

 condition x; 

 void acquire(int time) { 

  if (busy) 

   x.wait(time);  

  busy = TRUE; 

 } 

 void release() { 

  busy = FALSE; 

  x.signal(); 

 } 

    initialization code() {

  busy = FALSE; 

 }

}   

Sleep, Time used 
to prioritize 

waiting 
processes

Wakes up 
one of the 
processes
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Java Synchronization
• For simple synchronization,  Java provides the synchronized keyword

–  synchronizing methods
public synchronized void increment( ) { c++; } 
– synchronizing blocks

synchronized(this) {
  lastName = name;
  nameCount++;
 }

• wait() and notify() allows a thread to  wait for an event. A call to 
notifyAll() allows all threads that are on wait() with the same lock to 
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll() 
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the 
package java.concurrent.locks provides additional capabilities.
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Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before 
execution of that method begins (and must release the lock before control returns to the calling 
code)

wait() and notify() allows a thread to  wait for an event. 

• wait( ): Causes the current thread to wait until another thread invokes the notify() method or 
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting 
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will 
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify
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Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
    throws InterruptedException {
        setState(i, State.HUNGRY);
        test(i);
        while (state[i] != State.EATING) {
            this.wait();
            // Recheck condition in loop,
            // since we might have been notified
            // when we were still hungry
        }
    }

private synchronized void test(int i) {
        if (state[left(i)] != State.EATING &&
            state[right(i)] != State.EATING &&
            state[i] == State.HUNGRY)
        {
            setState(i, State.EATING);
            // Wake up all waiting threads
            this.notifyAll();
        }
    }

public synchronized void putdown(int i) {
        setState(i, State.THINKING);
        test(right(i));
        test(left(i));
    }
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Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads
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Solaris Synchronization

• Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing

• Uses adaptive mutexes for efficiency when protecting 
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables 
• Uses readers-writers locks when longer sections of code 

need access to data
• Uses turnstiles to order the list of threads waiting to 

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread 
the highest of the priorities of the threads in its turnstile
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Windows Synchronization

• Uses interrupt masks to protect access to global 
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land 
which may act mutexes, semaphores, events, 
and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired

– Dispatcher objects either signaled-state (object 
available) or non-signaled state (thread will block)
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Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores

– atomic operations on integers

– spinlocks

– reader-writer versions of both

• On single-cpu system, spinlocks replaced by 
enabling and disabling kernel preemption
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Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

– mutex locks

– condition variable

• Non-portable extensions include:

– read-write locks

– spinlocks
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Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages
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• A memory transaction is a sequence of 
read-write operations to memory that are 
performed atomically without the use of 
locks.

         void update(){
    atomic{

    /* modify shared data*/

    }

     }

May be implemented by hardware or software.

Transactional Memory
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• OpenMP is a set of compiler directives and 
API that support parallel programming.

     void update(int value)
     {

   #pragma omp critical

   {

     count += value

   }

  }

The code contained within the #pragma omp critical  
directive is treated as a critical section and performed 
atomically.

OpenMP
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Chapter 8:  Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection 

– Recovery from Deadlock 
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A Kansas Law

• Early 20th century Kansas Law

– “When two trains approach each other at a 
crossing, both shall come to a full stop and neither 
shall start up again until the other has gone” 

• Story of the two silly goats: Aesop 6th cent BCE?

https://www.youtube.com/watch?v=7D59nSKzwsE
https://www.youtube.com/watch?v=7D59nSKzwsE
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A contemporary example
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Deadlock Characterization

• Mutual exclusion:  only one process at a time can use 
a resource

• Hold and wait:  a process holding at least one resource 
is waiting to acquire additional resources held by other 
processes

• No preemption:  a resource can be released only 
voluntarily by the process holding it, after that process 
has completed its task

• Circular wait:  there exists a set {P0, P1, …, Pn} of 
waiting processes such that P0 is waiting for a resource 
that is held by P1, P1 is waiting for a resource that is 
held by P2, …, Pn–1 is waiting for a resource that is held 
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if these four conditions hold 

simultaneously.
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Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.

• See example 

– Dining Philosophers: each get the right chopstick first

– we saw this example earlier

Let S and Q be two semaphores initialized to 1

  P0                             P1

  wait(S);               wait(Q);

   wait(Q);               wait(S);
  ...      ...

    signal(Q);              signal(S);                           
   signal(S);        signal(Q);                           

P0 executes wait(s), P1 executes wait(Q)
P0 must wait till P1 executes signal(Q)
P1 must wait till P0 executes signal(S)      Deadlock!



31

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request 

– use 

– release
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Resource-Allocation Graph

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the 
processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all 
resource types in the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Example of a Resource Allocation Graph

If the graph contains no 
cycles, then no process in 
the system is deadlocked. 
If the graph does contain a 
cycle, then a deadlock 
may exist. 

Does a deadlock exist 
here?

P3 will eventually be done 
with R3, letting P2 use it.

Thus P2 will be eventually 
done, releasing R1. …

P1 holds an instance of 
R2, and is requesting R1 ..
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Resource Allocation Graph With A Deadlock

At this point, two minimal cycles 
exist in the system: 

P1→ R1→ P2→ R3→ P3→ R2→ P1
 
P2→ R3→ P3→ R2→ P2 

Processes P1, P2, and P3 are 
deadlocked. 

Does a deadlock exist?
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Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of 
resource type R2 . That resource 
can then be allocated to P3 , 
breaking the cycle. Thus, there is 
no deadlock. 

If a resource-allocation graph does 
not have a cycle, then the system 
is not in a deadlocked state.
 If there is a cycle, then the system 
may or may not be in a 
deadlocked state. 



37

Basic Facts

• If graph contains no cycles  no 
deadlock

• If graph contains a cycle 

– if only one instance per resource type, 
then deadlock

– if several instances per resource type, 
possibility of deadlock
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Related classes

Classes that follow CS370

– CS455 Distributed Systems  Spring

– CS457 Networks  Fall

– CS470 Computer Architecture  Spring

– CS475 Parallel Programming  Fall

– CS435: Introduction to Big Data  Spring
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Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock 
state:
– Deadlock prevention

• ensuring that at least one of the 4  conditions cannot hold

– Deadlock avoidance
• Dynamically examines the resource-allocation state to ensure that 

it will never enter an unsafe state, and thus there can never be a 
circular-wait condition

• Allow the system to enter a deadlock state 
– Detection: detect and then recover. Hope is that it happens 

rarely.

• Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX. However..
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Methods for Handling Deadlocks

• Deterministic: Ensure that the system will never 
enter a deadlock state at any cost

• Probabilistic view: Hope it happens rarely. 
Handle if it happens: Allow the system to enter 
a deadlock state and then recover.
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Methods for Handling Deadlocks

Approach Resource 
allocation policy

Scheme Notes

Prevention Conservative, 
undercommits 
resources

Requesting all 
resources at once

Good for processes 
with a single burst of 
activity

Preemption Good when 
preemption cost is 
small

Resource ordering Compile time 
enforcement possible

Avoidance midway Find at least one 
safe path
(dynamic)

Future max 
requirement must be 
known

Detection Liberal Invoked periodically Preemption may be 
needed
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Ostrich algorithm

Ostrich algorithm: Stick your head in the sand; 
pretend there is no problem at all .

Advantages: 
– Cheaper, rarely needed anyway

– Prevention, avoidance, detection and recovery
• Need to run constantly 

Disadvantages:
– Resources held by processes that cannot run

– More and more processes enter deadlocked state
• When they request more resources

– Deterioration in system performance
• Requires restart 

To be fair to the ostriches, 
let me say that …
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Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions 
must hold. By ensuring that at least one of these conditions 
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion:  only one process at a time can use a 
resource

• Hold and wait:  a process holding at least one resource is 
waiting to acquire additional resources held by other processes

• No preemption:  a resource can be released only voluntarily 
by the process holding it, after that process has completed its 
task

• Circular wait:  there exists a set {P0, P1, …, Pn} of waiting 
processes that are circularly waiting.
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