
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L12
Synchronization (Chap 6, 7)

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Monitors

Monitor: A high-level abstraction that provides a
convenient and effective mechanism for process
synchronization
• Abstract data type, internal variables only accessible by

code within the procedure
• Only one process may be active within the monitor at a

time
– Automatically provide mutual exclusion
– Implement waiting for conditions

• Queues:
 - for entry
 - for each condition

• Originally proposed for Concurrent Pascal 1975
• Directly supported by Java (see self exercise) but not C

3

Condition Variables

Some actions need some conditions to go ahead.

The condition construct

• condition x, y;

• Two operations are allowed on a condition
variable:

– x.wait() – a process that invokes the operation
is suspended until x.signal()

– x.signal() – resumes one of processes (if any)
that invoked x.wait()
• If no x.wait() on the condition variable, then it has no

effect on the variable. Signal is lost.

Compare with semaphore.
Here no integer value is

associated.

4

Monitor with Condition Variables

5

Condition Variables Choices

• If process P invokes x.signal(), and process Q is
suspended in x.wait(), what should happen next?
– Both Q and P cannot execute in parallel. If Q is resumed,

then P must wait

• Options include
– Signal and wait – P waits until Q either leaves the monitor or

it waits for another condition
– Signal and continue – Q waits until P either leaves the

monitor or it waits for another condition
– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal (‘75)

compromise
• P executing signal immediately leaves the monitor, Q is resumed
• Implemented in other languages including C#, Java

6

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

• state[i] = EATING only if
– state[(i+4)%5] != EATING && state[(i+1)%5] != EATING

• condition self[5]

– Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

• Before eating, must invoke pickup()
– May result in suspension of philosopher process
– After completion of operation, philosopher may eat

think

DiningPhilosophers.pickup(i);

eat

DiningPhilosophers.putdown(i);

think

7

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

Process i
Process
(i+1)%5

Process
(i+4)%5

test(i) test((i+1)%5)test((i+4)%5)

state(i) state((i+1)%5)state((i+4)%5)

Can I eat? If not, I’ll wait

8

The pickup() and putdown() operations

monitor DiningPhilosophers

{

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i); //below

 if (state[i] != EATING) self[i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 } void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

Suspend self if
unable to acquire

chopstick

Check to see if person
on left or right can use

the chopstick

Eat only if HUNGRY
and Person on Left

AND Right
are not eating

Signal a process that
was suspended while

trying to eat

9

• Philosopher i can starve if eating periods of
 philosophers on left and right overlap
• Possible solution

– Introduce new state: STARVING
– Chopsticks can be picked up if no neighbor is

starving
• Effectively wait for neighbor’s neighbor to stop eating
• REDUCES concurrency!

Possibility of starvation

10

Monitor Implementation of Mutual Exclusion

For each monitor
• Semaphore mutex initialized to 1
• Process must execute

– wait(mutex) : Before entering the monitor
– signal(mutex): Before leaving the monitor

11

Resuming Processes within a Monitor

• If several processes queued on condition
x, and x.signal() is executed, which should
be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

– Where c is priority number

– Process with lowest number (highest priority)
is scheduled next

12

• Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

 R.acquire(t);
 ...
 access the resource;
 ...

 R.release;

• Where R is an instance of type ResourceAllocator

• A monitor based solution next.

Single Resource allocation

13

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

 boolean busy;

 condition x;

 void acquire(int time) {

 if (busy)

 x.wait(time);

 busy = TRUE;

 }

 void release() {

 busy = FALSE;

 x.signal();

 }

 initialization code() {

 busy = FALSE;

 }

}

Sleep, Time used
to prioritize

waiting
processes

Wakes up
one of the
processes

14

Java Synchronization
• For simple synchronization, Java provides the synchronized keyword

– synchronizing methods
public synchronized void increment() { c++; }
– synchronizing blocks

synchronized(this) {
 lastName = name;
 nameCount++;
 }

• wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

• notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

• For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

15

Java Synchronization

Each object automatically has a monitor (mutex) associated with it

• When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

• wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

• notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

• A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

https://www.baeldung.com/java-wait-notify

16

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
 throws InterruptedException {
 setState(i, State.HUNGRY);
 test(i);
 while (state[i] != State.EATING) {
 this.wait();
 // Recheck condition in loop,
 // since we might have been notified
 // when we were still hungry
 }
 }

private synchronized void test(int i) {
 if (state[left(i)] != State.EATING &&
 state[right(i)] != State.EATING &&
 state[i] == State.HUNGRY)
 {
 setState(i, State.EATING);
 // Wake up all waiting threads
 this.notifyAll();
 }
 }

public synchronized void putdown(int i) {
 setState(i, State.THINKING);
 test(right(i));
 test(left(i));
 }

17

Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads

18

Solaris Synchronization

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

• Uses adaptive mutexes for efficiency when protecting
data from short code segments
– Starts as a standard semaphore spin-lock
– If lock held, and by a thread running on another CPU, spins
– If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code

need access to data
• Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock
– Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread
the highest of the priorities of the threads in its turnstile

19

Windows Synchronization

• Uses interrupt masks to protect access to global
resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems
– Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land
which may act mutexes, semaphores, events,
and timers
– Events

• An event acts much like a condition variable

– Timers notify one or more thread when time expired

– Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will block)

20

Linux Synchronization

• Linux:
– Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

– Version 2.6 and later, fully preemptive

• Linux provides:
– Semaphores

– atomic operations on integers

– spinlocks

– reader-writer versions of both

• On single-cpu system, spinlocks replaced by
enabling and disabling kernel preemption

21

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

– mutex locks

– condition variable

• Non-portable extensions include:

– read-write locks

– spinlocks

22

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

23

• A memory transaction is a sequence of
read-write operations to memory that are
performed atomically without the use of
locks.

 void update(){
 atomic{

 /* modify shared data*/

 }

 }

May be implemented by hardware or software.

Transactional Memory

24

• OpenMP is a set of compiler directives and
API that support parallel programming.

 void update(int value)
 {

 #pragma omp critical

 {

 count += value

 }

 }

The code contained within the #pragma omp critical
directive is treated as a critical section and performed
atomically.

OpenMP

25 25

Colorado State University
Yashwant K Malaiya

CS370 Operating Systems

Deadlock

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

26

Chapter 8: Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection

– Recovery from Deadlock

27

A Kansas Law

• Early 20th century Kansas Law

– “When two trains approach each other at a
crossing, both shall come to a full stop and neither
shall start up again until the other has gone”

• Story of the two silly goats: Aesop 6th cent BCE?

https://www.youtube.com/watch?v=7D59nSKzwsE
https://www.youtube.com/watch?v=7D59nSKzwsE

28

A contemporary example

29

Deadlock Characterization

• Mutual exclusion: only one process at a time can use
a resource

• Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource that is held
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if these four conditions hold

simultaneously.

30

Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.

• See example

– Dining Philosophers: each get the right chopstick first

– we saw this example earlier

Let S and Q be two semaphores initialized to 1

 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(Q); signal(S);
 signal(S); signal(Q);

P0 executes wait(s), P1 executes wait(Q)
P0 must wait till P1 executes signal(Q)
P1 must wait till P0 executes signal(S) Deadlock!

31

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

32

Resource-Allocation Graph

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

33

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

34

Example of a Resource Allocation Graph

If the graph contains no
cycles, then no process in
the system is deadlocked.
If the graph does contain a
cycle, then a deadlock
may exist.

Does a deadlock exist
here?

P3 will eventually be done
with R3, letting P2 use it.

Thus P2 will be eventually
done, releasing R1. …

P1 holds an instance of
R2, and is requesting R1 ..

35

Resource Allocation Graph With A Deadlock

At this point, two minimal cycles
exist in the system:

P1→ R1→ P2→ R3→ P3→ R2→ P1

P2→ R3→ P3→ R2→ P2

Processes P1, P2, and P3 are
deadlocked.

Does a deadlock exist?

36

Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3 ,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does
not have a cycle, then the system
is not in a deadlocked state.
 If there is a cycle, then the system
may or may not be in a
deadlocked state.

37

Basic Facts

• If graph contains no cycles  no
deadlock

• If graph contains a cycle 

– if only one instance per resource type,
then deadlock

– if several instances per resource type,
possibility of deadlock

38

Related classes

Classes that follow CS370

– CS455 Distributed Systems Spring

– CS457 Networks Fall

– CS470 Computer Architecture Spring

– CS475 Parallel Programming Fall

– CS435: Introduction to Big Data Spring

39

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state:
– Deadlock prevention

• ensuring that at least one of the 4 conditions cannot hold

– Deadlock avoidance
• Dynamically examines the resource-allocation state to ensure that

it will never enter an unsafe state, and thus there can never be a
circular-wait condition

• Allow the system to enter a deadlock state
– Detection: detect and then recover. Hope is that it happens

rarely.

• Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX. However..

40

Methods for Handling Deadlocks

• Deterministic: Ensure that the system will never
enter a deadlock state at any cost

• Probabilistic view: Hope it happens rarely.
Handle if it happens: Allow the system to enter
a deadlock state and then recover.

41

Methods for Handling Deadlocks

Approach Resource
allocation policy

Scheme Notes

Prevention Conservative,
undercommits
resources

Requesting all
resources at once

Good for processes
with a single burst of
activity

Preemption Good when
preemption cost is
small

Resource ordering Compile time
enforcement possible

Avoidance midway Find at least one
safe path
(dynamic)

Future max
requirement must be
known

Detection Liberal Invoked periodically Preemption may be
needed

42

Ostrich algorithm

Ostrich algorithm: Stick your head in the sand;
pretend there is no problem at all .

Advantages:
– Cheaper, rarely needed anyway

– Prevention, avoidance, detection and recovery
• Need to run constantly

Disadvantages:
– Resources held by processes that cannot run

– More and more processes enter deadlocked state
• When they request more resources

– Deterioration in system performance
• Requires restart

To be fair to the ostriches,
let me say that …

43

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes that are circularly waiting.

	Slide 1
	Slide 2: Monitors
	Slide 3: Condition Variables
	Slide 4: Monitor with Condition Variables
	Slide 5: Condition Variables Choices
	Slide 6: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 7: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 8: The pickup() and putdown() operations
	Slide 9
	Slide 10: Monitor Implementation of Mutual Exclusion
	Slide 11: Resuming Processes within a Monitor
	Slide 12
	Slide 13: A Monitor to Allocate Single Resource
	Slide 14: Java Synchronization
	Slide 15: Java Synchronization
	Slide 16: Java Synchronization: Dining Philosophers
	Slide 17: Synchronization Examples
	Slide 18: Solaris Synchronization
	Slide 19: Windows Synchronization
	Slide 20: Linux Synchronization
	Slide 21: Pthreads Synchronization
	Slide 22: Alternative Approaches
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Chapter 8: Deadlocks
	Slide 27: A Kansas Law
	Slide 28: A contemporary example
	Slide 29: Deadlock Characterization
	Slide 30: Deadlock with Mutex Locks
	Slide 31: System Model
	Slide 32: Resource-Allocation Graph
	Slide 33: Resource-Allocation Graph (Cont.)
	Slide 34: Example of a Resource Allocation Graph
	Slide 35: Resource Allocation Graph With A Deadlock
	Slide 36: Graph With A Cycle But No Deadlock
	Slide 37: Basic Facts
	Slide 38: Related classes
	Slide 39: Methods for Handling Deadlocks
	Slide 40: Methods for Handling Deadlocks
	Slide 41: Methods for Handling Deadlocks
	Slide 42: Ostrich algorithm
	Slide 43: Deadlock Prevention

