CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L12
Synchronization (Chap 6, 7)

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Monitor: A high-level abstraction that provides a
convenient and effective mechanism for process
synchronization

* Abstract data type, internal variables only accessible by
code within the procedure

* Only one process may be active within the monitor at a
time
— Automatically provide mutual exclusion
— Implement waiting for conditions

* Queues:
- for entry
- for each condition
* Originally proposed for Concurrent Pascal 1975

* Directly supported by Java (se seifexercise) but not C

Colorado State University

Condition Variables

Some actions need some conditions to go ahead.

The condition construct Comparewlthsemaphqre.
Here no integer value is
* condition x, y;, associated.

 Two operations are allowed on a condition
variable:

— x.wait () — a processthatinvokes the operation
is suspended until x.signal ()

— x.signal () —resumes one of processes (if any)
that invoked x.wait ()

* Ifnox.wait () on the condition variable, then it has no
effect on the variable. Signal is lost.

; Colorado State University

Monitor with Condition Variables

entry queue

shared data

queues associated with

X, y conditions y i _

~

operations
initialization
code

Colorado State University

Condition Variables Choices

* If process P invokes x.signal (), and process Q is
suspended in x.wait (), what should happen next?

Both Q and P cannot execute in parallel. If Q is resumed,
then P must wait

* Options include

Signal and wait — P waits until Q either leaves the monitor or
it waits for another condition

Signal and continue — Q waits until P either leaves the
monitor or it waits for another condition

Both have pros and cons — language implementer can decide

Monitors implemented in Concurrent Pascal (75)
compromise

e P executing signal immediately leaves the monitor, Q is resumed
* Implemented in other languages including C#, Java

Colorado State University

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} statel[5];

e state[i] = EATING onlyif
— state[(1+4)%5] != EATING && state[(1+1)%5] != EATING

* condition self[5]
— Delay self when HUNGRY but unable to get chopsticks

Sequence of actions

» Before eating, must invoke pickup()
— May result in suspension of philosopher process
— After completion of operation, philosopher may eat

think
DiningPhilosophers.pickup (1) ;
DiningPhilosophers.putdown (1) ;

think

Colorado State University

Monitor Solution to Dining Philosophers: Deadlock-free

enum {THINKING,HUNGRY,EATING} statel[5];

state((i+4)%5) state(i) state((i+1)%5)

Process Process

(i+4)%5

Process i (1+1)%5

test((i+4)%5) test(i) test((i+1)%5)

Canl eat? If not, I'll wait

Colorado State University

The pickup() and putdown() operations

monitor DiningPhilosophers

{

enum { THINKING, HUNGRY, EATING} state [5] ; Suspend self if
condition self [5];

unable to acquire

void pickup (int i) { Chopstlck

state[i] = HUNGRY;

test (1) ; //below

if (state[i] != EATING) self[i] .wait;
} Eat only if HUNGRY

and Person on Left

void putdown (int i) { ANE)R@ht

state[i] = THINKING; .

// test left and right neighbors are not eating

test((i1 + 4) % 5);
test((1 + 1) % 5);

void test (int 1) {

if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(1 + 1) $ 5] != EATING)) {
state[i] = EATING ;
Check to see if person self[i].signal ()
!) :
on left or right can use } Signal a process that
the chopstick was suspended while
initialization code() { trving t t
for (int i = 0; i < 5; i++) ying to ea
state[i1i] = THINKING;

}

Colorado Ytate university

Possibility of starvation

* Philosopher i can starve if eating periods of
philosophers on left and right overlap

e Possible solution
— Introduce new state: STARVING

— Chopsticks can be picked up if no neighbor is
starving
* Effectively wait for neighbor’s neighbor to stop eating
* REDUCES concurrency!

Colorado State University

Monitor Implementation of Mutual Exclusion

For each monitor

 Semaphore mutex initialized to 1

* Process must execute
— wait(mutex) : Before entering the monitor
— signal(mutex): Before leaving the monitor

Colorado State University

10

Resuming Processes within a Monitor

* |f several processes queued on condition
X, and x.signal() is executed, which should

be resumed?
* FCFS frequently not adequate

e conditional-wait construct of the form
X.wait(c)
— Where c is priority number

— Process with lowest number (highest priority)
is scheduled next

Colorado State University

11

Single Resource allocation

12

Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans to
use the resource

R.acquire(t) ;

access the resource;

R.release;

Where R is an instance of type ResourceAllocator
A monitor based solution next.

Colorado State University

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;
condition x;

Sleep, Time used
{ to prioritize
if (busy) waiting
x.wait (time) Processes
busy = TRUE;

void acquire (int time)

}

vold release () {
busy = FALSE;
X.signal ()

Wakes up

one of the

DO CE

}

initialization code () {
busy = FALSE;
}

Colorado State University

13

Java Synchronization

14

For simple synchronization, Java provides the synchronized keyword
— synchronizing methods
public synchronized void increment() { c++; }

— synchronizing blocks

synchronized(this) {
lastName = name;
nameCount++;

}

wait() and notify() allows a thread to wait for an event. A call to
notifyAll() allows all threads that are on wait() with the same lock to
be notified.

notify() notifies one thread from a pool of identical threads, notifyAll()
when threads have different purposes

For more sophisticated locking mechanisms, starting from Java 5, the
package java.concurrent.locks provides additional capabilities.

Colorado State University

15

Java Synchronization

New Terminated

admitted exit
interrupt
Runnable Running
notify() Scheduler dispatcher Wait()

Non-
Runnable

https://www.baeldung.com/java-wait-notify

Each object automatically has a monitor (mutex) associated with it

When a method is synchronized, the runtime must obtain the lock on the object's monitor before
execution of that method begins (and must release the lock before control returns to the calling
code)

wait() and notify() allows a thread to wait for an event.

wait(): Causes the current thread to wait until another thread invokes the notify() method or
the notifyAll() method for this object.

notify(): Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting
on this object, one of them is chosen to be awakened.

A call to notifyall() allows all threads that are on wait() with the same lock to be released, they will
run in sequence according to priority.

Colorado State University

Java Synchronization: Dining Philosophers

public synchronized void pickup(int i)
throws InterruptedException {

setState(i, State. HUNGRY);

test(i);

while (state[i] != State.EATING) {
this.wait();
// Recheck condition in loop,
// since we might have been notified
// when we were still hungry

}
}

public synchronized void putdown(int i) {
setState(i, State.THINKING);
test(right(i));
test(left(i));
}

16

private synchronized void test(int i) {
if (state[left(i)] != State.EATING &&
state[right(i)] != State.EATING &&
state[i] == State. HUNGRY)

{
setState(i, State.EATING);

// Wake up all waiting threads
this.notifyAll();
}
}

Colorado State University

17

Solaris
Windows
Linux
Pthreads

Synchronization Examples

Colorado State University

Solaris Synchronization

* Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

* Uses adaptive mutexes for efficiency when protecting
data from short code segments

— Starts as a standard semaphore spin-lock
— If lock held, and by a thread running on another CPU, spins
— If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

e Uses condition variables

* Uses readers-writers locks when longer sections of code
need access to data

* Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock
— Turnstiles are per-lock-holding-thread, not per-object
* Priority-inheritance per-turnstile gives the running thread
the highest of the priorities of the threads in its turnstile

Colorado State University

18

Windows Synchronization

e Uses interrupt masks to protect access to global
resources on uniprocessor systems

e Uses spinlocks on multiprocessor systems
— Spinlocking-thread will never be preempted

* Also provides dispatcher objects user-land
which may act mutexes, semaphores, events,
and timers

— Events
* An event acts much like a condition variable

— Timers notify one or more thread when time expired

— Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will block)

Colorado State University

19

Linux Synchronization

20

Linux:

— Prior to kernel Version 2.6, disables interrupts to
implement short critical sections

— Version 2.6 and later, fully preemptive
Linux provides:

— Semaphores

— atomic operations on integers

— spinlocks

— reader-writer versions of both

On single-cpu system, spinlocks replaced by
enabling and disabling kernel preemption

Colorado State University

Pthreads Synchronization

* Pthreads APl is OS-independent
* |t provides:

— mutex locks
— condition variable
* Non-portable extensions include:

— read-write locks
— spinlocks

Colorado State University

21

Alternative Approaches

* Transactional Memory
* OpenMP

* Functional Programming Languages

- Colorado State University

Transactional Memory

* A memory transaction is a sequence of
read-write operations to memory that are

performed atomically without the use of
locks.

void update() {
atomic{
/* modify shared data*/

}
}

May be implemented by hardware or software.

s Colorado State University

OpenMP

* OpenMP is a set of compiler directives and
API| that support parallel programming.

void update (int wvalue)

{
#pragma omp critical
{

count += wvalue

}

The code contained within the #pragma omp critical
directive is treated as a critical section and performed
atomically.

Colorado State University

24

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya

Deadlock

Slides based on
* Text by Silberschatz, Galvin, Gagne
e Various sources

25

Chapter 8: Deadlocks

26

« System Model

« Deadlock Characterization

« Methods for Handling Deadlocks

— Deadlock Prevention

Deadlock Avoidance resource-allocation

Deadlock Detection
Recovery from Deadlock

Colorado State University

* Early 20" century Kansas Law

— “When two trains approach each other at a
crossing, both shall come to a full stop and neither
shall start up again until the other has gone”

 Story of the two silly goats: Aesop 6™ cent BCE?

[LEARNED IN

KINDERGARTE

Colorado State University

27

https://www.youtube.com/watch?v=7D59nSKzwsE
https://www.youtube.com/watch?v=7D59nSKzwsE

A contemporary example

Colorado State University

29

Deadlock Characterization

Deadlock can arise if these four conditions hold
simultaneously.
Mutual exclusion: only one process at a time can use
a resource

Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

No preemption: aresource can be released only
voluntarily by the process holding it, after that process
has completed its task

Circular wait: there exists a set {P,, Py, ..., P,} of
waiting processes such that P,is waiting for a resource
that is held by P,, P, is waiting for a resource that is
held by P,, ..., P,_, is waiting for a resource that is held
by P, and P_ is waiting for a resource that is held by P,.

Colorado State University

Deadlock with Mutex Locks

 Deadlocks can occur via system calls, locking, etc.

 See example
— Dining Philosophers: each get the right chopstick first
— we saw this example earlier

Let sand g be two semaphores initialized to 1

wait(S); wait(Q);
wait(Q); wait(S);
signal (Q) ; signal (S) ;
signal (S) ; signal (Q) ;

PO executes wait(s), P1 executes wait(Q)
PO must wait till P1 executes signal(Q)
P1 must wait till PO executes signal(S) Deadlock!

Colorado State University

30

System Model

31

System consists of resources

Resource types R, R,, . . ., R,

CPU cycles, memory space, 1/0 devices

Each resource type R, has W,

Each process utilizes a resou
— request

— use

— release

instances.

rce as follows:

Colorado State University

Resource-Allocation Graph

A set of vertices V and a set of edges E.

* Vs partitioned into two types:

— P={P,, P,, ..., P}, the set consisting of all the
processes in the system

— R={Ry, R,, ..., R}, the set consisting of all
resource types in the system

* request edge — directed edge P,— R;

* assignment edge — directed edge R, —> P,

)

Colorado State University

32

Resource-Allocation Graph (Cont.)

O

* Resource Type with 4 instances

* Process

oo
oo

* P;requests instance ofR

I oo

R;

* P;is holding an instance of R;

ED
OO

R

J

Colorado State University

33

Example of a Resource Allocation Graph

R, R,
P1 holds an instance of
R2, and is requesting R1 .. 0\ o\

If the graph contains no Does a deadlock exist
cycles, then no process in P, e e here?

the system is deadlocked.
If the graph does contain a
cycle, then a deadlock

may exist. \ 7/ P3 will eventually be done
% with R3, letting P2 use it.
€] €]
@
R, ° Thus P2 will be eventually
done, releasing R1. ...

Colorado State University

34

35

Resource Allocation Graph With A Deadlock

Does a deadlock exist?

At this point, two minimal cycles
exist in the system:

P1-> R1-> P2-> R3- P3-> R2- P1

P2—> R3—> P3—> R2-> P2

Processes P1, P2, and P3 are
deadlocked.

Colorado State University

Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does :
not have a cycle, then the system 9

is not in a deadlocked state.
If there is a cycle, then the system

may or may not be in a
deadlocked state.

i Colorado State University

* If graph contains no cycles = no
deadlock

* If graph contains a cycle =

— if only one instance per resource type,
then deadlock

— if several instances per resource type,
possibility of deadlock

Colorado State University

37

Related classes

Classes that follow CS370

— CS455 Distributed Systems Spring

— CS457 Networks Fall

— CS470 Computer Architecture Spring
— CS475 Parallel Programming Fall

— (CS435: Introduction to Big Data Spring

Colorado State University

38

39

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock
state:
— Deadlock prevention

e ensuring that at least one of the 4 conditions cannot hold
— Deadlock avoidance

* Dynamically examines the resource-allocation state to ensure that

it will never enter an unsafe state, and thus there can never be a
circular-wait condition

Allow the system to enter a deadlock state

— Detection: detect and then recover. Hope is that it happens
rarely.

lgnore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX. However.

Colorado State University

Methods for Handling Deadlocks

 Deterministic: Ensure that the system will never
enter a deadlock state at any cost

* Probabilistic view: Hope it happens rarely.
Handle if it happens: Allow the system to enter

a deadlock state and then recover.

Colorado State University

40

Methods for Handling Deadlocks

Approach Resource
allocation policy

Prevention Conservative, Requesting all Good for processes
undercommits resources at once with a single burst of
resources activity

Preemption Good when
preemption cost is
small

Resource ordering Compile time
enforcement possible

Avoidance midway Find at least one Future max
safe path requirement must be
(dynamic) known
Detection Liberal Invoked periodically Preemption may be
needed
» Colorado State University

42

Ostrich algorithm

Ostrich algorithm: Stick your head in the sand;
pretend there is no problem at all .

Advantages:

— Cheaper, rarely needed anyway
— Prevention, avoidance, detection and recovery
* Need to run constantly
Disadvantages:

— Resources held by processes that cannot run

— More and more processes enter deadlocked state
* When they request more resources

— Deterioration in system performance
* Requires restart RSN

To be fair to the ostriches,

Colorado State University

43

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

« Mutual exclusion: only one process at a time can use a
resource

« Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

- No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

« Circular wait: there exists a set {P,, P4, ..., P,} of waiting
processes that are circularly waiting.

m—)

Colorado State University

	Slide 1
	Slide 2: Monitors
	Slide 3: Condition Variables
	Slide 4: Monitor with Condition Variables
	Slide 5: Condition Variables Choices
	Slide 6: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 7: Monitor Solution to Dining Philosophers: Deadlock-free
	Slide 8: The pickup() and putdown() operations
	Slide 9
	Slide 10: Monitor Implementation of Mutual Exclusion
	Slide 11: Resuming Processes within a Monitor
	Slide 12
	Slide 13: A Monitor to Allocate Single Resource
	Slide 14: Java Synchronization
	Slide 15: Java Synchronization
	Slide 16: Java Synchronization: Dining Philosophers
	Slide 17: Synchronization Examples
	Slide 18: Solaris Synchronization
	Slide 19: Windows Synchronization
	Slide 20: Linux Synchronization
	Slide 21: Pthreads Synchronization
	Slide 22: Alternative Approaches
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Chapter 8: Deadlocks
	Slide 27: A Kansas Law
	Slide 28: A contemporary example
	Slide 29: Deadlock Characterization
	Slide 30: Deadlock with Mutex Locks
	Slide 31: System Model
	Slide 32: Resource-Allocation Graph
	Slide 33: Resource-Allocation Graph (Cont.)
	Slide 34: Example of a Resource Allocation Graph
	Slide 35: Resource Allocation Graph With A Deadlock
	Slide 36: Graph With A Cycle But No Deadlock
	Slide 37: Basic Facts
	Slide 38: Related classes
	Slide 39: Methods for Handling Deadlocks
	Slide 40: Methods for Handling Deadlocks
	Slide 41: Methods for Handling Deadlocks
	Slide 42: Ostrich algorithm
	Slide 43: Deadlock Prevention

