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Chapter 8: Deadlocks

« System Model
 Deadlock Characterization

« Methods for Handling Deadlocks
— Deadlock Prevention
— Deadlock Avoidance resource-allocation
— Deadlock Detection
— Recovery from Deadlock
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Resource Allocation Graph With A Deadlock

Does a deadlock exist?

At this point, two minimal cycles
exist in the system:

P1-> R1-> P2-> R3- P3-> R2- P1

P2—> R3—> P3—> R2-> P2

Processes P1, P2, and P3 are
deadlocked.
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Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does :
not have a cycle, then the system 9

is not in a deadlocked state.
If there is a cycle, then the system

may or may not be in a
deadlocked state.
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* If graph contains no cycles = no
deadlock
* If graph contains a cycle =

— if only one instance per resource type,
then deadlock

— if several instances per resource type,
possibility of deadlock
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Methods for Handling Deadlocks

Approach Resource
allocation policy

Prevention

Avoidance

Detection

Conservative,
undercommits
resources

midway

Liberal

Requesting all
resources at once

Preemption

Resource ordering

Find at least one
safe path
(dynamic)

Invoked periodically

Good for processes
with a single burst of
activity

Good when
preemption cost is
small

Compile time
enforcement possible

Future max
requirement must be
known

Preemption may be
needed
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Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

« Mutual exclusion: only one process at a time can use a
resource

« Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

- No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

« Circular wait: there exists a set {P,, P4, ..., P,} of waiting
processes that are circularly waiting.

m—)
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Deadlock Prevention: Limit Mutual Exclusion

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

Restrain the ways request can be made:

e Limit Mutual Exclusion —

— not required for sharable resources (e.g.,
read-only files)

— (Mutual Exclusion must hold for non-
sharable resources)

m—)
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Deadlock Prevention: Limit Hold and Wait

Limit Hold and Wait — must guarantee that whenever a
process requests a resource, it does not hold any other

resources

1. Require process to request and be allocated all its resources
before it begins execution

2. Allow a process to request resources when it is holding none.

Ex: Copy data from DVD, sort file, and print
— First request DVD and disk file

— Then request file and printer,

— then start

Disadvantage: starvation possible

—
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Deadlock Prevention: Limit No Preemption

* Limit No Preemption —

— |If a process that is holding some resources,
requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released

— Preempted resources are added to the list of
resources for which the process is waiting

— Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting

Colorado State University
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Deadlock Prevention: Limit Circular Wait

e Limit Circular Wait — impose a total ordering
of all resource types, and require that each
process requests resources in an increasing
order of enumeration

* Assign each resource a unique number
— Disk drive: 1
— Printer: 2 ...
— Request resources in increasing order

* Example soon

Colorado State University
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Dining philosophers problem: Necessary conditions for deadlock

Relax conditions to

Mutual exclusion avoid deadlock

— 2 philosophers cannot share the same chopstick

* Hold-and-wait
— A philosopher picks up one chopstick at a time
— Will not let go of the first while it waits for the second one

* No preemption

— A philosopher does not snatch chopsticks held by some other
philosopher

 Circular wait

— Could happen if each philosopher picks chopstick with the same hand
first

Colorado State University
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Deadlock Example: numbering

/* thread one runs in this function */

void *do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex) ;

/** * Do some work */
pthread mutex unlock (&second mutex) ;

pthread mutex unlock (&first mutex);
pthread exit (0) ;

}

/* thread two runs in this function */

void *do work two(void *param)
{

pthread mutex lock(&second mutex);
pthread mutex lock(&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex) ;
pthread exit (0) ;

Allows deadlock. Redesign to avoid.

Assume that thread one is the
first to acquire the locks and
does so in the order (1) first
mutex, (2) second mutex.

Solution: Lock-order verifier
“Witness” records the
relationship that first mutex
must be acquired before second
mutex. If thread two later
acquires the locks out of order,
witness generates a warning
message on the system console.
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Deadlock may happen even with Lock Ordering

void transaction (Account from, Account to, double amount)
{
mutex lockl, lock2;
lockl = get lock(from);
lock2 = get lock(to);
acquire (lockl);
acquire (lock?2);
withdraw (from, amount):;
deposit (to, amount);
release (lock?2);

release (lockl); Lock Ordering.

First from lock, then to lock

Ex: Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account B, and
Transaction 2 transfers $50 from account B to account A.

Deadlock is possible, even with lock ordering.

y Colorado Ytate University



Deadlock Avoidance

Manage resource allocation to
ensure the system never enters an
unsafe state.

Colorado State University
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Deadlock Avoidance

Requires that the system has some additional a priori information
available

e Simplest and most useful model requires that
each process declare the maximum number
of resources of each type that it may need

 The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

* Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

6 Colorado State University



Avoidance: amount and type of information needed

e Resource allocation state
— Number of available and allocated resources
— Maximum demands of processes

* Dynamically examine resource allocation state
— Ensure circular-wait cannot exist

* Simplest model:
— Declare maximum number of resources for each type
— Use information to avoid deadlock

Colorado State University
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Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P,,
P,, ..., P.> of ALL the processes such that

* for each P,, the resources that P, can still request
can be satisfied by

— currently available resources +

— resources held by all the P;, withj <

— That is

* If P, resource needs are not immediately available, then P;
can wait until all P; have finished and released resources

* When P, terminates, P;,; can obtain its needed resources,
and so on

* If no such sequence exists: system state is unsafe

Colorado State University
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Deadlock avoidance: Safe states

e |If the system can:

— Allocate resources to each process in some order
* Up to the maximum for the process

— Still avoid deadlock
— Then it is in a safe state

* A system is safe ONLY IF there is a safe
sequence

e A safe state is not a deadlocked state

— Deadlocked state is an unsafe state
— Not all unsafe states are deadlock

Colorado State University
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Safe, Unsafe, Deadlock State

unsafe
deadlock

/

Examples of safe and unsafe states in next 3 slides

- Colorado State University



Example A: Assume 12 Units in the system

9 units allocated

av 3
3 (12-9) units available
PO 10 5
P1 4 2 A unit could be a drive,
a block of memory etc.
P2 9 2

* Is the system at time TO in a safe state?

— Try sequence <P1, PO, P2>

— P1 can be given 2 units

— When P1 releases its resources; there are now 5 available units
— PO uses 5 and subsequently releases them (10 available now)
— P2 can then proceed.

 Thus <P1, PO, P2>is a safe sequence, and at TO

system was in a safe state

Colorado State University
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Example A: Assume 12 Units in the system (timing)

Is the state at TO safe? Detailed look for instants TO, T1, T2, etc..

Current P1
holding releases

all

av 3 1 5 0 10 3
PO 10 5 5 5 10done O 0
P1 4 2 4 done O 0 0 0
P2 9 2 2 2 2 2 9 done

Thus the state at TO is safe.

Colorado State University
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Example B: 12 Units initially available in the system

Max TO T1
need safe?
Av 2

Before T1:
3 units available

3 At T1:
PO 10 5 5 2 units available
P1 4 2 2
P2 9 2 3 Is that OK?

e AttimeT1, P2 is allocated 1 more units. Is that a
good decision?
— Now only P1 can proceed (aiready has 2, and given be given 2 more)
— When P1 releases its resources; there are 4 units
— PO needs 5 more, P2 needs 6 more. Deadlock.
* Mistake in granting P2 the additional unit.

e The state at T1 is not a safe state. wasn'ta good decision.
Colorado State University
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Avoidance Algorithms

* Dynamic
e Single instance of a resource type

— Use a resource-allocation graph scheme

 Multiple instances of a resource type
— Use the banker’ s algorithm (Dijkstra)

—)

Colorado State University
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Resource-Allocation Graph Scheme

* Claim edge P; — R;indicated that process P,
may request resource R; represented by a
dashed line. This is new.

* Claim edge converts to request edge when a
process requests a resource

* Request edge converted to an assignment edge
when the resource is allocated to the process

* When a resource is released by a process,
assignment edge reconverts to a claim edge

* Requirement: Resources must be claimed a
priori in the system

Colorado State University
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Resource-Allocation Graph

0 @ \ e
N > »
P 2
s [N
N " A
» P
A It

---> Claim edges R, Unsafe
A, state

Suppose P2 requests R2. Can R2 be allocated to P2?

Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle getting system in an unsafe state.
If P1 requests R2, and P2 requests R1, then a deadlock will

occur. ____~ado State University
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Resource-Allocation Graph Algorithm

* Suppose that process P; requests a resource R;

 The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

. Colorado State University
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Banker’s Algorithm: examining a request

Multiple instances of resources.
Each process must a priori claim maximum use
When a process requests a resource,

— it may have to wait until the resource becomes
available (resource request algorithm)

— Request should not be granted if the resulting system
state is unsafe (safety algorithm)

When a process gets all its resources it must
return them in a finite amount of time

Modeled after a banker in a small-town making
loans.

Colorado State University



Data Structures for the Banker’ s Algorithm

Let n = number of processes, and m = number of resources types.

* Available: Vector of length m. If available [j] = k, there
are k instances of resource type R; available

Processes vs resources:

* Max: n x m matrix. If Max [ij] = k, then process P; may
request at most k instances of resource type R;

* Allocation: n x m matrix. If Allocation[i,j] = k then P; is
currently allocated k instances of R;

* Need: nx m matrix. If Need|i,j] = k, then P, may need k
more instances of R;to complete its task

Need [i,j] = Max|i,j] — Allocation [i,j]

Colorado State University
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Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Initially Available resources
Finish [i] = initially false fori=0,1, ..., n-1 (processes done)

2. Find a process i such that both:

n = number of processes,

(a) Finish [i] = false m = number of resources types
(b) Need; < Work Need.: additional res needed
If no such i exists, go to step 4 Work: res currently free
Finish;: processes finished
3. Work = Work + Allocation; Allocation;: allocated to i
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

Colorado State University
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Resource-Request Algorithm for Process p,

Notation: Request; = request vector for process P,
If Request; [j] = k then process P; wants k instances of resource type R;

Algorithm: Should the allocation request be granted?

1. If Request; < Need; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise P; must
wait, since resources are not available
. Is allocation safe?: Pretend to allocate requested resources
to P; by modifying the state as follows:
Available = Available — Request;
Allocation; = Allocation; + Request;
Need; = Need; — Request;
0 If safe = the resources are allocated to P;
0 If unsafe = P; must wait, and the old resource-allocation state is
preserved.

Use safety algorithm here

Colorado State University



Example 1A: Banker’s Algorithm

* 5 processes P, through P,;

 3resource types: A (10 instances), B (5 instances), and C
(7 instances)

The Need

e« |s it a safe state? matrix is

redundant
A B C

type A B C

Currently 3 3 2

available

PO 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0O 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

iy Colorado State University
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Example 1A: Banker s Algorithm

How did we get to this state?

e J|sitasafestate? —

N\

* Yes, since the sequence < P1, P3, P4, P2, PO> satisfies safety criteria

type A C A (
”Work”
available 3 3 2 —
PO /7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 212 |2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1
Why did we
P1 run to completion. Available becomes [33 2]+[2 00] =[5 3 2] <[ choose P1? ]

P3 run to completion. Available becomes [53 2]+[2 11]=[7 4 3]
P4 run to completion. Available becomes [74 3]+[00 2] =[7 4 5]
P2 run to completion. Available becomes [74 5]+[30 2] =[1047]
PO run to completion. Available becomes [104 7]+[0 1 0] =[105 7]

Hence state above is safe. Colorado Statel 1 . ersity



Ex 1B: Assume now P, Requests (1,0,2)

* Check that Request; < Need; and Request. < Available. (1,0,2) £(3,3,2) - true.
* Check for safety after pretend allocation. P1 allocation would be (2 00) + (1 0 2)= 302

Pretend
Allocation

type A C

Available 2 3 0

PO 7 5 3 0 1 0 7 4 3
P1 3 2 2 3 0 2 0 2 0
P2 SR RO 82 3 0 2 6 0 0
P3 oo | 2| 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

Sequence < Py, P, P,, P, P,> satisfies safety requirement.
Hence state above is safe, thus the allocation would be safe.

Colorado State University
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Ex 1C,1D: Additional Requests ..

* Given State is (same as previous slide)

type A C

available 2 3 0

PO 7 5 3 0 1 0 7 4 3
P1 3 2 2 3 0 2 0 2 0
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0): cannot be granted - resources are not available.

PO request for (0,2,0): cannot be granted since the resulting state is unsafe.
Check yourself.

Colorado State University
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Bankers Algorithm: Practical Issues

* Processes may not know in advance about
their maximum resource needs

* Number of processes is not fixed
— Varies dynamically

* Resources thought to be available can
disappear

* Few systems use this algorithm

Colorado State University
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Deadlock Detection

39

* Allow system to enter deadlock state. If that
happens, dEtECt the deadIOCk and do something about it.

* Detection algorithm

— Single instance of each resource:
» wait-for graph
— Multiple instances:

» detection algorithm (based on Banker’s algorithm)

 Recovery scheme

Colorado State University



Single Instance of Each Resource Type

40

* Maintain wait-for graph (based on resource allocation graph)
— Nodes are processes
— P;— P; if P;is waiting for P;

— Deadlock if cycles

* Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

* An algorithm to detect a cycle in a graph requires an
order of n?2 operations, where n is the number of

vertices in the graph

Colorado State University



Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.

Colorado State University
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Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be
satisfied?

Available: A vector of length m indicates the
number of available (currently free) resources of
each type

Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each
process

Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process P; is requesting k more instances of
resource type R;.

Colorado State University



Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
(a) Work = initially available

(b) Fori=1,2, .., n, if Allocation; # 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both: n = number of processes,
(a) Finish[i] == false m = number of resources types
Work: res currently free
(b) Request; < Work Finish;: processes finished
If no such i exists, go to step 4 Allocation;: allocated to i

3. Work = Work + Allocation;
Finish[i] = true
gotostep 2 (find next process)

4. If Finish[i] == false, for some i, 1 <i< n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then P; is
deadlocked

Algorithm requires an order of O(m x n?) operations to detect whether the system is in
deadlocked state

Colorado State University
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Example of Detection Algorithm

44

* Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

 Sequence <P, P,, P3, P, P,> will result in Finish[i] =

true for all i.

No deadlock

type
available
PO

P1

P2

P3

P4

O N W N O O >

© »r O O +»r O

N P WO O O O

S O N O

o O O O O

N O O N O

ini 0 0 O S
PO O 1 O Z
P2 3 1 3 u
P3 5 2 4 E
P1L 7 2 4 C
PA 7 2 6 s
Colorado State University




Example of Detection Algorithm (cont)

* P, requests an additional instance of type C

type A C Sequence
available 0 0 0 “m
PO 0 1 0 0 0 0 ini 0O 0 O
P1 2 0 0 2 0 2 PO O 1 O
P2 3 0 3 0 0 1 P2 - - -
P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

e State of system?

— Can reclaim resources held by process P,, but insufficient resources
to fulfill other processes’ requests

— Deadlock exists, consisting of processes P,, P,, P;, and P,

Colorado State University
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Detection-Algorithm Usage

46

* When, and how often, to invoke depends on:
— How often a deadlock is likely to occur

— How many processes will need to be rolled back
e one for each disjoint cycle

* If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.

Colorado State University



Recovery from Deadlock: Process Termination

Choices
* Abort all deadlocked processes

* Abort one process at a time until the deadlock cycle is
eliminated

In which order should we choose to abort?

1. Priority of the process

How long process has computed, and how much longer to
completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated
Is process interactive or batch?

N

o unkw

Colorado State University
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Recovery from Deadlock: Resource Preemption

* Selecting a victim — minimize cost

* Rollback — return to some safe state,
restart process for that state

e Starvation — same process may always be
picked as victim, include number of
rollbacks in cost factor

" Colorado State University



Deadlock recovery through rollbacks

* Checkpoint process periodically
— Contains memory image and resource state
 Deadlock detection tells us which
resources are needed
* Process owning a needed resource

— Rolled back to before it acquired needed
resource

* Work done since rolled back checkpoint discarded

— Assign resource to deadlocked process

29 Colorado State University



Livelocks

In a livelock two processes need each other’s resource
* Both run and make no progress, but neither process

Two people meet in a narrow

bIOC kS corridor, and each tries to be
polite by moving aside to let the
e Use CPU quantum over and over without making gﬂ;et;g;s;d S —
side to side without making any
p rogreSS progress because they both
Ex: If fork fails because process table is full repeatedly move the same way

* Wait for some time and try again

e But there could be a collection of processes each trying
to do the same thing

* Avoided by ensuring that only one process (chosen
randomly or by priority) takes action

Colorado State University
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