
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L13
Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Chapter 8: Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection

– Recovery from Deadlock

3

Resource Allocation Graph With A Deadlock

At this point, two minimal cycles
exist in the system:

P1→ R1→ P2→ R3→ P3→ R2→ P1

P2→ R3→ P3→ R2→ P2

Processes P1, P2, and P3 are
deadlocked.

Does a deadlock exist?

4

Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3 ,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does
not have a cycle, then the system
is not in a deadlocked state.
 If there is a cycle, then the system
may or may not be in a
deadlocked state.

5

Basic Facts

• If graph contains no cycles  no
deadlock

• If graph contains a cycle 

– if only one instance per resource type,
then deadlock

– if several instances per resource type,
possibility of deadlock

6

Methods for Handling Deadlocks

Approach Resource
allocation policy

Scheme Notes

Prevention Conservative,
undercommits
resources

Requesting all
resources at once

Good for processes
with a single burst of
activity

Preemption Good when
preemption cost is
small

Resource ordering Compile time
enforcement possible

Avoidance midway Find at least one
safe path
(dynamic)

Future max
requirement must be
known

Detection Liberal Invoked periodically Preemption may be
needed

7

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes that are circularly waiting.

8

Deadlock Prevention: Limit Mutual Exclusion

• Limit Mutual Exclusion –

– not required for sharable resources (e.g.,
read-only files)

– (Mutual Exclusion must hold for non-
sharable resources)

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

Restrain the ways request can be made:

9

Deadlock Prevention: Limit Hold and Wait

• Limit Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources
1. Require process to request and be allocated all its resources
before it begins execution
2. Allow a process to request resources when it is holding none.
Ex: Copy data from DVD, sort file, and print
– First request DVD and disk file
– Then request file and printer,
– then start

• Disadvantage: starvation possible

10

Deadlock Prevention: Limit No Preemption

• Limit No Preemption –

– If a process that is holding some resources,
requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released

– Preempted resources are added to the list of
resources for which the process is waiting

– Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting

11

Deadlock Prevention: Limit Circular Wait

• Limit Circular Wait – impose a total ordering
of all resource types, and require that each
process requests resources in an increasing
order of enumeration

• Assign each resource a unique number

– Disk drive: 1

– Printer: 2 …

– Request resources in increasing order

• Example soon

12

Dining philosophers problem: Necessary conditions for deadlock

• Mutual exclusion

– 2 philosophers cannot share the same chopstick

• Hold-and-wait
– A philosopher picks up one chopstick at a time

– Will not let go of the first while it waits for the second one

• No preemption
– A philosopher does not snatch chopsticks held by some other

philosopher

• Circular wait
– Could happen if each philosopher picks chopstick with the same hand

first

Relax conditions to
avoid deadlock

13

Deadlock Example: numbering

/* thread one runs in this function */

void *do_work_one(void *param)
{

 pthread_mutex_lock(&first_mutex);

 pthread_mutex_lock(&second_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&second_mutex);

 pthread_mutex_unlock(&first_mutex);

 pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

 pthread_mutex_lock(&second_mutex);

 pthread_mutex_lock(&first_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&first_mutex);

 pthread_mutex_unlock(&second_mutex);

 pthread_exit(0);

}

Assume that thread one is the
first to acquire the locks and
does so in the order (1) first
mutex, (2) second mutex.

Solution: Lock-order verifier
“Witness” records the
relationship that first mutex
must be acquired before second
mutex. If thread two later
acquires the locks out of order,
witness generates a warning
message on the system console.

Allows deadlock. Redesign to avoid.

14

Deadlock may happen even with Lock Ordering

void transaction(Account from, Account to, double amount)

{

 mutex lock1, lock2;

 lock1 = get_lock(from);

 lock2 = get_lock(to);

 acquire(lock1);

 acquire(lock2);

 withdraw(from, amount);

 deposit(to, amount);

 release(lock2);

 release(lock1);

}

Ex: Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account B, and

Transaction 2 transfers $50 from account B to account A.

Deadlock is possible, even with lock ordering.

Lock ordering:
First from lock, then to lock

15

Deadlock Avoidance

Manage resource allocation to
ensure the system never enters an

unsafe state.

16

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

Requires that the system has some additional a priori information

available

19

Avoidance: amount and type of information needed

• Resource allocation state
– Number of available and allocated resources
– Maximum demands of processes

• Dynamically examine resource allocation state
– Ensure circular-wait cannot exist

• Simplest model:
– Declare maximum number of resources for each type
– Use information to avoid deadlock

20

Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes such that
• for each Pi, the resources that Pi can still request

can be satisfied by
– currently available resources +
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources,
and so on

• If no such sequence exists: system state is unsafe

21

Deadlock avoidance: Safe states

• If the system can:
– Allocate resources to each process in some order

• Up to the maximum for the process

– Still avoid deadlock

– Then it is in a safe state

• A system is safe ONLY IF there is a safe
sequence

• A safe state is not a deadlocked state
– Deadlocked state is an unsafe state

– Not all unsafe states are deadlock

22

Safe, Unsafe, Deadlock State

Examples of safe and unsafe states in next 3 slides

23

Example A: Assume 12 Units in the system

• Is the system at time T0 in a safe state?
– Try sequence <P1, P0 , P2>
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now)

– P2 can then proceed.

• Thus <P1, P0 , P2> is a safe sequence, and at T0
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available

A unit could be a drive,
a block of memory etc.

More detailed look

24

Example A: Assume 12 Units in the system (timing)

Max
need

Current
holding

+2 allo
to P1

P1
releases
all

..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4 done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe? Detailed look for instants T0, T1, T2, etc..

Time

25

Example B: 12 Units initially available in the system

• At time T1, P2 is allocated 1 more units. Is that a
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max
need

T0 T1
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available

At T1:
2 units available

26

Avoidance Algorithms

• Dynamic

• Single instance of a resource type

– Use a resource-allocation graph scheme

• Multiple instances of a resource type

– Use the banker’s algorithm (Dijkstra)

27

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pi
may request resource Rj; represented by a
dashed line. This is new.

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a
priori in the system

28

Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle getting system in an unsafe state.
If P1 requests R2, and P2 requests R1, then a deadlock will
occur.

Unsafe
state

- - -> Claim edges

29

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

30

Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,

– it may have to wait until the resource becomes
available (resource request algorithm)

– Request should not be granted if the resulting system
state is unsafe (safety algorithm)

• When a process gets all its resources it must
return them in a finite amount of time

• Modeled after a banker in a small-town making
loans.

31

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

Processes vs resources:

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

32

Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Initially Available resources
Finish [i] = initially false for i = 0, 1, …, n- 1 (processes done)

2. Find a process i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

n = number of processes,
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

33

Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Is allocation safe?: Pretend to allocate requested resources
to Pi by modifying the state as follows:

 Available = Available – Requesti;
 Allocationi = Allocationi + Requesti;
 Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is
preserved.

Use safety algorithm here

34

Example 1A: Banker’s Algorithm

• 5 processes P0 through P4;

• 3 resource types: A (10 instances), B (5 instances), and C
(7 instances)

• Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C

Currently
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need
matrix is

redundant

35

Example 1A: Banker’s Algorithm

• Is it a safe state?

• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Process Max Allocation Need

type A B C A B C A B C

available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P1 run to completion. Available becomes [3 3 2]+[2 0 0] = [5 3 2]

P3 run to completion. Available becomes [5 3 2]+[2 1 1] = [7 4 3]

P4 run to completion. Available becomes [7 4 3]+[0 0 2] = [7 4 5]

P2 run to completion. Available becomes [7 4 5]+[3 0 2] = [10 4 7]

P0 run to completion. Available becomes [10 4 7]+[0 1 0] = [10 5 7]

Hence state above is safe.

Why did we
choose P1?

How did we get to this state?

”Work”

36

Ex 1B: Assume now P1 Requests (1,0,2)

• Check that Requesti  Needi and Requesti ≤ Available. (1,0,2) ≤ (3,3,2) → true.

• Check for safety after pretend allocation. P1 allocation would be (2 0 0) + (1 0 2)= 302

Process Max Pretend
Allocation

Need

type A B C A B C A B C

Available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Sequence < P1, P3, P4, P0, P2> satisfies safety requirement.

Hence state above is safe, thus the allocation would be safe.

37

Ex 1C,1D: Additional Requests ..

• Given State is (same as previous slide)

Process Max Allocation Need

type A B C A B C A B C

available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0): cannot be granted - resources are not available.

P0 request for (0,2,0): cannot be granted since the resulting state is unsafe.
Check yourself.

38

Bankers Algorithm: Practical Issues

• Processes may not know in advance about
their maximum resource needs

• Number of processes is not fixed

– Varies dynamically

• Resources thought to be available can
disappear

• Few systems use this algorithm

39

Deadlock Detection

• Allow system to enter deadlock state. If that
happens, detect the deadlock and do something about it.

• Detection algorithm

– Single instance of each resource:

• wait-for graph

– Multiple instances:
• detection algorithm (based on Banker’s algorithm)

• Recovery scheme

40

Single Instance of Each Resource Type

• Maintain wait-for graph (based on resource allocation graph)

– Nodes are processes
– Pi → Pj if Pi is waiting for Pj

– Deadlock if cycles

• Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

• An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph

41

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.

42

Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be
satisfied?
• Available: A vector of length m indicates the

number of available (currently free) resources of
each type

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process

• Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process Pi is requesting k more instances of
resource type Rj.

43

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
(a) Work = initially available
(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true

 go to step 2 (find next process)
4. If Finish[i] == false, for some i, 1  i  n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in
deadlocked state

n = number of processes,
m = number of resources types
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

44

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i. No deadlock

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After work

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6

s
e
q
u
e
n
c
e

45

Example of Detection Algorithm (cont)

• P2 requests an additional instance of type C

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After
work

ini 0 0 0

P0 0 1 0

P2 - - -

• State of system?
– Can reclaim resources held by process P0, but insufficient resources

to fulfill other processes’ requests

– Deadlock exists, consisting of processes P1, P2, P3, and P4

Sequence

46

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur

– How many processes will need to be rolled back
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.

47

Recovery from Deadlock: Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

48

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may always be
picked as victim, include number of
rollbacks in cost factor

49

Deadlock recovery through rollbacks

• Checkpoint process periodically

– Contains memory image and resource state

• Deadlock detection tells us which
resources are needed

• Process owning a needed resource

– Rolled back to before it acquired needed
resource
• Work done since rolled back checkpoint discarded

– Assign resource to deadlocked process

50

Livelocks

In a livelock two processes need each other’s resource

• Both run and make no progress, but neither process
blocks

• Use CPU quantum over and over without making
progress

Ex: If fork fails because process table is full

• Wait for some time and try again

• But there could be a collection of processes each trying
to do the same thing

• Avoided by ensuring that only one process (chosen
randomly or by priority) takes action

Two people meet in a narrow
corridor, and each tries to be
polite by moving aside to let the
other pass.
But they end up swaying from
side to side without making any
progress because they both
repeatedly move the same way
at the same time.

	Slide 1
	Slide 2: Chapter 8: Deadlocks
	Slide 3: Resource Allocation Graph With A Deadlock
	Slide 4: Graph With A Cycle But No Deadlock
	Slide 5: Basic Facts
	Slide 6: Methods for Handling Deadlocks
	Slide 7: Deadlock Prevention
	Slide 8: Deadlock Prevention: Limit Mutual Exclusion
	Slide 9: Deadlock Prevention: Limit Hold and Wait
	Slide 10: Deadlock Prevention: Limit No Preemption
	Slide 11: Deadlock Prevention: Limit Circular Wait
	Slide 12: Dining philosophers problem: Necessary conditions for deadlock
	Slide 13: Deadlock Example: numbering
	Slide 14: Deadlock may happen even with Lock Ordering
	Slide 15: Deadlock Avoidance
	Slide 16: Deadlock Avoidance
	Slide 19: Avoidance: amount and type of information needed
	Slide 20: Safe Sequence
	Slide 21: Deadlock avoidance: Safe states
	Slide 22: Safe, Unsafe, Deadlock State
	Slide 23: Example A: Assume 12 Units in the system
	Slide 24: Example A: Assume 12 Units in the system (timing)
	Slide 25: Example B: 12 Units initially available in the system
	Slide 26: Avoidance Algorithms
	Slide 27: Resource-Allocation Graph Scheme
	Slide 28: Resource-Allocation Graph
	Slide 29: Resource-Allocation Graph Algorithm
	Slide 30: Banker’s Algorithm: examining a request
	Slide 31: Data Structures for the Banker’s Algorithm
	Slide 32: Safety Algorithm: Is this a safe state?
	Slide 33: Resource-Request Algorithm for Process Pi
	Slide 34: Example 1A: Banker’s Algorithm
	Slide 35: Example 1A: Banker’s Algorithm
	Slide 36: Ex 1B: Assume now P1 Requests (1,0,2)
	Slide 37: Ex 1C,1D: Additional Requests ..
	Slide 38: Bankers Algorithm: Practical Issues
	Slide 39: Deadlock Detection
	Slide 40: Single Instance of Each Resource Type
	Slide 41: Resource-Allocation Graph and Wait-for Graph
	Slide 42: Several Instances of a Resource Type
	Slide 43: Detection Algorithm
	Slide 44: Example of Detection Algorithm
	Slide 45: Example of Detection Algorithm (cont)
	Slide 46: Detection-Algorithm Usage
	Slide 47: Recovery from Deadlock: Process Termination
	Slide 48: Recovery from Deadlock: Resource Preemption
	Slide 49: Deadlock recovery through rollbacks
	Slide 50: Livelocks

