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Chapter 8:  Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

– Deadlock Prevention

– Deadlock Avoidance resource-allocation

– Deadlock Detection 

– Recovery from Deadlock 
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Resource Allocation Graph With A Deadlock

At this point, two minimal cycles 
exist in the system: 

P1→ R1→ P2→ R3→ P3→ R2→ P1
 
P2→ R3→ P3→ R2→ P2 

Processes P1, P2, and P3 are 
deadlocked. 

Does a deadlock exist?
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Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of 
resource type R2 . That resource 
can then be allocated to P3 , 
breaking the cycle. Thus, there is 
no deadlock. 

If a resource-allocation graph does 
not have a cycle, then the system 
is not in a deadlocked state.
 If there is a cycle, then the system 
may or may not be in a 
deadlocked state. 
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Basic Facts

• If graph contains no cycles  no 
deadlock

• If graph contains a cycle 

– if only one instance per resource type, 
then deadlock

– if several instances per resource type, 
possibility of deadlock
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Methods for Handling Deadlocks

Approach Resource 
allocation policy

Scheme Notes

Prevention Conservative, 
undercommits 
resources

Requesting all 
resources at once

Good for processes 
with a single burst of 
activity

Preemption Good when 
preemption cost is 
small

Resource ordering Compile time 
enforcement possible

Avoidance midway Find at least one 
safe path
(dynamic)

Future max 
requirement must be 
known

Detection Liberal Invoked periodically Preemption may be 
needed
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Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions 
must hold. By ensuring that at least one of these conditions 
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion:  only one process at a time can use a 
resource

• Hold and wait:  a process holding at least one resource is 
waiting to acquire additional resources held by other processes

• No preemption:  a resource can be released only voluntarily 
by the process holding it, after that process has completed its 
task

• Circular wait:  there exists a set {P0, P1, …, Pn} of waiting 
processes that are circularly waiting.
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Deadlock Prevention: Limit Mutual Exclusion 

• Limit Mutual Exclusion – 

– not required for sharable resources (e.g., 
read-only files)

– (Mutual Exclusion must hold for non-
sharable resources)

For a deadlock to occur, each of the four necessary conditions 
must hold. By ensuring that at least one of these conditions 
cannot hold, we can prevent the occurrence of a deadlock. 

Restrain the ways request can be made:
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Deadlock Prevention: Limit Hold and Wait 

• Limit Hold and Wait – must guarantee that whenever a 
process requests a resource, it does not hold any other 
resources
1. Require process to request and be allocated all its resources 
before it begins execution
2. Allow a process to request resources when it is holding none.
Ex: Copy data from DVD, sort file, and print
– First request DVD and disk file 
– Then request file and printer, 
– then start 

• Disadvantage: starvation possible
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Deadlock Prevention: Limit No Preemption 

• Limit No Preemption –

– If a process that is holding some resources, 
requests another resource that cannot be 
immediately allocated to it, then all resources 
currently being held are released

– Preempted resources are added to the list of 
resources for which the process is waiting

– Process will be restarted only when it can regain its 
old resources, as well as the new ones that it is 
requesting
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Deadlock Prevention: Limit Circular Wait 

• Limit Circular Wait – impose a total ordering 
of all resource types, and require that each 
process requests resources in an increasing 
order of enumeration

• Assign each resource a unique number

– Disk drive: 1

– Printer: 2  …

– Request resources in increasing order 

• Example soon
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Dining philosophers problem: Necessary conditions for deadlock 

• Mutual exclusion

– 2 philosophers cannot share the same chopstick

• Hold-and-wait
– A philosopher picks up one chopstick at a time

– Will not let go of the first while it waits for the second one 

• No preemption
– A philosopher does not snatch chopsticks held by some other 

philosopher 

• Circular wait 
– Could happen if each philosopher picks chopstick with the same hand 

first 

Relax conditions to 
avoid deadlock
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Deadlock Example: numbering

/* thread one runs in this function */ 

void *do_work_one(void *param)
{ 

   pthread_mutex_lock(&first_mutex); 

   pthread_mutex_lock(&second_mutex); 

   /** * Do some work */

   pthread_mutex_unlock(&second_mutex); 

   pthread_mutex_unlock(&first_mutex); 

   pthread_exit(0); 

} 

/* thread two runs in this function */ 

void *do_work_two(void *param)
{ 

   pthread_mutex_lock(&second_mutex); 

   pthread_mutex_lock(&first_mutex); 

   /** * Do some work */

   pthread_mutex_unlock(&first_mutex); 

   pthread_mutex_unlock(&second_mutex); 

   pthread_exit(0); 

} 

Assume that thread one is the 
first to acquire the locks and 
does so in the order (1) first 
mutex, (2) second mutex. 

Solution: Lock-order verifier 
“Witness” records the 
relationship that first mutex 
must be acquired before second 
mutex. If thread two later 
acquires the locks out of order, 
witness generates a warning 
message on the system console. 

Allows deadlock. Redesign to avoid.
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Deadlock may happen even with Lock Ordering

void transaction(Account from, Account to, double amount) 

{ 

   mutex lock1, lock2; 

   lock1 = get_lock(from); 

   lock2 = get_lock(to); 

   acquire(lock1); 

      acquire(lock2); 

         withdraw(from, amount); 

         deposit(to, amount); 

      release(lock2); 

   release(lock1); 

} 

Ex: Transactions 1 and 2 execute concurrently.  

Transaction  1 transfers $25 from account A to account B, and 

Transaction 2 transfers $50 from account B to account A. 

Deadlock is possible, even with lock ordering.

    

Lock ordering:
First from lock, then to lock
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Deadlock Avoidance

Manage resource allocation to 
ensure the system never enters an 

unsafe state.
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Deadlock Avoidance

• Simplest and most useful model requires that 
each process declare the maximum number 
of resources of each type that it may need

• The deadlock-avoidance algorithm 
dynamically examines the resource-allocation 
state to ensure that there can never be a 
circular-wait condition

• Resource-allocation state is defined by the 
number of available and allocated resources, 
and the maximum demands of the processes

Requires that the system has some additional a priori information 

available
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Avoidance: amount and type of information needed 

• Resource allocation state 
– Number of available and allocated resources 
– Maximum demands of processes 

• Dynamically examine resource allocation state 
– Ensure circular-wait cannot exist  

• Simplest model: 
– Declare maximum number of resources for each type 
– Use information to avoid deadlock 
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Safe Sequence

System must decide if immediate allocation leaves the 
system in a safe state

System is in safe state if there exists a sequence <P1, 
P2, …, Pn> of ALL the  processes  such that 
• for each Pi, the resources that Pi can still request 

can be satisfied by 
– currently available resources + 
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi 
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources, 
and so on 

• If no such sequence exists: system state is unsafe 
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Deadlock avoidance: Safe states 

• If the system can:  
– Allocate resources to each process in some order 

• Up to the maximum for the process 

– Still avoid deadlock 

– Then it is in a safe state

• A system is safe ONLY IF there is a safe 
sequence 

• A safe state is not a deadlocked state 
– Deadlocked state is an unsafe state 

– Not all unsafe states are deadlock
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Safe, Unsafe, Deadlock State 

Examples of safe and unsafe states in next 3 slides
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Example A: Assume 12 Units in the system 

• Is the system at time T0 in a safe state?
– Try sequence  <P1, P0 , P2> 
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now) 

– P2 can then proceed. 

• Thus <P1, P0 , P2> is a safe sequence, and at T0 
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available 

A unit could be a drive, 
a block of memory etc.

More detailed look
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Example A: Assume 12 Units in the system (timing) 

Max 
need

Current 
holding

+2 allo 
to P1

P1 
releases 
all

.. .. ..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4  done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe?   Detailed look for instants T0, T1, T2, etc..

Time                         



25

Example B: 12 Units initially available in the system 

• At time T1, P2 is allocated 1 more units. Is that a 
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max 
need

T0 T1 
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available 

At T1:
2 units available 
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Avoidance Algorithms

• Dynamic

• Single instance of a resource type

– Use a resource-allocation graph scheme

• Multiple instances of a resource type

–  Use the banker’s algorithm (Dijkstra)
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Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pi 
may request resource Rj; represented by a 
dashed line. This is new.

• Claim edge converts to request edge when a 
process requests a resource

• Request edge converted to an assignment edge 
when the  resource is allocated to the process

• When a resource is released by a process, 
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a 
priori in the system
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Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since 
this action will create a cycle getting system in an unsafe state. 
If P1 requests R2, and P2 requests R1, then a deadlock will 
occur. 

Unsafe
state

- - ->  Claim edges
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Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting 
the request edge to an assignment edge does 
not result in the formation of a cycle in the 
resource allocation graph
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Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,  

– it may have to wait until the resource becomes 
available (resource request algorithm)

– Request should not be granted if the resulting system 
state is unsafe  (safety algorithm)

• When a process gets all its resources it must 
return them in a finite amount of time

• Modeled after a banker in a small-town making 
loans. 
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Data Structures for the Banker’s Algorithm 

• Available:  Vector of length m. If available [j] = k, there 
are k instances of resource type Rj  available

Processes vs resources: 

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj

• Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj

• Need:  n x m matrix. If Need[i,j] = k, then Pi may need k 
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 
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Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n, 
respectively.  Initialize:

Work = Initially Available resources
Finish [i] = initially false for i = 0, 1, …, n- 1    (processes done)

2. Find a process i such that both: 
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3.  Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe 
state

n = number of processes, 
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i
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Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.  
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3.  Otherwise Pi  must 
wait, since resources are not available

3. Is allocation safe?:   Pretend to allocate requested resources 
to Pi by modifying the state as follows:

  Available = Available  – Requesti;
  Allocationi = Allocationi + Requesti;
  Needi = Needi – Requesti;          

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state is 
preserved.

Use safety  algorithm here
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Example 1A: Banker’s Algorithm

• 5 processes P0  through P4; 

•  3 resource types:   A (10 instances),  B (5 instances), and C 
(7 instances)

•   Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C

Currently 
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need 
matrix is 

redundant 
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Example 1A: Banker’s Algorithm

• Is it a safe state?

• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria 

Process Max Allocation Need

type A B C A B C A B C

available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P1  run to completion. Available becomes  [3 3 2]+[2 0 0] = [5 3 2]

P3  run to completion. Available becomes  [5 3 2]+[2 1 1] = [7 4 3]

P4  run to completion. Available becomes  [7 4 3]+[0 0 2] = [7 4 5]  

P2 run to completion. Available becomes  [7 4 5]+[3 0 2] = [10 4 7] 

P0 run to completion. Available becomes  [10 4 7]+[0 1 0] = [10 5 7]  

Hence state above is safe.

Why did we 
choose P1?

How did we get to this state?

”Work”



36

Ex 1B: Assume now  P1 Requests (1,0,2)

• Check that Requesti  Needi  and Requesti ≤ Available.       (1,0,2) ≤ (3,3,2) → true. 

• Check for safety after pretend allocation.     P1 allocation would be (2 0 0) + (1 0 2)= 302

Process Max Pretend 
Allocation

Need

type A B C A B C A B C

Available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Sequence < P1, P3, P4, P0, P2> satisfies safety requirement. 

Hence state above is safe, thus the allocation would be safe.
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Ex 1C,1D: Additional Requests ..

• Given State is (same as previous slide)

Process Max Allocation Need

type A B C A B C A B C

available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0):  cannot be granted  - resources are not available. 

P0 request for (0,2,0):  cannot be granted since the resulting state is unsafe. 
Check yourself. 
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Bankers Algorithm: Practical Issues 

• Processes may not know in advance about 
their maximum resource needs

• Number of processes is not fixed

– Varies dynamically

• Resources thought to be available can 
disappear

• Few systems use this algorithm
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Deadlock Detection

• Allow system to enter deadlock state. If that 
happens, detect the deadlock and do something about it. 

• Detection algorithm

– Single instance of each resource: 

• wait-for graph

– Multiple instances: 
• detection algorithm (based on Banker’s algorithm)

• Recovery scheme
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Single Instance of Each Resource Type

• Maintain wait-for graph (based on resource allocation graph)

– Nodes are processes
– Pi → Pj   if Pi is waiting for Pj

– Deadlock if cycles

• Periodically invoke an algorithm that searches for a 
cycle in the graph. If there is a cycle, there exists a 
deadlock

• An algorithm to detect a cycle in a graph requires an 
order of n2 operations, where n is the number of 
vertices in the graph
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Resource-Allocation Graph and  Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.
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Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be 
satisfied?
• Available:  A vector of length m indicates the 

number of available (currently free) resources of 
each type

• Allocation:  An n x m matrix defines the number of 
resources of each type currently allocated to each 
process

• Request:  An n x m matrix indicates the current 
request  of each process.  If Request [i][j] = k, then 
process Pi is requesting k more instances of 
resource type Rj.
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Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. 
Initialize:
(a) Work = initially available
(b) For i = 1,2, …, n, if Allocationi  0, then 

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true

        go to step 2    (find next process)
4. If Finish[i] == false, for some i, 1  i   n, then the system is in 

deadlock state. Moreover, if Finish[i] == false, then Pi is 
deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in 
deadlocked state

n = number of processes, 
m = number of resources types
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i
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Example of Detection Algorithm

• Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances)

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = 
true for all i.  No deadlock

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After work

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6

s
e
q
u
e
n
c
e
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Example of Detection Algorithm (cont)

• P2 requests an additional instance of type C

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After
work

ini 0 0 0

P0 0 1 0

P2 - - -

• State of system?
– Can reclaim resources held by process P0, but insufficient resources 

to fulfill other processes’ requests

– Deadlock exists, consisting of processes P1, P2, P3, and P4

Sequence 
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Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur

– How many processes will need to be rolled back
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, 
there may be many cycles in the resource 
graph and so we would not be able to tell 
which of the many deadlocked processes 
“caused” the deadlock.
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Recovery from Deadlock:  Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is 
eliminated

In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to 

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?
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Recovery from Deadlock:  Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, 
restart process for that state

• Starvation –  same process may always be 
picked as victim, include number of 
rollbacks in cost factor
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Deadlock recovery through rollbacks 

• Checkpoint process periodically

– Contains memory image and resource state 

• Deadlock detection tells us which 
resources are needed 

• Process owning a needed resource

– Rolled back to before it acquired needed 
resource 
• Work done since rolled back checkpoint discarded 

– Assign resource to deadlocked process 
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Livelocks

In a livelock two processes need each other’s resource

• Both run and make no progress, but neither process 
blocks

•  Use CPU quantum over and over without making 
progress 

Ex:   If fork fails because process table is full 

• Wait for some time and try again 

• But there could be a collection of processes each trying 
to do the same thing

• Avoided by ensuring that only one process (chosen 
randomly or by priority) takes action

Two people meet in a narrow 
corridor, and each tries to be 
polite by moving aside to let the 
other pass. 
But they end up swaying from 
side to side without making any 
progress because they both 
repeatedly move the same way 
at the same time.
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