
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L15
Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state:
– Deadlock prevention

• ensuring that at least one of the 4 conditions cannot hold

– Deadlock avoidance
• Dynamically examines the resource-allocation state to ensure that

there can never be a circular-wait condition

• Allow the system to enter a deadlock state
– Detect and then recover. Hope is that it happens rarely.

• Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

3

Single Instance of Each Resource Type

• Maintain wait-for graph (based on resource allocation graph)

– Nodes are processes
– Pi → Pj if Pi is waiting for Pj

– Deadlock if cycles

• Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

• An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph

4

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.

5

Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be
satisfied?
• Available: A vector of length m indicates the

number of available (currently free) resources of
each type

• Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process

• Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process Pi is requesting k more instances of
resource type Rj.

6

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
(a) Work = initially available
(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true

 go to step 2 (find next process)
4. If Finish[i] == false, for some i, 1  i  n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in
deadlocked state

n = number of processes,
m = number of resources types
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

7

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i. No deadlock

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After work

ini 0 0 0

P0 0 1 0

P2 3 1 3

P3 5 2 4

P1 7 2 4

P4 7 2 6

s
e
q
u
e
n
c
e

8

Example of Detection Algorithm (cont)

• P2 requests an additional instance of type C

Process Allocation Request

type A B C A B C

available 0 0 0

P0 0 1 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 1

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

After
work

ini 0 0 0

P0 0 1 0

P2 - - -

• State of system?
– Can reclaim resources held by process P0, but insufficient resources

to fulfill other processes’ requests

– Deadlock exists, consisting of processes P1, P2, P3, and P4

Sequence

9

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur

– How many processes will need to be rolled back
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.

10

Recovery from Deadlock: Process Termination

Choices
• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

In which order should we choose to abort?
1. Priority of the process
2. How long process has computed, and how much longer to

completion
3. Resources the process has used
4. Resources process needs to complete
5. How many processes will need to be terminated
6. Is process interactive or batch?

11

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state,
restart process for that state

• Starvation – same process may always be
picked as victim, include number of
rollbacks in cost factor

12

Deadlock recovery through rollbacks

• Checkpoint process periodically

– Contains memory image and resource state

• Deadlock detection tells us which
resources are needed

• Process owning a needed resource

– Rolled back to before it acquired needed
resource
• Work done since rolled back checkpoint discarded

– Assign resource to deadlocked process

13

Livelocks

In a livelock two processes need each other’s resource

• Both run and make no progress, but neither process
blocks

• Use CPU quantum over and over without making
progress

Ex: If fork fails because process table is full

• Wait for some time and try again

• But there could be a collection of processes each trying
to do the same thing

• Avoided by ensuring that only one process (chosen
randomly or by priority) takes action

Two people meet in a narrow
corridor, and each tries to be
polite by moving aside to let the
other pass.
But they end up swaying from
side to side without making any
progress because they both
repeatedly move the same way
at the same time.

14

Welcome to CS370 Second Half

• Topics: Memory, Storage, File System,
Virtualization

• Class rules: See Syllabus

– Class, Canvas, Teams

– participation

– Final
• Sec 001, local 801: in class.

• Sec 801 non-local: on-line.

• SDC: Sec 001, Sec 801: must be taken at SDC

– Project, deadlines, Plagiarism

http://www.cs.colostate.edu/~cs370/Spring21/syllabus.html

15

Some OS History Lessons 1: UNIX

• Unix 1969 at AT&T’s Bell Laboratories by Ken Thompson, Dennis Ritchie, Douglas
McIlroy, and Joe Ossanna. Initially released in 1971 and written in assembly
language, Unix was re-written in C in 1973 by Dennis Ritchie, making it more
portable across platforms.

• BSD (Berkeley Software Distribution) is a Unix variant developed at UC Berkeley.
Derivatives like FreeBSD, OpenBSD, and NetBSD have emerged from BSD. OS X
(macOS) and PS4 also have roots in BSD.

• Linux, released by Linus Torvalds in 1991, open-source operating system. Initially
built for Intel x86 PCs, Linux has since been ported to more platforms than any
other OS. It is now widely used on servers, supercomputers, mobile phones
(Android), and gaming consoles like the Nintendo Switch.

16

Some OS History Lessons 2: Windows
• 1974: CP/M Intel 8080, Gary Kildall, Digital

Research
– 8-bit, min 16 kB RAM, floppy

• 1980: 86-DOS, Intel 8086, Tim Paterson,
Seattle Computer Products
– Inspired by CP/M?

• 1981: PC DOS, Bill Gates, Microsoft

– 86-DOS licensed for $25,000, hired Paterson

• 1985: Windows, Bill Gates, Microsoft
– GUI inspired by MAC? Xerox PARC Star?

Gary Kildall net worth $1.9 Million at death

Tim Paterson Net Worth: $250,000

17 17

Colorado State University
Yashwant K Malaiya

Fall 2025

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

18 18

Colorado State University
Yashwant K Malaiya

Fall 2025

CS370 Operating Systems

Main Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

19 19

Chapter 8: Main Memory

Objectives:
• Organizing memory for multiprogramming environment

• Partitioned vs separate address spaces

• Memory-management techniques
• Virtual vs physical addresses

• Chunks
• segmentation

• Paging: page tables, caching (“TLBs”)

• Examples: the Intel (old/new) and ARM architectures

20

What we want

• Memory capacities have been increasing
– But programs are getting bigger faster

– Parkinson’s Law*: Programs expand to fill the
memory available to hold

• What we would like

– Memory that is
• infinitely large, infinitely fast

• Non-volatile

• Inexpensive too

• Unfortunately, no such memory exists as of

now

*work expands so as to fill the time available for its completion. 1955

21

Background

• Program must be brought (from disk) into memory and run
as a process

• Main memory and registers are only storage CPU can
access directly

• Memory unit only sees a stream of
– addresses + read requests, or

– address + data and write requests

• n-bit address: address space of size 2n bytes.
– Ex: 32 bits: addresses 0 to (232 -1) bytes

– Addressable unit is always 1 byte.

• Access times:

– Register access in one CPU clock (or less)

– Main memory can take many cycles, causing a stall

– Cache sits between main memory and CPU registers making main memory

appear much faster

• Protection of memory required to ensure correct operation

210=1,024 ≈ K
220 = 1,048,576 ≈ M
230 ≈ G

22

Hierarchy
Main memory and registers are only
storage CPU can access directly
access

Register access in one CPU clock (or
less).

Main memory can take many cycles,
causing a stall.

Cache sits between main memory
and CPU registers making main
memory appear much faster

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch 10

Ch 9

Ch 11,13,14,16: Disk, file system Cache: CS470

23

Memory Technology somewhat inaccurte

24

Protection: Making sure each process has separate memory spaces

• OS must be protected from accesses by user
processes

• User processes must be protected from one
another

– Determine range of legal addresses for each process

– Ensure that process can access only those

• Approaches:

– Partitioning address space (early system)

– Separate address spaces (modern practice)

25

Partitioning: Base and Limit Registers

• Base and Limit for a process
– Base: Smallest legal physical address

– Limit: Size of the range of physical
address

• A pair of base and limit registers
define the logical address space for a
process

• CPU must check every memory
access generated in user mode to be
sure it is between base and limit for
that user

• Base: Smallest legal physical address
• Limit: Size of the range of physical address
• Eg: Base = 300040 and limit = 120900
• Legal: 300040 to (300040 + 120900 -1) =

420939 Addresses: decimal, hex/binary

26

Hardware Address Protection

Legal addresses: Base address to Base address + limit -1

27

Multistep Processing of a User Program

28

Address Binding Questions

• Programs on disk, ready to be brought into memory to execute form

an input queue

– Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at

0000

– How can it not be?

• Addresses represented in different ways at different stages of a

program’s life

– Source code addresses are symbolic

– Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”

– Linker or loader will bind relocatable addresses to absolute

addresses

• i.e., 74014

– Each binding maps one address space to another

29

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three
different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

– Load time: Must generate relocatable code if
memory location is not known at compile time

– Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another
• Need hardware support for address maps (e.g., base

and limit registers)

31

Separate Address Spaces Modern

• Each process has its own private address

space.

– Logical address space is the set of all

logical addresses used by a process.

• However, the physical memory has just

one address space.

– Physical address space is the set of all

physical addresses

• Need to map one to the other.

32

Logical vs. Physical Address Space

• The concept of a logical address space that
is bound to a separate physical address
space is central to proper memory
management
– Logical address – generated by the CPU; also

referred to as virtual address

– Physical address – address seen by the
memory unit

• Logical address space is the set of all
logical addresses generated by a program

• Physical address space is the set of all
physical addresses

33

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to
physical address
– Many methods possible, we will see them soon

• Consider simple scheme where the value in the
relocation register is added to every address
generated by a user process at the time it is
sent to memory
– Base register now called relocation register

– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses;
it never sees the real physical addresses
– Execution-time binding occurs when reference is

made to location in memory

– Logical address bound to physical addresses

34

Dynamic relocation using a relocation register

35

Linking: Static vs Dynamic

• Linking

– Takes some smaller executables and joins them

together as a single larger executable.

• Static linking – system libraries and program code

combined by the loader into the binary image

– Every program includes library: wastes memory

• Dynamic linking –linking postponed until execution

time

– Operating system locates and links the routine at run time

36

Dynamic Linking

• Dynamic linking –linking postponed until execution

time

• Small piece of code, stub, used to locate the

appropriate memory-resident library routine

• Stub replaces itself with the address of the routine,

and executes the routine

• Operating system checks if routine is in processes’
memory address
– If not in address space, add to address space

• Dynamic linking is particularly useful for

– shared libraries

37

Dynamic loading of routines

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded

• All routines kept on disk in relocatable load format

• Useful when large amounts of code are needed to handle

infrequently occurring cases

• OS can help by providing libraries to implement dynamic loading

• Static library

• Linux. .a (archive)

• Windows .lib (Library)

• Dynamic Library

• Linux .so (Shared object)

• Windows .dll (Dynamic link library)

38

Swapping a process

• A process can be swapped temporarily out of
memory to a backing store, and then brought
back into memory for continued execution

– Total physical memory space of processes
can exceed physical memory

• Backing store – fast disk large enough to
accommodate copies of all memory images for
all users; must provide direct access to these
memory images

• Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped

• System maintains a ready queue of ready-to-
run processes which have memory images on
disk

39

Schematic View of Swapping

Do we really need to keep the entire process
in the main memory? Stay tuned.

40

Context Switch Time including Swapping

• If next processes to be put on CPU is not in
memory, need to swap out a process and
swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with

transfer rate of 50MB/sec
– Swap out time of 100MB/50MB/s = 2 seconds

– Plus swap in of same sized process

– Total context switch swapping component time
of 4 seconds + some latency

• Can reduce if reduce size of memory
swapped – by knowing how much memory
really being used by a process

41

Context Switch Time and Swapping (Cont.)

• Standard swapping not used in modern

operating systems

– But modified version common

• Swap only when free memory extremely low

42

Memory Allocation

43

Memory Allocation Approaches

• Contiguous allocation: entire memory for
a program in a single contiguous memory
block. Find where a program will “fit”. earliest

approach

• Segmentation: program divided into
logically divided “segments” such as main
program, functions, stack etc.

– Need table to track segments.

• Paging: program divided into fixed size
“pages”, each placed in a fixed size
“frame”.

– Need table to track pages.

44

Contiguous Allocation

• Main memory must support both OS and

user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:

– Resident operating system, usually held in low

memory with interrupt vectors

– User processes then held in high memory

– Each process contained in single contiguous

section of memory

45

Contiguous Allocation (Cont.)

• Registers used to protect user processes

from each other, and from changing

operating-system code and data

– Relocation (Base) register contains value of

smallest physical address

– Limit register contains range of logical

addresses – each logical address must be less

than the limit register

• MMU maps logical address dynamically

46

Hardware Support for Relocation and Limit Registers

MMU maps logical address dynamically

Physical address = relocation reg + valid logical address

47

Multiple-partition allocation

• Multiple-partition allocation
– Degree of multiprogramming limited by number of partitions

– Variable-partition sizes for efficiency (sized to a given process’ needs)

– Hole – block of available memory; holes of various size are scattered

throughout memory

– When a process arrives, it is allocated memory from a hole large enough to

accommodate it

– Process exiting frees its partition, adjacent free partitions combined

– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

48

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire
list

– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

Simulation studies:

• First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

• Best fit is slower than first fit . Surprisingly, it also results in more

wasted memory than first fit

• Tends to fill up memory with tiny, useless holes

49

Fragmentation

• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory

interspersed among allocated regions

• Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size

difference is memory internal to a partition, but not

being used

• Simulation analysis reveals that given N blocks

allocated, 0.5 N blocks lost to fragmentation

– 1/3 may be unusable -> 50-percent rule

50

Fragmentation (Cont.)

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory

together in one large block

– Compaction is possible only if relocation is dynamic,

and is done at execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

	Slide 1
	Slide 2: Methods for Handling Deadlocks
	Slide 3: Single Instance of Each Resource Type
	Slide 4: Resource-Allocation Graph and Wait-for Graph
	Slide 5: Several Instances of a Resource Type
	Slide 6: Detection Algorithm
	Slide 7: Example of Detection Algorithm
	Slide 8: Example of Detection Algorithm (cont)
	Slide 9: Detection-Algorithm Usage
	Slide 10: Recovery from Deadlock: Process Termination
	Slide 11: Recovery from Deadlock: Resource Preemption
	Slide 12: Deadlock recovery through rollbacks
	Slide 13: Livelocks
	Slide 14: Welcome to CS370 Second Half
	Slide 15: Some OS History Lessons 1: UNIX
	Slide 16: Some OS History Lessons 2: Windows
	Slide 17
	Slide 18
	Slide 19
	Slide 20: What we want
	Slide 21: Background
	Slide 22: Hierarchy
	Slide 23: Memory Technology somewhat inaccurte
	Slide 24: Protection: Making sure each process has separate memory spaces
	Slide 25: Partitioning: Base and Limit Registers
	Slide 26: Hardware Address Protection
	Slide 27: Multistep Processing of a User Program
	Slide 28: Address Binding Questions
	Slide 29: Binding of Instructions and Data to Memory
	Slide 31: Separate Address Spaces Modern
	Slide 32: Logical vs. Physical Address Space
	Slide 33: Memory-Management Unit (MMU)
	Slide 34: Dynamic relocation using a relocation register
	Slide 35: Linking: Static vs Dynamic
	Slide 36: Dynamic Linking
	Slide 37: Dynamic loading of routines
	Slide 38: Swapping a process
	Slide 39: Schematic View of Swapping
	Slide 40: Context Switch Time including Swapping
	Slide 41: Context Switch Time and Swapping (Cont.)
	Slide 42: Memory Allocation
	Slide 43: Memory Allocation Approaches
	Slide 44: Contiguous Allocation
	Slide 45: Contiguous Allocation (Cont.)
	Slide 46: Hardware Support for Relocation and Limit Registers
	Slide 47: Multiple-partition allocation
	Slide 48: Dynamic Storage-Allocation Problem
	Slide 49: Fragmentation
	Slide 50: Fragmentation (Cont.)

