CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025 L15
Deadlocks

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock
state:
— Deadlock prevention
* ensuring that at least one of the 4 conditions cannot hold

— Deadlock avoidance

* Dynamically examines the resource-allocation state to ensure that
there can never be a circular-wait condition

Allow the system to enter a deadlock state
— Detect and then recover. Hope is that it happens rarely.

lgnore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

Colorado State University

Single Instance of Each Resource Type

* Maintain wait-for graph (based on resource allocation graph)
— Nodes are processes
— P;— P; if P;is waiting for P;

— Deadlock if cycles

* Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there exists a
deadlock

* An algorithm to detect a cycle in a graph requires an
order of n?2 operations, where n is the number of

vertices in the graph

Colorado State University

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Has cycles. Deadlock.

Colorado State University

Several Instances of a Resource Type

Banker’s algorithm: Can requests by all process be
satisfied?

Available: A vector of length m indicates the
number of available (currently free) resources of
each type

Allocation: An n x m matrix defines the number of

resources of each type currently allocated to each
process

Request: An n x m matrix indicates the current
request of each process. If Request [i][j] = k, then
process P; is requesting k more instances of
resource type R;.

Colorado State University

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
(a) Work = initially available

(b) Fori=1,2, .., n, if Allocation; # 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both: n = number of processes,
(a) Finish[i] == false m = number of resources types
Work: res currently free
(b) Request; < Work Finish;: processes finished
If no such i exists, go to step 4 Allocation;: allocated to i

3. Work = Work + Allocation;
Finish[i] = true
gotostep 2 (find next process)

4. If Finish[i] == false, for some i, 1 <i< n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then P; is
deadlocked

Algorithm requires an order of O(m x n?) operations to detect whether the system is in
deadlocked state

Colorado State University

Example of Detection Algorithm

* Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances)

 Sequence <P, P,, P3, P, P,> will result in Finish[i] =

true for all i.

No deadlock

type
available
PO

P1

P2

P3

P4

O N W N O O >

© »r O O +»r O

N P WO O O O

S O N O

o O O O O

N O O N O

ini 0 0 O S
PO O 1 O 5
P2 3 1 3 3
P3 5 2 4 E
P1L 7 2 4 C
PA 7 2 6 s

Colorado State University

Example of Detection Algorithm (cont)

* P, requests an additional instance of type C

type A C Sequence
available 0 0 0 “m
PO 0 1 0 0 0 0 ini 0O 0 O
P1 2 0 0 2 0 2 PO O 1 O
P2 3 0 3 0 0 1 P2 - - -
P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

e State of system?

— Can reclaim resources held by process P,, but insufficient resources
to fulfill other processes’ requests

— Deadlock exists, consisting of processes P,, P,, P;, and P,

Colorado State University

Detection-Algorithm Usage

* When, and how often, to invoke depends on:
— How often a deadlock is likely to occur

— How many processes will need to be rolled back
e one for each disjoint cycle

* If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.

Colorado State University

Recovery from Deadlock: Process Termination

Choices
* Abort all deadlocked processes

* Abort one process at a time until the deadlock cycle is
eliminated

In which order should we choose to abort?

1. Priority of the process

How long process has computed, and how much longer to
completion

Resources the process has used

Resources process needs to complete

How many processes will need to be terminated
Is process interactive or batch?

N

o unkw

Colorado State University

10

Recovery from Deadlock: Resource Preemption

* Selecting a victim — minimize cost

* Rollback — return to some safe state,
restart process for that state

e Starvation — same process may always be
picked as victim, include number of
rollbacks in cost factor

" Colorado State University

Deadlock recovery through rollbacks

* Checkpoint process periodically
— Contains memory image and resource state
 Deadlock detection tells us which
resources are needed
* Process owning a needed resource

— Rolled back to before it acquired needed
resource

* Work done since rolled back checkpoint discarded

— Assign resource to deadlocked process

i Colorado State University

Livelocks

In a livelock two processes need each other’s resource
* Both run and make no progress, but neither process

Two people meet in a narrow

bIOC kS corridor, and each tries to be
polite by moving aside to let the
e Use CPU quantum over and over without making gﬂ;et;g;s;d S —
side to side without making any
p rogreSS progress because they both
Ex: If fork fails because process table is full repeatedly move the same way

* Wait for some time and try again

e But there could be a collection of processes each trying
to do the same thing

* Avoided by ensuring that only one process (chosen
randomly or by priority) takes action

Colorado State University

13

Welcome to CS370 Second Half

« Topics: Memory, Storage, File System,
Virtualization

e Class rules: See Syllabus

— Class, Canvas, Teams

— participation
— Final
« Sec 001, local 801: in class.

« Sec 801 non-local: on-line.
« SDC: Sec 001, Sec 801: must be taken at SDC

— Project, deadlines, Plagiarism

Colorado State University

14

http://www.cs.colostate.edu/~cs370/Spring21/syllabus.html

15

Some OS History Lessons 1: UNIX

! Debian

Ubuntu

* Debian DG
‘ Mint Mint

[
1_» Mandriva » Mageia — ——

Unix 1969 at AT&T's Bell Laboratories by Ken Thompson, Dennis Ritchie, Douglas
Mcllroy, and Joe Ossanna. Initially released in 1971 and written in assembly
language, Unix was re-written in C in 1973 by Dennis Ritchie, making it more
portable across platforms.

BSD (Berkeley Software Distribution) is a Unix variant developed at UC Berkeley.
Derivatives like FreeBSD, OpenBSD, and NetBSD have emerged from BSD. OS X
(macOS) and PS4 also have roots in BSD.

Linux, released by Linus Torvalds in 1991, open-source operating system. Initially
built for Intel x86 PCs, Linux has since been ported to more platforms than any
other OS. It is now widely used on servers, supercomputers, mobile phones
(Android), and gaming consoles like the Nintendo Switch.

Colorado State University

Some OS History Lessons 2: Windows

* 1974: CP/M Intel 8080, Gary Kildall, Digital
Research

— 8-bit, min 16 kB RAM, floppy

 1980: 86-DOS, Intel 8086, Tim Paterson,
Seattle Computer Products

— Inspired by CP/M?
 1981: PC DOS, Bill Gates, Microsoft
— 86-DOS licensed for $25,000, hired Paterson

 1985: Windows, Bill Gates, Microsoft
— GUIl inspired by MAC? Xerox PARC Star?

§CP/M™

cP/M ERATING SYSTEM:

e Editor, Assembler, Debugger and Utilities.
® For BOBO, Z80, or Intel MDS.

® For IBM-compatible floppy discs.

¢ $100-Diskette and Documentation,

® $25-Documentation (Set of B manuals) only.
MAC™ MACRO ASSEMBLER:

o Compatible with new Intel macro standard.
® Complete guide to macro applications.

e $80-Diskette and Manual.

SID™ SYMBOLIC DEBUGGER

® Symbolic memory reference.

® Built-in assembler/disassembler.

® $75-Diskette and Manual.

TEX™ TEXT FORMATTER

® Powerful text formatting capabilities.

® Text prepared using CP/M Editor.

® 875 Diskette and Manual.

DIGITAL RESEARCH

P.0. Box 579 @ Pacific Grove, CA 93950
(408) 649-3896

Gary Kildall net worth $1.9 Million at deat
Tim Paterson Net Worth: $250,000

16

Colorado State University

CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2025

Main Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

17

\ l , o .
17 7. .
2 \\\\\ W'/ A

Colera?:lo State Unlver5|ty
!ashﬁva nt KMalalya

N ﬂ?@!'. %Q%\Q\
\ / 7(\ \\\.,\'
. |\|\ \\' ‘

y \1"11

Main Memory

Slides basedon

Text by Silberschatz, Galvin, Gagne
*" " Various Solrces L

Chapter 8: Main Memor

Objectives:

« Organizing memory for multiprogramming environment
« Partitioned vs separate address spaces

« Memory-management techniques
* Virtual vs physical addresses

e Chunks

segmentation
Paging: page tables, caching (“TLBs”)

« Examples: the Intel (old/new) and ARM architectures

ColoradaState University

What we want

 Memory capacities have been increasing
— But programs are getting bigger faster
— Parkinson’s Law™: Programs expand to fill the
memory available to hold

 What we would like

— Memory that is
« infinitely large, infinitely fast
* Non-volatile
* Inexpensive too

* Unfortunately, no such memory exists as of

now

*work expands so as to fill the time available for its completion. 1955

Colorado State University

20

21

Background

Program must be brought (from disk) into memory and run
as a process

Main memory and registers are only storage CPU can
access directly

Memory unit only sees a stream of "

— addresses + read requests, or 2°°=1,024 = K

— address + data and write requests 220= 1,048,576 = M
n-bit address: address space of size 2" bytes. 2 =G

— Ex: 32 bits: addresses 0 to (232-1) bytes
— Addressable unit is always 1 byte.

Access times:

— Register access in one CPU clock (or less)
— Main memory can take many cycles, causing a stall

— Cache sits between main memory and CPU registers making main memory
appear much faster

Protection of memory required to ensure correct operation

Colorado State University

Hierarchy

Main memory and registers are only
storage CPU can access directly
access

Register access in one CPU clock (or
Registers less).

Main memory can take many cycles,

causing a stall.

L S S : Cache sits between main memory
! Cache : and CPU registers making main
| | memory appear much faster

Main Memory

Qnr‘nnrl:\r\,/ I\/Inmnr\,/ lniclz)

\ = iIviN

Ch 11,13,14,16: Disk, file system Cache: CS470

Colorado State University

22

Memory Technology ...

THE HISTORY OF MEMORY

IN 1940 I ,) 2011
INVENTE 1953 L
ofF MeMogy BYTE oF TERABYTES
Memogpy
)
%
—

S

Colorado State University

23

Protection: Making sure each process has separate memory spaces

 OS must be protected from accesses by user
processes

e User processes must be protected from one
another
— Determine range of legal addresses for each process
— Ensure that process can access only those

* Approaches:

— Partitioning address space (early system)
— Separate address spaces (modern practice)

Colorado State University

24

Partitioning: Base and Limit Registers

 Base and Limit for a process E e
— Base: Smallest legal physical address spystemg
— Limit: Size of the range of physical 556000
address
- Anpair of base and limit registers PIoeess
g%‘@eestshe logical address space for a VTS : 300040
base
« CPU must check every memory Prosess
access generated in user mode to be 420940 < 120900
sure it is between base and limit for rocess limit
that user
* Base: Smallest legal physical address 880000
* Limit: Size of the range of physical address
* Eg: Base = 300040 and limit = 120900 1024000
* Legal: 300040 to (300040 + 120900 -1) =
420939 Addresses: decimal, hex/binary

Colorado State University

25

Hardware Address Protection

base base + limit

address yes

CPU

Y

no

trap to operating system
monitor—addressing error memory

Legal addresses: Base address to Base address + limit -1

Colorado State University

26

Multistep Processing of a User Program

source
program

£
compiler or } compile

assembler time

4

object
module
other
object
modules
linkage
editor
load , load
module time
system
library
loader
dynamicall J
loaded
system 4 ~
library i
in-memory i
dynamic binary s ﬁ)r:'?g%:{?nn
linking memory time)
image
7

Colorado State University

27

28

Address Binding Questions

Programs on disk, ready to be brought into memory to execute form
an input queue

— Without support, must be loaded into address 0000

Inconvenient to have first user process physical address always at
0000

— How can it not be?
Addresses represented in different ways at different stages of a
program’ s life
— Source code addresses are symbolic
— Compiled code addresses bind to relocatable addresses
* i.e., “14 bytes from beginning of this module”

— Linker or loader will bind relocatable addresses to absolute
addresses

* i.e., 74014
— Each binding maps one address space to another

Colorado State University

Binding of Instructions and Data to Memory

« Address binding of instructions and data to

memory addresses can happen at three
different stages

— Compile time: If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

— Load time: Must generate relocatable code if
memory location is not known at compile time

— Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another

* Need hardware support for address maps (e.g., base
and limit registers)

2o Colorado State University

31

Separate Address Spaces .

Each process has its own private address
space.

— Logical address space is the set of all
logical addresses used by a process.

However, the physical memory has just
one address space.

— Physical address space is the set of all
physical addresses

Need to map one to the other.

Colorado State University

32

Logical vs. Physical Address Space

* The concept of a logical address space that

IS bound to a separate physical address
space is central to proper memory
management

— Logical address — generated by the CPU; also
referred to as virtual address

— Physical address — address seen by the
memory unit

Logical address space is the set of all
logical addresses generated by a program

Physical address space is the set of all
physical addresses

Colorado State University

33

Memory-Management Unit (mmvu)

 Hardware device that at run time maps virtual to
physical address
— Many methods possible, we will see them soon

« Consider simple scheme where the value in the
relocation register is added to every address
generated by a user process at the time it is
sent to memory

— Base register now called relocation register
— MS-DOS on Intel 80x86 used 4 relocation registers

* The user program deals with /ogical addresses;
it never sees the real physical addresses

— Execution-time binding occurs when reference is
made to location in memory

— Logical address bound to physical addresses

Colorado State University

Dynamic relocation using a relocation register

relocation
register
14000
logical physical
address m address
CPU >+ > memory
346 W 14346
MMU
[] []
" Colorado State University

35

Linking: Static vs Dynamic

Linking
— Takes some smaller executables and joins them
together as a single larger executable.

Static linking — system libraries and program code
combined by the loader into the binary image

— Every program includes library: wastes memory
Dynamic linking —linking postponed until execution
time

— Operating system locates and links the routine at run time

Colorado State University

Dynamic Linking

36

Dynamic linking —linking postponed until execution
time

Small piece of code, stub, used to locate the
appropriate memory-resident library routine

Stub replaces itself with the address of the routine,
and executes the routine

Operating system checks if routine is in processes’
memory address
— If not in address space, add to address space

Dynamic linking is particularly useful for
— shared libraries

Colorado State University

Dynamic loading of routines

37

Routine is not loaded until it is called
Better memory-space utilization; unused routine is never loaded
All routines kept on disk in relocatable load format

Useful when large amounts of code are needed to handle
infrequently occurring cases

OS can help by providing libraries to implement dynamic loading
Static library

« Linux. .a (archive)

- Windows .lib (Library)
Dynamic Library

« Linux .so (Shared object)

« Windows .dll (Dynamic link library)

Colorado State University

Swapping a process

38

« A process can be swapped temporarily out of

memory to a backing store, and then brought
back into memory for continued execution

— Total physical memory space of processes
can exceed physical memory

Backing store — fast disk large enough to
accommodate copies of all memory images for
all users; must provide direct access to these
memory images

Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped

System maintains a ready queue of ready-to-
aanprocesses which have memory images on
IS

Colorado State University

Schematic View of Swapping

operating B —
system
P
@ swap out PIOCESS
, process P,
@ swap in
D —]
[

user \\\‘~“ﬁ_________ﬁfff”//

SREGs backing store

main memory

Do we really need to keep the entire process
in the main memory? Stay tuned.

Colorado State University

39

40

Context Switch Time including Swapping

If next processes to be put on CPU is not in
memory, need to swap out a process and
swap in target process

Context switch time can then be very high
100MB process swapping to hard disk with
transfer rate of 50MB/sec

— Swap out time of 100MB/50MB/s = 2 seconds

— Plus swap in of same sized process

— Total context switch swapping component time
of 4 seconds +some latency

Can reduce if reduce size of memory
swapped — by knowing how much memory
really being used by a process

Colorado State University

Context Switch Time and Swapping (Cont.)

« Standard swapping not used in modern
operating systems

— But modified version common
« Swap only when free memory extremely low

Colorado State University

41

Memory Allocation

Colorado State University

42

Memory Allocation Approaches

43

» Contiguous allocation: entire memory for
a program in a single contiguous memory
block. Find where a program will “fit”. earliest

approach

« Segmentation: program divided into
logically divided “segments” such as main
program, functions, stack etc.

— Need table to track segments.

« Paging: program divided into fixed size

“pages”, each placed in a fixed size
“frame”.

— Need table to track pages.

Colorado State University

Contiguous Allocation

« Main memory must support both OS and
USer processes

« Limited resource, must allocate efficiently
« Contiguous allocation is one early method

* Main memory usually into two partitions:

— Resident operating system, usually held in low
memory with interrupt vectors

— User processes then held in high memory

— Each process contained in single contiguous
section of memory

Colorado State University

44

Contiguous Allocation (Cont.)

* Registers used to protect user processes
from each other, and from changing
operating-system code and data

— Relocation (Base) register contains value of
smallest physical address

— Limit register contains range of logical
addresses — each logical address must be less

than the limit register
« MMU maps logical address dynamically

Colorado State University

45

Hardware Support for Relocation and Limit Registers

limit relocation
register register

logical
address

physical
address

CPU

memory

trap: addressing error

MMU maps logical address dynamically
Physical address = relocation reg + valid logical address

Colorado State University

46

47

Multiple-partition allocation

* Multiple-partition allocation

Degree of multiprogramming limited by number of partitions
Variable-partition sizes for efficiency (sized to a given process’ needs)
Hole — block of available memory; holes of various size are scattered
throughout memory

When a process arrives, it is allocated memory from a hole large enough to
accommodate it

Process exiting frees its partition, adjacent free partitions combined

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

0S 0S oS OS
process 5 process 5 process 5 process 5
process 9 process 9

process 8 |[——> —> —>| process 10

process 2 process 2 process 2 process 2

Colorado $tate University

48

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

- First-fit: Allocate the first hole that is big enough
- Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
— Produces the smallest leftover hole
- Worst-fit: Allocate the largest hole; must also search entire
list
— Produces the largest leftover hole

Simulation studies:

» First-fit and best-fit better than worst-fit in terms of speed and storage

utilization
» Best fit is slower than first fit . Surprisingly, it also results in more

wasted memory than first fit
» Tends to fill up memory with tiny, useless holes

Colorado State University

Fragmentation

49

- External Fragmentation — External fragmentation:
memory wasted due to small chunks of free memory
interspersed among allocated regions

* Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

« Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation

— 1/3 may be unusable -> 50-percent rule

Colorado State University

Fragmentation (Cont.)

« Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory
together in one large block

— Compaction is possible only if relocation is dynamic,
and is done at execution time

— |/O problem
 Latch job in memory while it is involved in 1/O
* Do I/O only into OS buffers

Colorado State University

50

	Slide 1
	Slide 2: Methods for Handling Deadlocks
	Slide 3: Single Instance of Each Resource Type
	Slide 4: Resource-Allocation Graph and Wait-for Graph
	Slide 5: Several Instances of a Resource Type
	Slide 6: Detection Algorithm
	Slide 7: Example of Detection Algorithm
	Slide 8: Example of Detection Algorithm (cont)
	Slide 9: Detection-Algorithm Usage
	Slide 10: Recovery from Deadlock: Process Termination
	Slide 11: Recovery from Deadlock: Resource Preemption
	Slide 12: Deadlock recovery through rollbacks
	Slide 13: Livelocks
	Slide 14: Welcome to CS370 Second Half
	Slide 15: Some OS History Lessons 1: UNIX
	Slide 16: Some OS History Lessons 2: Windows
	Slide 17
	Slide 18
	Slide 19
	Slide 20: What we want
	Slide 21: Background
	Slide 22: Hierarchy
	Slide 23: Memory Technology somewhat inaccurte
	Slide 24: Protection: Making sure each process has separate memory spaces
	Slide 25: Partitioning: Base and Limit Registers
	Slide 26: Hardware Address Protection
	Slide 27: Multistep Processing of a User Program
	Slide 28: Address Binding Questions
	Slide 29: Binding of Instructions and Data to Memory
	Slide 31: Separate Address Spaces Modern
	Slide 32: Logical vs. Physical Address Space
	Slide 33: Memory-Management Unit (MMU)
	Slide 34: Dynamic relocation using a relocation register
	Slide 35: Linking: Static vs Dynamic
	Slide 36: Dynamic Linking
	Slide 37: Dynamic loading of routines
	Slide 38: Swapping a process
	Slide 39: Schematic View of Swapping
	Slide 40: Context Switch Time including Swapping
	Slide 41: Context Switch Time and Swapping (Cont.)
	Slide 42: Memory Allocation
	Slide 43: Memory Allocation Approaches
	Slide 44: Contiguous Allocation
	Slide 45: Contiguous Allocation (Cont.)
	Slide 46: Hardware Support for Relocation and Limit Registers
	Slide 47: Multiple-partition allocation
	Slide 48: Dynamic Storage-Allocation Problem
	Slide 49: Fragmentation
	Slide 50: Fragmentation (Cont.)

