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Review for Midterm

Closed book, closed notes, no cheat sheets. Respondus 
Lockdown Browser,  Calculator in browser itself. 

• Sec 001

– 2-3:15 PM Tuesday Oct 8 in Biology 136 usual room

– One scratch sheet, must be handed in before leaving.

• Sec 801 (non-local):

– 1 hr 15 min. Wed Oct 9  12:10 AM - 11:50 PM window.

– One scratch sheet, must be destroyed before camera

• SDC students: You should have made arrangements 
with SDC already.
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How to prepare for the Midterm

What you have been doing already

• Attend classes, listen actively, review slides

– Consult text, TAs as needed

• Quizzes: Review things before and during quizzes spending 

more time is better

• Self Exercises and Homework: Understand objectives & 
constructs, design approach, review & test code

• Study before exams. Why?
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Course Overview
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Computer System Structures

• Computer System Operation

– Stack for calling functions (subroutines)

• I/O Structure: polling, interrupts, DMA

• Storage Structure

– Storage Hierarchy

• System Calls and System Programs

• Command Interpreter
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The Concept of a Process

– Process - a program in execution

• process execution proceeds in a sequential fashion

– Multiprogramming: several programs apparently executing 
“concurrently”.

– Process States

• e.g., new, running, ready, waiting, terminated.
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CPU Switch From Process to Process

C structure 
task_struct
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Process Creation
• Processes are created and deleted dynamically

• Process which creates another process is called a 
parent process; the created process is called a child 
process.

• Result is a tree of processes 
• e.g. UNIX - processes have dependencies and form a 

hierarchy.

• Resources required when creating process
• CPU time, files, memory, I/O devices etc.

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

cid = fork();
if (cid < 0) { /* error occurred */
     fprintf(stderr, "Fork Failed\n");
       return 1;
}
  else if (cid == 0) { /* child process */
      execlp("/bin/ls","ls",NULL);
  }
   else { /* parent process, will wait for child to complete */
       wait(NULL);
  
  }
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Threads
• A thread (or lightweight process) 

• basic unit of CPU utilization; it consists of:

– program counter, register set and stack space

– A thread shares the following with peer threads:
– code section, data section and OS resources (open 

files, signals)

– Collectively called a task.

• Thread support in modern systems 
– User threads vs. kernel threads, lightweight 

processes

– 1-1, many-1 and many-many mapping

• Implicit Threading (e.g. OpenMP)

• Hardware support in newer processors
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Producer-Consumer Problem

Out In

0 1 2 3 4 5 6 7

item next_produced; 
while (true) { 
 /* produce an item in next produced */ 
 while (((in + 1) % BUFFER_SIZE) == out) 
  ; /* do nothing */ 
 buffer[in] = next_produced; 
 in = (in + 1) % BUFFER_SIZE; 
} 

• Paradigm for cooperating processes; 

– producer process produces information that is 
consumed by a consumer process.

• We need buffer of items that can be filled by 
producer and emptied by consumer.

– Unbounded-buffer 

– Bounded-buffer 

• Producer and Consumer must synchronize.
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Interprocess Communication (IPC)

• Mechanism for processes to communicate and 
synchronize their actions.

• Via shared memory   

• Pipes

• Sockets

• Via Messaging system - processes 

communicate without resorting to 

shared variables.

int fd[2];

create the pipe:
  if (pipe(fd) == -1) {
     fprintf(stderr,"Pipe failed");
     return 1;
fork a child process:
      pid = fork();

parent process:
       /* close the unused end of the pipe */
        close(fd[READ_END]);

        /* write to the pipe */
          write(fd[WRITE_END], write_msg, strlen(write_msg)+1); 

        /* close the write end of the pipe */
       close(fd[WRITE_END]);
child process:
        ….

direction
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CPU Scheduling
• CPU utilization – keep the CPU as 

busy as possible: Maximize

• Throughput – # of processes that 
complete their execution per time 
unit: Maximize

• Turnaround time –time to execute a 
process from submission to 
completion:  Minimize

• Waiting time – amount of time a 
process has been waiting in the 
ready queue: Minimize

• Response time –time it takes from 
when a request was submitted until 
the first response is produced, not 
output  (for time-sharing 
environment): Minimize
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Scheduling Policies
• FCFS (First Come First Serve)

– Process that requests the CPU FIRST is allocated the CPU FIRST.
• SJF (Shortest Job First)

– Associate with each process the length of its next CPU burst. Use these 
lengths to schedule the process with the shortest time. 

• Shortest-remaining-time-first (preemptive SJF)
– A process preempted by an arriving process with shorter remaining time

• Priority 
– A priority value (integer) is associated with each process. CPU allocated to 

process with highest priority.
• Round Robin

– Each process gets a small unit of CPU time
• MultiLevel

– ready queue partitioned into separate queues
– Variation: Multilevel Feedback queues: priority lower or raised based on 

history
• Completely Fair

– Variable time-slice based on number and priority of the tasks in the queue.
– virtual run time is the weighted run-time
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Example: SJF
      ProcessArriva l TimeBurst Time

               P1 0.0 6
              P2 2.0 8
              P3 4.0 7
              P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2
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Determining Length of Next CPU Burst

• Can be done by using the length of previous CPU bursts, 
using exponential averaging

• Commonly, α set to ½
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Example of RR with Time Quantum = 4

 Process Burst Time
  P1 24
   P2  3
   P3 3 
• Arrive a time 0 in order P1, P2, P3: The Gantt chart is: 

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66 
units

• Typically, higher average turnaround than SJF, but better 
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch overhead < 1%

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Response time: Arrival to beginning of execution:  P2: 4
Turnaround time: Arrival to finish of execution: P2: 7
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Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are 
available. 

• Assume Homogeneous processors within a 
multiprocessor

• Asymmetric multiprocessing – only one processor 
accesses the system data structures, alleviating the need 
for data sharing

• Symmetric multiprocessing (SMP) – each processor is 
self-scheduling, 
– all processes in common ready queue, or 
– each has its own private queue of ready processes

• Currently, most common

• Processor affinity – process has affinity for processor on 
which it is currently running because of info in cache
– soft affinity: try but no guarantee
– hard affinity  can specify processor sets
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Consumer-producer problem 

Producer
while (true) {

 /* produce an item*/ 

  while (counter == BUFFER_SIZE) ; 

  /* do nothing */ 

  buffer[in] = next_produced; 

  in = (in + 1) % BUFFER_SIZE; 

 counter++; 

} 

Consumer
while (true) {

  while (counter == 0); 

        /* do nothing */ 

   next_consumed = buffer[out]; 

   out = (out + 1) % BUFFER_SIZ 

   counter--; 

 /* consume the item in 

        next consumed */ 

} 

19

They run “concurrently” (or in parallel), and are subject to context switches 
at unpredictable times.  
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Race Condition

They run concurrently, and are subject to context switches at unpredictable times. 

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6}
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}

counter++ could be compiled as

   register1 = counter

   register1 = register1 + 1

   counter = register1

counter-- could be compiled as

   register2 = counter

   register2 = register2 - 1

   counter = register2

Overwrites!
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The Critical Section Problem 

– Requirements
– Mutual Exclusion

– Progress

– Bounded Waiting

– Solution to the critical section problem

do { 

  acquire lock 

   critical section 

  release lock 

   remainder section 

 } while (TRUE); 
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Peterson’s Algorithm for Process Pi

do { 

  flag[i] = true; 

  turn = j; 

  while (flag[j] && turn = = j);  /*Wait*/

   critical section 

  flag[i] = false; 

   remainder section 

  } while (true); 

• The variable turn indicates whose turn it is to enter the critical section

• flag[i] = true  implies that process Pi is ready!

• Proofs for Mutual Exclusion, Progress, Bounded Wait

Being 
nice!
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Solution using test_and_set()

 Solution:
       do {

          while (test_and_set(&lock)) ; /* do nothing */ 

                 /* critical section */ 

     …..

          lock = false; 

                 /* remainder section */ 

         …  ..

       } while (true); 

Process 0 Process 1Lock

test_and_set(&lock)

Critical section

lock = false

test_and_set(&lock)

Busy waiting

test_and_set(&lock)

Critical section

lock = false

Locked by Process 0

Locked by Process 1

Shared variable lock is initially FALSE
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Bounded-waiting Mutual Exclusion with test_and_set

For process i: 

do {

   waiting[i] = true;

   key = true;

   while (waiting[i] && key) 

      key = test_and_set(&lock); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = false; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

} while (true); 

Shared Data structures initialized to FALSE 

• boolean waiting[n];

• boolean lock; 

The entry section for process i : 

• First process to execute TestAndSet will find 
key == false ; ENTER critical section, 

• EVERYONE else must wait 

The exit section for process i: 

Part I: Finding a suitable waiting process j and 
enable it to get through the while loop, 

or if thre is no suitable process, make lock FALSE.
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Mutex Locks

 Protect a critical section  by first acquire() 

a lock then release() the lock
 Boolean indicating if lock is available or not

 Calls to acquire() and release() must be 
atomic

 Usually implemented via hardware atomic 
instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

•Usage

  do { 

    acquire lock

       critical section

    release lock 

      remainder section 

 } while (true); 

acquire() {

       while (!available) 

        ; /* busy wait */

release() { 

       available = true; 

    } 
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Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)  for 
process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()

• Originally called P() and V()

• Definition of  the wait() operation

wait(S) { 

    while (S <= 0)

       ; // busy wait

    S--;

}

• Definition of  the signal() operation

signal(S) { 
    S++;

}
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Wait(S) and Signal (S)

Process 0 Process 1Semaphore S

Wait(S)

Critical section

Signal (S)

Wait (S)

Busy waiting

Gets lock, S- -

Critical section

Signal (S)

S =0

Locked by Process 1

S =1

S =0

S =1

S =1
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Readers-Writers Problem (Cont.)

• The structure of a reader process
       do {

         wait(mutex);

           read_count++;

           if (read_count == 1) 

                   wait(rw_mutex); 

           signal(mutex); 

               ...

           /* reading is performed */ 

               ... 

           wait(mutex);

           read count--;

           if (read_count == 0) 

                  signal(rw_mutex); 

           signal(mutex); 

       } while (true);

       

mutex for mutual
exclusion to readcount

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

The structure of a writer process
        
       do {

       wait(rw_mutex); 

               ...

       /* writing is performed */ 

               ... 

          signal(rw_mutex); 

     } while (true);
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Monitors and Condition Variables

The condition construct

• condition x, y;

• Two operations are allowed on a condition variable:

– x.wait() –  a process that invokes the operation is suspended 
until x.signal() 

– x.signal() – resumes one of processes (if any) that invoked 
x.wait()

• If no x.wait() on the variable, then it has no effect on the 

variable. Signal is lost.

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

  Initialization code (…) { … }
 }
}
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The pickup() and putdown()   operations

monitor DiningPhilosophers

{ 

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) { 

        state[i] = HUNGRY;

        test(i);   //on next slide

        if (state[i] != EATING) self[i].wait;

   }

 

   void putdown (int i) { 

        state[i] = THINKING;

                   // test left and right neighbors

         test((i + 4) % 5);

         test((i + 1) % 5);

   }  void test (int i) { 

         if ((state[(i + 4) % 5] != EATING) &&

         (state[i] == HUNGRY) &&

         (state[(i + 1) % 5] != EATING) ) { 

              state[i] = EATING ;

      self[i].signal () ;

         }

   }

       initialization_code() { 

        for (int i = 0; i < 5; i++)

        state[i] = THINKING;

      }

}
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Principles of Operating Systems - 

I/O Structures and Storage

31

Deadlocks

• System Model 
• Resource allocation graph, claim 

graph (for avoidance)

• Deadlock Characterization
– Conditions for deadlock - mutual 

exclusion, hold and wait, no 
preemption, circular wait.

• Methods for handling 
deadlocks

• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection
• Recovery from Deadlock

– Combined Approach to Deadlock 
Handling

At this point, two minimal cycles exist in 
the system: 
P1→ R1→ P2→ R3→ P3→ R2→ P1 
P2→ R3→ P3→ R2→ P2 
Processes P1, P2, and P3 are 
deadlocked. 
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Principles of Operating Systems - 

I/O Structures and Storage

32

Deadlock Prevention
– If any one of the conditions for deadlock (with reusable 

resources) is denied, deadlock is impossible.

– Restrain ways in which requests can be made
• Mutual Exclusion  - cannot deny (important)

• Hold and Wait - guarantee that when a process requests a resource, it 
does not hold other resources.

• No Preemption 

– If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, the process 
releases the resources currently being held.

• Circular Wait

– Impose a total ordering of all resource types. 
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Deadlock avoidance: Safe states 

• If the system can:  
– Allocate resources to each process in some order 

• Up to the maximum for the process 

– Still avoid deadlock 

– Then it is in a safe state

• A system is safe ONLY IF there is a safe 
sequence 

• A safe state is not a deadlocked state 
– Deadlocked state is an unsafe state 

– Not all unsafe states are deadlock

More interesting things about 
deadlocks – after the midterm
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Safe State, Safe Sequence

System must decide if immediate allocation leaves the 
system in a safe state

System is in safe state if there exists a sequence <P1, 
P2, …, Pn> of ALL the  processes  such that 
• for each Pi, the resources that Pi can still request 

can be satisfied by 
– currently available resources + 
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi 
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources, 
and so on 

• If no such sequence exists: system state is unsafe 
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Example A: Assume 12 Units in the system 

• Is the system at time T0 in a safe state?
– Try sequence  <P1, P0 , P2> 
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now) 

– P2 can then proceed. 

• Thus <P1, P0 , P2> is a safe sequence, and at T0 
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available 

A unit could be a drive, 
a block of memory etc.

More detailed look
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Example A: Assume 12 Units in the system (timing) 

Max 
need

Current 
holding

+2 allo 
to P1

P1 
releases 
all

.. .. ..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4  done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe?   Detailed look for instants T0, T1, T2, etc..

Time                         
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Example B: 12 Units initially available in the system 

• At time T1, P2 is allocated 1 more units. Is that a 
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max 
need

T0 T1 
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available 

At T1:
2 units available 
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Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,  

– it may have to wait until the resource becomes 
available (resource request algorithm)

– Request should not be granted if the resulting system 
state is unsafe  (safety algorithm)

• When a process gets all its resources it must 
return them in a finite amount of time

• Modeled after a banker in a small-town making 
loans. 
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Example 1A: Banker’s Algorithm

• Is it a safe state?

• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria 

Process Max Allocation Need

type A B C A B C A B C

available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P1  run to completion. Available becomes  [3 3 2]+[2 0 0] = [5 3 2]

P3  run to completion. Available becomes  [5 3 2]+[2 1 1] = [7 4 3]

P4  run to completion. Available becomes  [7 4 3]+[0 0 2] = [7 4 5]  

P2 run to completion. Available becomes  [7 4 5]+[3 0 2] = [10 4 7] 

P0 run to completion. Available becomes  [10 4 7]+[0 1 0] = [10 5 7]  

Hence state above is safe.

Why did we 
choose P1?

How did we get to this state?

”Work”
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Ex 1B: Assume now  P1 Requests (1,0,2)

• Check that Requesti  Needi  and Requesti ≤ Available.       (1,0,2) ≤ (3,3,2) → true. 

• Check for safety after pretend allocation.     P1 allocation would be (2 0 0) + (1 0 2)= 302

Process Max Pretend 
Allocation

Need

type A B C A B C A B C

Available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Sequence < P1, P3, P4, P0, P2> satisfies safety requirement. 

Hence state above is safe, thus the allocation would be safe.
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Ex 1C,1D: Additional Requests ..

• Given State is (same as previous slide)

Process Max Allocation Need

type A B C A B C A B C

available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0):  cannot be granted  - resources are not available. 

P0 request for (0,2,0):  cannot be granted since the resulting state is unsafe. 
Check yourself. 
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Questions

Various types of questions:

• Easy, hard, middle

Question types (may be similar to quiz questions):

• Problem solving/analyzing: Gantt charts, tables, e.g., scheduling

• True/False, Multiple choice

• Match things

• Identifying things in diagrams or complete them

• Concepts: define/explain/fill in blanks

• Code fragments: fill missing code, values of variables

• How will you achieve something?

• Others
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How to prepare for the Midterm

• What you have been doing already

– Listen to the lectures carefully,  connecting terms, concepts 
and approaches

– Think while answering quizzes, reviewing material as needed

– Understanding, designing, coding and testing of programs

• Review course materials

– Slides

– HWs

– Quizzes. There will be one this weekend.

– Textbook
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Midterm Rules

• You need to bring a laptop with Respondus Lockdown Browser 
installed and tested.

• You may not sit in your usual place , or next to the usual neighbors 
or team members/friends. Spread evenly in the room.

• Your cell phone and smart watch should be inside your bag.

• One sheet of paper will be provided for scratch work. You need to 
write your name and student-id on it and hand in at the end to the 
TAs/instructor.

• The TAs are not permitted to define terms, explain concepts, 
provide hints, or help in any way that will benefit a specific 
student. Questions on typos and language can be asked but none 
during the first 15 minutes.

• You cannot leave the room without permission.
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That’s it for today.
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Some Questions

• How do OS typically handle deadlocks?

• If a system does not have mutual exclusion can have 
deadlocks?

• What semaphores are exactly?

• What is Context switching?
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