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Review for Midterm

Closed book, closed notes, no cheat sheets. Respondus
Lockdown Browser, Calculator in browser itself.

* Sec001
— 2-3:15 PM Tuesday Oct 8 in BlOIOgy 136 usual room
— One scratch sheet, must be handed in before leaving.

* Sec 801 (non-local):
— 1 hr15 min. Wed Oct9 12:10 AM -11:50 PM window.
— One scratch sheet, must be destroyed before camera

e SDC students: You should have made arrangements
with SDC already.
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How to prepare for the Midterm

What you have been doing already

Attend classes, listen actively, review slides
— Consult text, TAs as needed

Quizzes: Review things before and during quizzes spendine

more time is better

Self Exercises and Homework: Understand objectives &
constructs, design approach, review & test code

Study before exams. Why?

Colorado State University



Course Overview
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Computer System Structures

* Computer System Operation

— Stack for calling functions (subroutines)
* |/O Structure: polling, interrupts, DMA

* Storage Structure
— Storage Hierarchy

e System Calls and System Programs

e Command Interpreter

Colorado State University



The Concept of a Process

— Process - a program in execution
* process execution proceeds in a sequential fashion

— Multiprogramming: several programs apparently executing
“concurrently”.

— Process States

e e.g., new, running, ready, waiting, terminated.

admitted

interrupt exit terminated

I/O or event completion scheduMIerdlspatch I/O or event wait
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Process Creation

Processes are created and deleted dynamically

Process which creates another process is called a
parent process; the created process is called a child
process.

Result is a tree of processes

* e.g. UNIX - processes have dependencies and form a
hierarchy.

Resources required when creating process
* CPU time, files, memory, I/O devices etc.

sshd
pid = 3028

pdflush
pid = 200
tesch
pid = 4005

parent resumes

»  wat

cid = fork();
if (cid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed\n");
return 1;

}
else if (cid == 0) {/* child process */
execlp("/bin/Is","Is",NULL);
}
else {/* parent process, will wait for child to complete */
wait(NULL);
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Threads

A thread (or lightweight process)
* basic unit of CPU utilization; it consists of:
— program counter, register set and stack space

— A thread shares the following with peer threads:

— code section, data section and OS resources (open
files, signals)

— Collectively called a task.

Thread support in modern systems
— User threads vs. kernel threads, lightweight

| code H data || files |

Iregisters‘

| registers |

|reg\slers|

| stack ‘

| stack |

| stack |

=

%

g-l—- thread|

processes e e
— 1-1, many-1 and many-many mapping =3
Implicit Threading (e.g. OpenMP)

Hardware support in newer processors _’é

multithreaded process
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Producer-Consumer Problem

* Paradigm for cooperating processes;

— producer process produces information that is
consumed by a consumer process.

* We need buffer of items that can be filled by
producer and emptied by consumer.

— Unbounded-buffer item next_produced;

while (true) {
/* produce an item in next produced */

— Bounded-buffer while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */

o Producer and Consumer mUSt SynChrOnize. buffer[in] = next_produced;
}

in = (in + 1) % BUFFER_SIZE;

6 7
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Interprocess Communication (IPC)

 Mechanism for processes to communicate and

synchronize their actions. fd[oi’”e"ftd['n fd[lof“""fdm
* Via shared memory
* Pipes
* Sockets

. . int fd[2];
* Via Messaging system - processes
create the pipe:
communicate without resortingto el =-1t
fprintf(stderr,"Pipe failed");

return 1;
fork a child process:

pid = fork();

shared variables.

parent process:
/* close the unused end of the pipe */
close(fd[READ_END]);

/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */
close(fd[WRITE_END]);
child process:

Colorado State University
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CPU Scheduling

* CPU utilization — keep the CPU as —

» ready queue » CPU

busy as possible: Maximize

* Throughput — # of processes that Ly
complete their execution per time fime siice

. . . expired
unit: Maximize

. . ﬁ: [ ork a P
* Turnaround time —time to execute a S P
process from submission to G i
completion: Minimize ®_ e
* Waiting time —amount of time a
process has been waiting in the
ready queue: Minimize
 Response time —time it takes from
when a request was submitted until
the first response is produced, not
output (for time-sharing
environment): Minimize
5 Colorado State University
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Scheduling Policies

FCFS (First Come First Serve)
— Process that requests the CPU FIRST is allocated the CPU FIRST.

SJF (Shortest Job First)

— Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time.

Shortest-remaining-time-first (preemptive SJF)
— A process preempted by an arriving process with shorter remaining time
Priority

— A priority value &i\nteger) is associated with each process. CPU allocated to
process with highest priority.

Round Robin
— Each process gets a small unit of CPU time
MultiLevel

— ready queue partitioned into separate queues

— L/ariation: Multilevel Feedback queues: priority lower or raised based on
istory

Completely Fair
— Variable time-slice based on number and priority of the tasks in the queue.
— virtual run time is the weighted run-time

Colorado State University



Example: SJIF

Process Burst Time
P, 6
P, 3
P, 7
P, 3
e All arrive at time O.
e SJF scheduling chart
P P P P

4 1

* Average waiting time for P,,P,,P;,P,

14

16 24

=(3+16+9+0)/4=7
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Determining Length of Next CPU Burst

* Can be done by using the length of previous CPU bursts,

using exponential averagmg
1. t, =actual length of n"CPU burst

2. 7,,, =predicted value for the next CPU burst
3. ,0<a <1
4. Define:  Ta=at,+(1-a)r,.

e Commonly, a set to % 12
Y 10

CPU burst (t)

"guess" (t) 10

15
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Example of RR with Time Quantum = 4

Process Burst Time
P 24
P, 3
P; 3

0 4 7 10 14 18 22 26 30
Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 =5.66
units

Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch overhead < 1%

Response time: Arrival to beginning of execution: P2: 4

16

Turnaround time: Arrival to finish of execution: P2: 7 . .
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Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are
available.

Assume Homogeneous processors within a
multiprocessor
Asymmetric multiprocessing — only one processor

accesses the system data structures, alleviating the need
for data sharing

Symmetric multiprocessing (SMP) — each processor is
self-scheduling,
— all processes in common ready queue, or
— each has its own private queue of ready processes
e Currently, most common

Processor affinity — process has affinity for processor on
which it is currently running because of info in cache

— soft affinity: try but no guarantee
— hard affinity can specify processor sets

Colorado State University



Consumer-producer problem

Producer Consumer
while (true) { while (true) {
/* produce an item*/ while (counter == 0);
while (counter == BUFFER SIZE) ; /* do nothing */
/* do nothing */ next consumed = buffer[out];
buffer[in] = next produced; out = (out + 1) % BUFFER SIZ
counter++; /* consume the item in
} next consumed */

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

Colorada$tate University
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Race Condition

counter++ could be compiled as counter-- could be compiled as
registerl = counter register2 = counter
registerl = registerl + 1 register2 = register2 -1
counter = registerl counter = register2

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count =5 initially:

SO: producer execute registerl = counter {registerl =5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 ({register2 =4}
S4: producer execute counter = registerl {counter =6}
S5: consumer execute counter = register2 {counter = 4}

Overwrites!




The Critical Section Problem

— Requirements
— Mutual Exclusion
— Progress
— Bounded Waiting

— Solution to the critical section problem

do {
acquire lock
critical section
release lock
remainder section
} while (TRUE) ;

Colorado State University
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Peterson’s Algorithm for Process P.

do

flag[i] =
turn = j;
while (flag[j] && turn = = j); | /*Wait*/

critical section

flag[i] = false;

remainder section
} while (true);

 The variable turn indicates whose turn it is to enter the critical section
- flag[i] = true implies that process p; is ready!
* Proofs for Mutual Exclusion, Progress, Bounded Wait

Colorado State University
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Solution using test and set()

Shared variable lock is initially FALSE

Process O Lock

test_and_set(&Iock)

Y

Process 1

test_and_set(&lock)

Critical section Locked by Process 0

lock = false

\ 4

&
hl

&
«

Busy waiting

. test_and_set(&lock)

Locked by Process 1

Critical section

lock = false

a Solution:
do {
while (test _and set(&lock)) ; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

s ~Jorado $State University
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Bounded-waiting Mutual Exclusion with test_and_set

For process 1i:
do {

waiting[i] = true;

key = true;

while (waiting[i] && key)

key = test and set(&lock) ; The entry section for process i :

waiting[i] = false; *  First process to execute TestAndSet will find

key == false ; ENTER critical section,

. EVERYONE else must wait

Shared Data structures initialized to FALSE
. boolean waiting[n];
. boolean lock;

/* critical section */
j=(i+1) % n;

while ((j '= i) && 'waiting[]j])

., o . The exit section for process i:

=0 +1) %n; o . o .
. .. Part I: Finding a suitable waiting process j and
if (j == 1) . >

enable it to get through the while loop,
lock = false; . . .
1 or if thre is no suitable process, make lock FALSE.

else

waiting[j] = false;
/* remainder section */
} while (true);

Colorado State University
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Mutex Locks

[0 Protect a critical section by first acquire ()

a lock then release () the lock *Usage
[ Boolean indicating if lock is available or not do {
O Calls to acquire () and release () must be acquire lock
atomic critical section
C Usually implemented via hardware atomic release lock
instructions remainder section
O But this solution requires busy waiting } while (true);

0 This lock therefore called a spinlock

acquire() { release() {
while ('available) available = true;
; /* busy wait */ }
Colorado State University
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Semaphore

* Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

* Semaphore S —integer variable
* Canonly be accessed via two indivisible (atomic) operations

— wait () and signal ()
* Originally called P () and V ()
 Definition of thewait () operation
wait (S) {
while (S <= 0)
; // busy wait
S--;
}
 Definition of the signal () operation

signal (S) ¢

S++;

Colorado State University
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Wait(S) and Signal (S)

Process O Semaphore S Process 1
Wait(S) >=1
> Wait (S)
&
Critical section S -0 | Busy waiting
|
Signal (S) |
- . Gets lock, S- -
s=1 ¢ «
S =0 |Locked by Process 1 Critical section
Signal (S)
S=1

Colorado State University
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Readers-Writers Problem (Cont.)

 The structure of a reader process
do {

wait(mutex) ;
read count++; mutex for mutual
if (;ead count == 1) exclusion to readcount

wait(rw_mutex) ;

signal (mutex) ; When: :
writer in critical section

... and if n readers waiting
/* reading is performed */ 1is queued on rw_mutex
(n-1) queued on mutex

wait (mutex) ;

read count-- ; The structure of a writer process
if (read count == 0) .y
signal (rw_mutex) ; wait (rw_mutex) ;
Signal (mUtex) ’ /* writing is performed */

} while (true);

signal (rw_mutex) ;
} while (true) ;

Colorado State University
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Monitors and Condition Variables

entry queue

monitor monitor-name

shared data

// shared variable declarations o
queues associated with
procedure Pl () { oo o } X, y conditions

procedure Pn (..) {...}

Initialization code (..) { .. }

operations

initialization
code

The condition construct

* condition x, y;
* Two operations are allowed on a condition variable:
— x.wait () — aprocess thatinvokes the operation is suspended
until x. signal ()
— x.signal() —resumes one of processes (if any) that invoked

x.wait ()
* Ifnox.wait () on thevariable, then it has no effect on the

variable. Signal is lost. . .
Colorado State University
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The pickup() and putdown() operations

monitor DiningPhilosophers
{

enum { THINKING, HUNGRY, EATING} state [5]
condition self [5];

.
4

void pickup (int i) {

state[i] = HUNGRY;
test (1) ; //on next slide
if (state[i] != EATING) self[i] .wait;

}

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test ((i + 4) % 5);
test((1 + 1) % 5);

} void test (int 1) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[ (1 + 1) % 5] != EATING) ) {
state[i] = EATING ;
self[i] .signal () -

initialization code() {
for (int i = 0; 1 < 5; 1i++)
state[1i] = THINKING;
}

0 Colorado Ytate university



Deadlocks

e System Model

* Resource allocation graph, claim
graph (for avoidance)

e Deadlock Characterization

— Conditions for deadlock - mutual
exclusion, hold and wait, no
preemption, circular wait.

 Methods for handling

deadlocks

* Deadlock Prevention

* Deadlock Avoidance

* Deadlock Detection

* Recovery from Deadlock

— Combined Approach to Deadlock
Handling

31

R, °

R,

At this point, two minimal cycles exist in
the system:

P1-> R1-> P2-> R3-> P3-> R2- P1

P2-> R3- P3-> R2- P2

Processes P1, P2, and P3 are
deadlocked.

Colorado State University



Deadlock Prevention

— If any one of the conditions for deadlock (with reusable
resources) is denied, deadlock is impossible.

— Restrain ways in which requests can be made

e Mutual Exclusion - cannot deny (important)

* Hold and Wait - guarantee that when a process requests a resource, it
does not hold other resources.

* No Preemption

— If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, the process
releases the resources currently being held.

e Circular Wait
— Impose a total ordering of all resource types.

Colorado State University
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Deadlock avoidance: Safe states

e |If the system can:

— Allocate resources to each process in some order
* Up to the maximum for the process

— Still avoid deadlock
— Then it is in a safe state

* A system is safe ONLY IF there is a safe
sequence

e A safe state is not a deadlocked state

— Deadlocked state is an unsafe state
— Not all unsafe states are deadlock

Colorado State University
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Safe State, Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P,,
P,, ..., P.> of ALL the processes such that

* for each P,, the resources that P, can still request
can be satisfied by
— currently available resources +
— resources held by all the P;, withj <

— That is

* If P, resource needs are not immediately available, then P;
can wait until all P; have finished and released resources

* When P, terminates, P;,; can obtain its needed resources,
and so on

* If no such sequence exists: system state is unsafe

Colorado State University



Example A: Assume 12 Units in the system

9 units allocated

av 3
3 (12-9) units available
PO 10 5
P1 4 2 A unit could be a drive,
a block of memory etc.
P2 9 2

* Is the system at time TO in a safe state?

— Try sequence <P1, PO, P2>

— P1 can be given 2 units

— When P1 releases its resources; there are now 5 available units
— PO uses 5 and subsequently releases them (10 available now)
— P2 can then proceed.

 Thus <P1, PO, P2>is a safe sequence, and at TO

system was in a safe state

Colorado State University

35



Example A: Assume 12 Units in the system (timing)

Is the state at TO safe? Detailed look for instants TO, T1, T2, etc..

Current P1
holding releases

all

av 3 1 5 0 10 3
PO 10 5 5 5 10done O 0
P1 4 2 4 done O 0 0 0
P2 9 2 2 2 2 2 9 done

Thus the state at TO is safe.

Colorado State University
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Example B: 12 Units initially available in the system

Max TO T1
need safe?
Av 2

Before T1:
3 units available

3 At T1:
PO 10 5 5 2 units available
P1 4 2 2
P2 9 2 3 Is that OK?

e AttimeT1, P2 is allocated 1 more units. Is that a
good decision?
— Now only P1 can proceed (aiready has 2, and given be given 2 more)
— When P1 releases its resources; there are 4 units
— PO needs 5 more, P2 needs 6 more. Deadlock.
* Mistake in granting P2 the additional unit.

e The state at T1 is not a safe state. wasn'ta good decision.
Colorado State University
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Banker’s Algorithm: examining a request

Multiple instances of resources.
Each process must a priori claim maximum use
When a process requests a resource,

— it may have to wait until the resource becomes
available (resource request algorithm)

— Request should not be granted if the resulting system
state is unsafe (safety algorithm)

When a process gets all its resources it must
return them in a finite amount of time

Modeled after a banker in a small-town making
loans.

Colorado State University
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Example 1A: Banker s Algorithm

How did we get to this state?

e J|sitasafestate? —

N\

* Yes, since the sequence < P1, P3, P4, P2, PO> satisfies safety criteria

type A C A (
”Work”
available 3 3 2 —
PO /7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 212 |2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1
Why did we
P1 run to completion. Available becomes [33 2]+[2 00] =[5 3 2] <[ choose P1? ]

P3 run to completion. Available becomes [53 2]+[2 11]=[7 4 3]
P4 run to completion. Available becomes [74 3]+[00 2] =[7 4 5]
P2 run to completion. Available becomes [74 5]+[30 2] =[1047]
PO run to completion. Available becomes [104 7]+[0 1 0] =[105 7]

Hence state above is safe. Colorado Statel 1 . ersity



Ex 1B: Assume now P, Requests (1,0,2)

* Check that Request; < Need; and Request. < Available. (1,0,2) £(3,3,2) - true.
* Check for safety after pretend allocation. P1 allocation would be (2 00) + (1 0 2)= 302

Pretend
Allocation

type A C

Available 2 3 0

PO 7 5 3 0 1 0 7 4 3
P1 3 2 2 3 0 2 0 2 0
P2 SR RO 82 3 0 2 6 0 0
P3 oo | 2| 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

Sequence < Py, P, P,, P, P,> satisfies safety requirement.
Hence state above is safe, thus the allocation would be safe.

Colorado State University
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Ex 1C,1D: Additional Requests ..

* Given State is (same as previous slide)

type A C

available 2 3 0

PO 7 5 3 0 1 0 7 4 3
P1 3 2 2 3 0 2 0 2 0
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0): cannot be granted - resources are not available.

PO request for (0,2,0): cannot be granted since the resulting state is unsafe.
Check yourself.

Colorado State University
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Questions

42

Various types of questions:

e Easy, hard, middle

Question types (may be similar to quiz questions):

Problem solving/analyzing: Gantt charts, tables, e.g., scheduling

True/False, Multiple choice
Match things

ldentifying things in diagrams or complete them

Concepts: define/explain/fill in blanks

Code fragments: fill missing code, values of variables

How will you achieve something?
Others

Colorado State University



How to prepare for the Midterm

 What you have been doing already

— Listen to the lectures carefully, connecting terms, concepts
and approaches

— Think while answering quizzes, reviewing material as needed
— Understanding, designing, coding and testing of programs

* Review course materials
— Slides
— HWs
— Quizzes. There will be one this weekend.
— Textbook

Colorado State University
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Midterm Rules

* You need to bring a laptop with Respondus Lockdown Browser
installed and tested.

* You may not sit in your usual place, or next to the usual neighbors
or team members/friends. Spread evenly in the room.

* Your cell phone and smart watch should be inside your bag.

* One sheet of paper will be provided for scratch work. You need to
write your name and student-id on it and hand in at the end to the
TAs/instructor.

 The TAs are not permitted to define terms, explain concepts,
provide hints, or help in any way that will benefit a specific
student. Questions on typos and language can be asked but none
during the first 15 minutes.

* You cannot leave the room without permission.

Colorado State University
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That’s it for today.

Colorado State University
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Some Questions

46

How do OS typically handle deadlocks?

If a system does not have mutual exclusion can have
deadlocks?

What semaphores are exactly?
What is Context switching?

Colorado State University
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