
1 1

Yashwant K Malaiya
Fall 2025

CS370 Operating Systems
Midterm Review

2

Review for Midterm

Closed book, closed notes, no cheat sheets. Respondus
Lockdown Browser, Calculator in browser itself.

• Sec 001

– 2-3:15 PM Tuesday Oct 8 in Biology 136 usual room

– One scratch sheet, must be handed in before leaving.

• Sec 801 (non-local):

– 1 hr 15 min. Wed Oct 9 12:10 AM - 11:50 PM window.

– One scratch sheet, must be destroyed before camera

• SDC students: You should have made arrangements
with SDC already.

3

How to prepare for the Midterm

What you have been doing already

• Attend classes, listen actively, review slides

– Consult text, TAs as needed

• Quizzes: Review things before and during quizzes spending

more time is better

• Self Exercises and Homework: Understand objectives &
constructs, design approach, review & test code

• Study before exams. Why?

4

Course Overview

5
5

Computer System Structures

• Computer System Operation

– Stack for calling functions (subroutines)

• I/O Structure: polling, interrupts, DMA

• Storage Structure

– Storage Hierarchy

• System Calls and System Programs

• Command Interpreter

6
6

The Concept of a Process

– Process - a program in execution

• process execution proceeds in a sequential fashion

– Multiprogramming: several programs apparently executing
“concurrently”.

– Process States

• e.g., new, running, ready, waiting, terminated.

7
7

CPU Switch From Process to Process

C structure
task_struct

8
8

Process Creation
• Processes are created and deleted dynamically

• Process which creates another process is called a
parent process; the created process is called a child
process.

• Result is a tree of processes
• e.g. UNIX - processes have dependencies and form a

hierarchy.

• Resources required when creating process
• CPU time, files, memory, I/O devices etc.

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

cid = fork();
if (cid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed\n");
 return 1;
}
 else if (cid == 0) { /* child process */
 execlp("/bin/ls","ls",NULL);
 }
 else { /* parent process, will wait for child to complete */
 wait(NULL);

 }

9
9

Threads
• A thread (or lightweight process)

• basic unit of CPU utilization; it consists of:

– program counter, register set and stack space

– A thread shares the following with peer threads:
– code section, data section and OS resources (open

files, signals)

– Collectively called a task.

• Thread support in modern systems
– User threads vs. kernel threads, lightweight

processes

– 1-1, many-1 and many-many mapping

• Implicit Threading (e.g. OpenMP)

• Hardware support in newer processors

10
10

Producer-Consumer Problem

Out In

0 1 2 3 4 5 6 7

item next_produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* do nothing */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

• Paradigm for cooperating processes;

– producer process produces information that is
consumed by a consumer process.

• We need buffer of items that can be filled by
producer and emptied by consumer.

– Unbounded-buffer

– Bounded-buffer

• Producer and Consumer must synchronize.

11
11

Interprocess Communication (IPC)

• Mechanism for processes to communicate and
synchronize their actions.

• Via shared memory

• Pipes

• Sockets

• Via Messaging system - processes

communicate without resorting to

shared variables.

int fd[2];

create the pipe:
 if (pipe(fd) == -1) {
 fprintf(stderr,"Pipe failed");
 return 1;
fork a child process:
 pid = fork();

parent process:
 /* close the unused end of the pipe */
 close(fd[READ_END]);

 /* write to the pipe */
 write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

 /* close the write end of the pipe */
 close(fd[WRITE_END]);
child process:
 ….

direction

12
12

CPU Scheduling
• CPU utilization – keep the CPU as

busy as possible: Maximize

• Throughput – # of processes that
complete their execution per time
unit: Maximize

• Turnaround time –time to execute a
process from submission to
completion: Minimize

• Waiting time – amount of time a
process has been waiting in the
ready queue: Minimize

• Response time –time it takes from
when a request was submitted until
the first response is produced, not
output (for time-sharing
environment): Minimize

13
13

Scheduling Policies
• FCFS (First Come First Serve)

– Process that requests the CPU FIRST is allocated the CPU FIRST.
• SJF (Shortest Job First)

– Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time.

• Shortest-remaining-time-first (preemptive SJF)
– A process preempted by an arriving process with shorter remaining time

• Priority
– A priority value (integer) is associated with each process. CPU allocated to

process with highest priority.
• Round Robin

– Each process gets a small unit of CPU time
• MultiLevel

– ready queue partitioned into separate queues
– Variation: Multilevel Feedback queues: priority lower or raised based on

history
• Completely Fair

– Variable time-slice based on number and priority of the tasks in the queue.
– virtual run time is the weighted run-time

14

Example: SJF
 ProcessArriva l TimeBurst Time

 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

15

Determining Length of Next CPU Burst

• Can be done by using the length of previous CPU bursts,
using exponential averaging

• Commonly, α set to ½

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.



=

=

+



 1n

th
n nt

() .1
1 nnn

t  −+=
=

16

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3
• Arrive a time 0 in order P1, P2, P3: The Gantt chart is:

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch overhead < 1%

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Response time: Arrival to beginning of execution: P2: 4
Turnaround time: Arrival to finish of execution: P2: 7

17

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are
available.

• Assume Homogeneous processors within a
multiprocessor

• Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing

• Symmetric multiprocessing (SMP) – each processor is
self-scheduling,
– all processes in common ready queue, or
– each has its own private queue of ready processes

• Currently, most common

• Processor affinity – process has affinity for processor on
which it is currently running because of info in cache
– soft affinity: try but no guarantee
– hard affinity can specify processor sets

19

Consumer-producer problem

Producer
while (true) {

 /* produce an item*/

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

Consumer
while (true) {

 while (counter == 0);

 /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZ

 counter--;

 /* consume the item in

 next consumed */

}

19

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

20

Race Condition

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

counter++ could be compiled as

 register1 = counter

 register1 = register1 + 1

 counter = register1

counter-- could be compiled as

 register2 = counter

 register2 = register2 - 1

 counter = register2

Overwrites!

21
21

The Critical Section Problem

– Requirements
– Mutual Exclusion

– Progress

– Bounded Waiting

– Solution to the critical section problem

do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

22

Peterson’s Algorithm for Process Pi

do {

 flag[i] = true;

 turn = j;

 while (flag[j] && turn = = j); /*Wait*/

 critical section

 flag[i] = false;

 remainder section

 } while (true);

• The variable turn indicates whose turn it is to enter the critical section

• flag[i] = true implies that process Pi is ready!

• Proofs for Mutual Exclusion, Progress, Bounded Wait

Being
nice!

23

Solution using test_and_set()

 Solution:
 do {

 while (test_and_set(&lock)) ; /* do nothing */

 /* critical section */

 …..

 lock = false;

 /* remainder section */

 … ..

 } while (true);

Process 0 Process 1Lock

test_and_set(&lock)

Critical section

lock = false

test_and_set(&lock)

Busy waiting

test_and_set(&lock)

Critical section

lock = false

Locked by Process 0

Locked by Process 1

Shared variable lock is initially FALSE

24

Bounded-waiting Mutual Exclusion with test_and_set

For process i:

do {

 waiting[i] = true;

 key = true;

 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

Shared Data structures initialized to FALSE

• boolean waiting[n];

• boolean lock;

The entry section for process i :

• First process to execute TestAndSet will find
key == false ; ENTER critical section,

• EVERYONE else must wait

The exit section for process i:

Part I: Finding a suitable waiting process j and
enable it to get through the while loop,

or if thre is no suitable process, make lock FALSE.

25

Mutex Locks

 Protect a critical section by first acquire()

a lock then release() the lock
 Boolean indicating if lock is available or not

 Calls to acquire() and release() must be
atomic

 Usually implemented via hardware atomic
instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

•Usage

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

acquire() {

 while (!available)

 ; /* busy wait */

release() {

 available = true;

 }

26

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()

• Originally called P() and V()

• Definition of the wait() operation

wait(S) {

 while (S <= 0)

 ; // busy wait

 S--;

}

• Definition of the signal() operation

signal(S) {
 S++;

}

27

Wait(S) and Signal (S)

Process 0 Process 1Semaphore S

Wait(S)

Critical section

Signal (S)

Wait (S)

Busy waiting

Gets lock, S- -

Critical section

Signal (S)

S =0

Locked by Process 1

S =1

S =0

S =1

S =1

28

Readers-Writers Problem (Cont.)

• The structure of a reader process
 do {

 wait(mutex);

 read_count++;

 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...

 /* reading is performed */

 ...

 wait(mutex);

 read count--;

 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

mutex for mutual
exclusion to readcount

When:
 writer in critical section
 and if n readers waiting
1 is queued on rw_mutex
(n-1) queued on mutex

The structure of a writer process

 do {

 wait(rw_mutex);

 ...

 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

29

Monitors and Condition Variables

The condition construct

• condition x, y;

• Two operations are allowed on a condition variable:

– x.wait() – a process that invokes the operation is suspended
until x.signal()

– x.signal() – resumes one of processes (if any) that invoked
x.wait()

• If no x.wait() on the variable, then it has no effect on the

variable. Signal is lost.

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }
}

30

The pickup() and putdown() operations

monitor DiningPhilosophers

{

 enum { THINKING, HUNGRY, EATING} state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i); //on next slide

 if (state[i] != EATING) self[i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 } void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

31
Principles of Operating Systems -

I/O Structures and Storage

31

Deadlocks

• System Model
• Resource allocation graph, claim

graph (for avoidance)

• Deadlock Characterization
– Conditions for deadlock - mutual

exclusion, hold and wait, no
preemption, circular wait.

• Methods for handling
deadlocks

• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection
• Recovery from Deadlock

– Combined Approach to Deadlock
Handling

At this point, two minimal cycles exist in
the system:
P1→ R1→ P2→ R3→ P3→ R2→ P1
P2→ R3→ P3→ R2→ P2
Processes P1, P2, and P3 are
deadlocked.

32
Principles of Operating Systems -

I/O Structures and Storage

32

Deadlock Prevention
– If any one of the conditions for deadlock (with reusable

resources) is denied, deadlock is impossible.

– Restrain ways in which requests can be made
• Mutual Exclusion - cannot deny (important)

• Hold and Wait - guarantee that when a process requests a resource, it
does not hold other resources.

• No Preemption

– If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, the process
releases the resources currently being held.

• Circular Wait

– Impose a total ordering of all resource types.

33

Deadlock avoidance: Safe states

• If the system can:
– Allocate resources to each process in some order

• Up to the maximum for the process

– Still avoid deadlock

– Then it is in a safe state

• A system is safe ONLY IF there is a safe
sequence

• A safe state is not a deadlocked state
– Deadlocked state is an unsafe state

– Not all unsafe states are deadlock

More interesting things about
deadlocks – after the midterm

34

Safe State, Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state

System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes such that
• for each Pi, the resources that Pi can still request

can be satisfied by
– currently available resources +
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources,
and so on

• If no such sequence exists: system state is unsafe

35

Example A: Assume 12 Units in the system

• Is the system at time T0 in a safe state?
– Try sequence <P1, P0 , P2>
– P1 can be given 2 units

– When P1 releases its resources; there are now 5 available units

– P0 uses 5 and subsequently releases them (10 available now)

– P2 can then proceed.

• Thus <P1, P0 , P2> is a safe sequence, and at T0
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available

A unit could be a drive,
a block of memory etc.

More detailed look

36

Example A: Assume 12 Units in the system (timing)

Max
need

Current
holding

+2 allo
to P1

P1
releases
all

..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4 done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe? Detailed look for instants T0, T1, T2, etc..

Time

37

Example B: 12 Units initially available in the system

• At time T1, P2 is allocated 1 more units. Is that a
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.

• The state at T1 is not a safe state. Wasn’t a good decision.

Max
need

T0 T1
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available

At T1:
2 units available

38

Banker’s Algorithm: examining a request

• Multiple instances of resources.

• Each process must a priori claim maximum use

• When a process requests a resource,

– it may have to wait until the resource becomes
available (resource request algorithm)

– Request should not be granted if the resulting system
state is unsafe (safety algorithm)

• When a process gets all its resources it must
return them in a finite amount of time

• Modeled after a banker in a small-town making
loans.

39

Example 1A: Banker’s Algorithm

• Is it a safe state?

• Yes, since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Process Max Allocation Need

type A B C A B C A B C

available 3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P1 run to completion. Available becomes [3 3 2]+[2 0 0] = [5 3 2]

P3 run to completion. Available becomes [5 3 2]+[2 1 1] = [7 4 3]

P4 run to completion. Available becomes [7 4 3]+[0 0 2] = [7 4 5]

P2 run to completion. Available becomes [7 4 5]+[3 0 2] = [10 4 7]

P0 run to completion. Available becomes [10 4 7]+[0 1 0] = [10 5 7]

Hence state above is safe.

Why did we
choose P1?

How did we get to this state?

”Work”

40

Ex 1B: Assume now P1 Requests (1,0,2)

• Check that Requesti  Needi and Requesti ≤ Available. (1,0,2) ≤ (3,3,2) → true.

• Check for safety after pretend allocation. P1 allocation would be (2 0 0) + (1 0 2)= 302

Process Max Pretend
Allocation

Need

type A B C A B C A B C

Available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Sequence < P1, P3, P4, P0, P2> satisfies safety requirement.

Hence state above is safe, thus the allocation would be safe.

41

Ex 1C,1D: Additional Requests ..

• Given State is (same as previous slide)

Process Max Allocation Need

type A B C A B C A B C

available 2 3 0

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 3 0 2 0 2 0

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

P4 request for (3,3,0): cannot be granted - resources are not available.

P0 request for (0,2,0): cannot be granted since the resulting state is unsafe.
Check yourself.

42

Questions

Various types of questions:

• Easy, hard, middle

Question types (may be similar to quiz questions):

• Problem solving/analyzing: Gantt charts, tables, e.g., scheduling

• True/False, Multiple choice

• Match things

• Identifying things in diagrams or complete them

• Concepts: define/explain/fill in blanks

• Code fragments: fill missing code, values of variables

• How will you achieve something?

• Others

43

How to prepare for the Midterm

• What you have been doing already

– Listen to the lectures carefully, connecting terms, concepts
and approaches

– Think while answering quizzes, reviewing material as needed

– Understanding, designing, coding and testing of programs

• Review course materials

– Slides

– HWs

– Quizzes. There will be one this weekend.

– Textbook

44

Midterm Rules

• You need to bring a laptop with Respondus Lockdown Browser
installed and tested.

• You may not sit in your usual place , or next to the usual neighbors
or team members/friends. Spread evenly in the room.

• Your cell phone and smart watch should be inside your bag.

• One sheet of paper will be provided for scratch work. You need to
write your name and student-id on it and hand in at the end to the
TAs/instructor.

• The TAs are not permitted to define terms, explain concepts,
provide hints, or help in any way that will benefit a specific
student. Questions on typos and language can be asked but none
during the first 15 minutes.

• You cannot leave the room without permission.

45

That’s it for today.

46

Some Questions

• How do OS typically handle deadlocks?

• If a system does not have mutual exclusion can have
deadlocks?

• What semaphores are exactly?

• What is Context switching?

	Slide 1
	Slide 2: Review for Midterm
	Slide 3: How to prepare for the Midterm
	Slide 4: Course Overview
	Slide 5: Computer System Structures
	Slide 6: The Concept of a Process
	Slide 7: CPU Switch From Process to Process
	Slide 8: Process Creation
	Slide 9: Threads
	Slide 10: Producer-Consumer Problem
	Slide 11: Interprocess Communication (IPC)
	Slide 12: CPU Scheduling
	Slide 13: Scheduling Policies
	Slide 14: Example: SJF
	Slide 15: Determining Length of Next CPU Burst
	Slide 16: Example of RR with Time Quantum = 4
	Slide 17: Multiple-Processor Scheduling
	Slide 19: Consumer-producer problem
	Slide 20: Race Condition
	Slide 21: The Critical Section Problem
	Slide 22: Peterson’s Algorithm for Process Pi
	Slide 23: Solution using test_and_set()
	Slide 24: Bounded-waiting Mutual Exclusion with test_and_set
	Slide 25: Mutex Locks
	Slide 26: Semaphore
	Slide 27: Wait(S) and Signal (S)
	Slide 28: Readers-Writers Problem (Cont.)
	Slide 29: Monitors and Condition Variables
	Slide 30: The pickup() and putdown() operations
	Slide 31: Deadlocks
	Slide 32: Deadlock Prevention
	Slide 33: Deadlock avoidance: Safe states
	Slide 34: Safe State, Safe Sequence
	Slide 35: Example A: Assume 12 Units in the system
	Slide 36: Example A: Assume 12 Units in the system (timing)
	Slide 37: Example B: 12 Units initially available in the system
	Slide 38: Banker’s Algorithm: examining a request
	Slide 39: Example 1A: Banker’s Algorithm
	Slide 40: Ex 1B: Assume now P1 Requests (1,0,2)
	Slide 41: Ex 1C,1D: Additional Requests ..
	Slide 42: Questions
	Slide 43: How to prepare for the Midterm
	Slide 44: Midterm Rules
	Slide 45: That’s it for today.
	Slide 46: Some Questions

