
1 1

Colorado State University
Yashwant K Malaiya

Fall 2025 L16
Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Multistep Processing of a User Program

3

Address Binding Questions

• Programs on disk, ready to be brought into memory to execute form

an input queue

– Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at

0000

– How can it not be?

• Addresses represented in different ways at different stages of a

program’s life

– Source code addresses are symbolic

– Compiled code addresses bind to relocatable addresses

• i.e., “14 bytes from beginning of this module”

– Linker or loader will bind relocatable addresses to absolute

addresses

• i.e., 74014

– Each binding maps one address space to another

4

Binding of Instructions and Data to Memory

• Address binding of instructions and data to
memory addresses can happen at three
different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile
code if starting location changes

– Load time: Must generate relocatable code if
memory location is not known at compile time

– Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another
• Need hardware support for address maps (e.g., base

and limit registers)

5

Linking: Static vs Dynamic

• Linking

– Takes some smaller executables and joins them

together as a single larger executable.

• Static linking – system libraries and program code

combined by the loader into the binary image

– Every program includes library: wastes memory

• Dynamic linking –linking postponed until execution

time

– Operating system locates and links the routine at run time

6

Dynamic Linking

• Dynamic linking –linking postponed until execution

time

• Small piece of code, stub, used to locate the

appropriate memory-resident library routine

• Stub replaces itself with the address of the routine,

and executes the routine

• Operating system checks if routine is in processes’
memory address
– If not in address space, add to address space

• Dynamic linking is particularly useful for

– shared libraries

7

Dynamic loading of routines

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded

• All routines kept on disk in relocatable load format

• Useful when large amounts of code are needed to handle

infrequently occurring cases

• OS can help by providing libraries to implement dynamic loading

• Static library

• Linux. .a (archive)

• Windows .lib (Library)

• Dynamic Library

• Linux .so (Shared object)

• Windows .dll (Dynamic link library)

Join the UTA Staff!
Apply to work as an Undergraduate Teaching Assistant (UTA) today!

Develop Great Professional Skills!

• Working on a team

• Debugging and Code Comprehension

• Communication

Improve your technical knowledge!

• The best way to refine your knowledge is to teach it

Great for Resumes!

Build rapport with department instructors!

Earn more than $15 per hour!

9

Swapping a process

• A process can be swapped temporarily out of
memory to a backing store, and then brought
back into memory for continued execution

– Total physical memory space of processes
can exceed physical memory

• Backing store – fast disk large enough to
accommodate copies of all memory images for
all users; must provide direct access to these
memory images

• Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped

• System maintains a ready queue of ready-to-
run processes which have memory images on
disk

10

Schematic View of Swapping

Do we really need to keep the entire process
in the main memory? Stay tuned.

11

Context Switch Time including Swapping

• If next processes to be put on CPU is not in
memory, need to swap out a process and
swap in target process

• Context switch time can then be very high
• 100MB process swapping to hard disk with

transfer rate of 50MB/sec
– Swap out time of 100MB/50MB/s = 2 seconds

– Plus swap in of same sized process

– Total context switch swapping component time
of 4 seconds + some latency

• Can reduce if reduce size of memory
swapped – by knowing how much memory
really being used by a process

12

Context Switch Time and Swapping (Cont.)

• Standard swapping not used in modern

operating systems

– But modified version common

• Swap only when free memory extremely low

13

Course Notes: HW4

• Help Session Today: 5 PM Room CSB 130

• HW4 output formatting: The RAMDesk team and

the our GTAs have been working together on

developing the autograder script. The output

format needs to be revised for autograder to

work. Will be available soon in the revised HW4

document.

14

Memory Allocation

15

Memory Allocation Approaches

• Contiguous allocation: entire memory for
a program in a single contiguous memory
block. Find where a program will “fit”. earliest

approach

• Segmentation: program divided into
logically divided “segments” such as main
program, functions, stack etc.

– Need table to track segments.

• Paging: program divided into fixed size
“pages”, each placed in a fixed size
“frame”.

– Need table to track pages.

16

Contiguous Allocation

• Main memory must support both OS and

user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:

– Resident operating system, usually held in low

memory with interrupt vectors

– User processes then held in high memory

– Each process contained in single contiguous

section of memory

17

Contiguous Allocation (Cont.)

• Registers used to protect user processes

from each other, and from changing

operating-system code and data

– Relocation (Base) register contains value of

smallest physical address

– Limit register contains range of logical

addresses – each logical address must be less

than the limit register

• MMU maps logical address dynamically

18

Hardware Support for Relocation and Limit Registers
Contiguous Allocation

MMU maps logical address dynamically

Physical address = relocation reg + valid logical address

19

Multiple-partition allocation
Contiguous Allocation

• Multiple-partition allocation
– Degree of multiprogramming limited by number of partitions

– Variable-partition sizes for efficiency (sized to a given process’ needs)

– Hole – block of available memory; holes of various size are scattered

throughout memory

– When a process arrives, it is allocated memory from a hole large enough to

accommodate it

– Process exiting frees its partition, adjacent free partitions combined

– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

20

Dynamic Storage-Allocation Problem
Contiguous Allocation

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire
list

– Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

Simulation studies:

• First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

• Best fit is slower than first fit . Surprisingly, it also results in more

wasted memory than first fit

• Tends to fill up memory with tiny, useless holes

21

Fragmentation

• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory

interspersed among allocated regions

• Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size

difference is memory internal to a partition, but not

being used

• Simulation analysis reveals that given N blocks

allocated, 0.5 N blocks lost to fragmentation

– 1/3 may be unusable -> 50-percent rule

22

Fragmentation (Cont.)

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory

together in one large block

– Compaction is possible only if relocation is dynamic,

and is done at execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

23

Paging vs Segmentations

Segmentation: program divided into logically divided

“segments” such as main program, function, stack etc.

• Need table to track segments.

• Term “segmentation fault occurs”: improper

attempt to access a memory location

Paging: program divided into fixed size “pages”, each

placed in a fixed size “frame”.

• Need table to track pages.

• No external fragmentation

• Increasingly more common

24

Paging vs Segmentations

25

Pages

• Pages and frames

– Addresses: page number, offset

• Page tables: mapping from page # to frame #

– TLB: page table caching

• Memory protection and sharing

• Multilevel page tables

26

Address Translation Scheme

• Address generated by CPU is divided into:
– Page number (p) – used as an index into a page

table which contains base address of each page in
physical memory

– Page offset (d) – combined with base address to
define the physical memory address that is sent to
the memory unit

– For given logical address space 2m and page size

2n

page number page offset

p d

m -n n

27

Paging Hardware

Page number p mapped into the frame number f.
The offset d needs no mapping.

28

Paging Example

8 frames
Frame number 0-to-7

Page 0 maps
to frame 5

Example:
Logical add: 00 10 (2)
Phyical Add: 101 10 (22)

Ex: m=4 and n=2

• Logical add. space = 24 bytes,

• 22=4-byte pages

• 32-byte physics memory with 8 frames

of a process

29

Paging (Cont.)

• Internal fragmentation
– Ex: Page size = 2,048 bytes, Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes wasted

– Worst case fragmentation = 1 frame – 1 byte

– On average fragmentation = 1 / 2 frame size

– So small frame sizes desirable?
• But each page table entry takes memory to track

– Page size
• X86-64: 4 KB (common), 2 MB (“huge” for servers), 1GB (“large”)

• Process view and physical memory now very
different

• By implementation, a process can only access its
own memory unless ..

30

Free Frame allocation

Before allocation After allocation

A new process arrives

That needs four pages

31

Implementation of Page Table

Page table is kept in main memory

• Page-table base register (PTBR) points to
the page table

• Page-table length register (PTLR)
indicates size of the page table

• In this scheme every data/instruction
access requires two memory accesses
– One for the page table and one for the data /

instruction

The two memory access problem can be
solved by the use of a special fast-lookup
hardware cache called associative memory
or translation look-aside buffers (TLBs)

One page-table
For each process

TLB: cache for Page Table

32

Caching: The General Concept

• Widely used concept:
– keep small subset of information likely to needed in

near future in a fast accessible place

– Hopefully the “Hit Rate” is high

Challenges:
– 1. Is the information in cache? 2. Where?

– Hit rate vs cache size

Examples:
– Cache Memory (“Cache”):

Cache for Main memory Default meaning for this class

– Browser cache: for browser

– Disk cache

– Cache for Page Table: TLB

33

Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers
(ASIDs) in each TLB entry – uniquely identifies

each process to provide address-space

protection for that process

– Otherwise need to flush TLB at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for
faster access next time

– Replacement policies must be considered

– Some entries can be wired down for permanent fast

access TLB: cache for
page Table

34

Associative Memory (hardware block)

• Associative memory –parallel search using hardware

– “Content addressable memory”: Electronics is very expensive

• Address translation (p, d)

– If p is in associative register, get frame # out (“Hit”)

– Otherwise get frame # from page table in memory (“Miss”)

Page # Frame #

35

Paging Hardware With TLB

TLB Miss: page table access may be
done using hardware / software

36

Effective Access Time

On average how long does a memory access take?

• Associative Lookup =  time units
– Can be < 10% of memory access time (MAT)

• Hit ratio = 
– Hit ratio – percentage of times that a page number is

found in the associative registers; ratio related to
number of associative registers

• Effective Access Time (EAT): probability weighted

 EAT =  (+MAT) + (1 – )(+2.MAT)

• Ex:

 Consider  = 90%,  = negligible for TLB search, 100ns for
memory access time

– EAT = 0.90 x 100 + 0.10 x 200 = 110ns

• Consider more realistic hit ratio ->  = 99%,

– EAT = 0.99 x 100 + 0.01 x 200 = 101ns

37

FAQ

38

Memory Protection

• Memory protection implemented by associating
protection bit with each frame to indicate if
read-only or read-write access is allowed
– Can also add more bits to indicate page execute-

only, and so on

• Valid-invalid bit attached to each entry in the
page table:
– “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page

– “invalid” indicates that the page is not in the
process’ logical address space

• Any violations result in a trap to the kernel

39

Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not
in the process’s

address space.

40

Shared Pages among Processes

• Shared code
– One copy of read-only (reentrant non-self modifying)

code shared among processes (i.e., text editors,
compilers, window systems)

– Similar to multiple threads sharing the same
process space

– Also useful for interprocess communication if
sharing of read-write pages is allowed

• Private code and data
– Each process keeps a separate copy of the

code and data

– The pages for the private code and data can
appear anywhere in the logical address space

41

Shared Pages Example

ed1, ed2, ed3
(frames 3, 4, 6) shared

42

Overheads in paging: Page table and internal fragmentation

Optimal Page Size Computation:

page table size vs internal fragmentation tradeoff

• Average process size = s

• Page size = p

• Size of each entry in page table = e

– Pages per process = s/p

– se/p: Total page table space for average process

– Total Overhead = Page table overhead + Internal
fragmentation loss
= se/p + p/2

43

Optimal Page size: Page table and internal fragmentation

• Total Overhead = se/p + p/2

• Optimal: Obtain derivative of overhead with
respect to p, equate to 0

 -se/p2 +1⁄2 = 0

• i.e. p2 =2se or p = (2se)0.5

Assume s = 128KB and e=8 bytes per entry

• Optimal page size = 1448 bytes
– In practice we will never use 1448 bytes

– Instead, either 1K or 2K would be used
• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier

44

Page Table Size

Memory structures for paging can get huge using
straight-forward methods

• Consider a 32-bit logical address space as on
recent processors 64-bit on 64-bit processors

– Assume page size of 4 KB (212) entries

– Page table would have 1 million entries (232 / 212)

– If each entry is 4 bytes -> 4 MB of physical address
space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte

220 1M mebibyte

230 1G gigibyte

240 1T tebibyte

45

Issues with large page tables

• Cannot allocate page table contiguously in
memory

• Solution:

– Divide the page table into smaller pieces

– Page the page-table

• Hierarchical Paging

46

Hierarchical Page Tables

• Break up the logical address

space into multiple page tables

• A simple technique is a two-level

page table

• We then page the page table

P1: indexes the outer page table
P2: page table: maps to frame

47

Two-Level Page-Table Scheme

xxxx xxxx xxxx xxxx xxxx xx xx xxxx xxxx
Outer Page table page table offset within page

48

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page
size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is
further divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2
is the displacement within the page of the inner page
table

• Known as forward-mapped page table

49

Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212

 entry: page of the page table

• Often only some of all possible 212 Page
tables needed (each of size 210)

	Slide 1
	Slide 2: Multistep Processing of a User Program
	Slide 3: Address Binding Questions
	Slide 4: Binding of Instructions and Data to Memory
	Slide 5: Linking: Static vs Dynamic
	Slide 6: Dynamic Linking
	Slide 7: Dynamic loading of routines
	Slide 8
	Slide 9: Swapping a process
	Slide 10: Schematic View of Swapping
	Slide 11: Context Switch Time including Swapping
	Slide 12: Context Switch Time and Swapping (Cont.)
	Slide 13: Course Notes: HW4
	Slide 14: Memory Allocation
	Slide 15: Memory Allocation Approaches
	Slide 16: Contiguous Allocation
	Slide 17: Contiguous Allocation (Cont.)
	Slide 18: Hardware Support for Relocation and Limit Registers Contiguous Allocation
	Slide 19: Multiple-partition allocation Contiguous Allocation
	Slide 20: Dynamic Storage-Allocation Problem Contiguous Allocation
	Slide 21: Fragmentation
	Slide 22: Fragmentation (Cont.)
	Slide 23: Paging vs Segmentations
	Slide 24: Paging vs Segmentations
	Slide 25: Pages
	Slide 26: Address Translation Scheme
	Slide 27: Paging Hardware
	Slide 28: Paging Example
	Slide 29: Paging (Cont.)
	Slide 30: Free Frame allocation
	Slide 31: Implementation of Page Table
	Slide 32: Caching: The General Concept
	Slide 33: Implementation of Page Table (Cont.)
	Slide 34: Associative Memory (hardware block)
	Slide 35: Paging Hardware With TLB
	Slide 36: Effective Access Time
	Slide 37: FAQ
	Slide 38: Memory Protection
	Slide 39: Valid (v) or Invalid (i) Bit In A Page Table
	Slide 40: Shared Pages among Processes
	Slide 41: Shared Pages Example
	Slide 42: Overheads in paging: Page table and internal fragmentation
	Slide 43: Optimal Page size: Page table and internal fragmentation
	Slide 44: Page Table Size
	Slide 45: Issues with large page tables
	Slide 46: Hierarchical Page Tables
	Slide 47: Two-Level Page-Table Scheme
	Slide 48: Two-Level Paging Example
	Slide 49: Two-Level Paging Example

