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Multistep Processing of a User Program
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Address Binding Questions

Programs on disk, ready to be brought into memory to execute form
an input queue

— Without support, must be loaded into address 0000

Inconvenient to have first user process physical address always at
0000

— How can it not be?
Addresses represented in different ways at different stages of a
program’ s life
— Source code addresses are symbolic
— Compiled code addresses bind to relocatable addresses
* i.e., “14 bytes from beginning of this module”

— Linker or loader will bind relocatable addresses to absolute
addresses

* i.e., 74014
— Each binding maps one address space to another

Colorado State University



Binding of Instructions and Data to Memory

« Address binding of instructions and data to

memory addresses can happen at three
different stages

— Compile time: If memory location known a priori,
absolute code can be generated; must recompile
code if starting location changes

— Load time: Must generate relocatable code if
memory location is not known at compile time

— Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another

* Need hardware support for address maps (e.g., base
and limit registers)

. Colorado State University



Linking: Static vs Dynamic

Linking
— Takes some smaller executables and joins them
together as a single larger executable.

Static linking — system libraries and program code
combined by the loader into the binary image

— Every program includes library: wastes memory
Dynamic linking —linking postponed until execution
time

— Operating system locates and links the routine at run time

Colorado State University



Dynamic Linking

Dynamic linking —linking postponed until execution
time

Small piece of code, stub, used to locate the
appropriate memory-resident library routine

Stub replaces itself with the address of the routine,
and executes the routine

Operating system checks if routine is in processes’
memory address
— If not in address space, add to address space

Dynamic linking is particularly useful for
— shared libraries

Colorado State University



Dynamic loading of routines

Routine is not loaded until it is called
Better memory-space utilization; unused routine is never loaded
All routines kept on disk in relocatable load format

Useful when large amounts of code are needed to handle
infrequently occurring cases

OS can help by providing libraries to implement dynamic loading
Static library

« Linux. .a (archive)

- Windows .lib (Library)
Dynamic Library

« Linux .so (Shared object)

«  Windows .dll (Dynamic link library)

Colorado State University



Join the UTA Staff!

Apply to work as an Undergraduate Teaching Assistant (UTA) today!

Develop Great Professional Skills!
* Working on a team
* Debugging and Code Comprehension
* Communication

Improve your technical knowledge!
* The best way to refine your knowledge is to teach it

Great for Resumes!

Build rapport with department instructors!

Earn more than $15 per hour!



Swapping a process

« A process can be swapped temporarily out of

memory to a backing store, and then brought
back into memory for continued execution

— Total physical memory space of processes
can exceed physical memory

Backing store — fast disk large enough to
accommodate copies of all memory images for
all users; must provide direct access to these
memory images

Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped

System maintains a ready queue of ready-to-
aanprocesses which have memory images on
IS
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Schematic View of Swapping

operating B —
system
P
@ swap out PIOCESS
, process P,
@ swap in
D — ]
[

user \\\‘~“ﬁ_________ﬁfff”//

SREGs backing store

main memory

Do we really need to keep the entire process
in the main memory? Stay tuned.
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Context Switch Time including Swapping

If next processes to be put on CPU is not in
memory, need to swap out a process and
swap in target process

Context switch time can then be very high
100MB process swapping to hard disk with
transfer rate of 50MB/sec

— Swap out time of 100MB/50MB/s = 2 seconds

— Plus swap in of same sized process

— Total context switch swapping component time
of 4 seconds +some latency

Can reduce if reduce size of memory
swapped — by knowing how much memory
really being used by a process

Colorado State University



Context Switch Time and Swapping (Cont.)

« Standard swapping not used in modern
operating systems

— But modified version common
« Swap only when free memory extremely low

Colorado State University
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Course Notes: HW4
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* Help Session Today: 5 PM Room CSB 130

« HW4 output formatting: The RAMDesk team and
the our GTAs have been working together on
developing the autograder script. The output
format needs to be revised for autograder to
work. Will be available soon in the revised HW4
document.

Colorado State University



Memory Allocation

SAFTER YOUVE WISHED For. ADDMANAL MEMORY,
Y00 CAN STOP WISHING: TOR MORE URGRADES.

Colorado State University
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Memory Allocation Approaches
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» Contiguous allocation: entire memory for
a program in a single contiguous memory
block. Find where a program will “fit”. earliest

approach

« Segmentation: program divided into
logically divided “segments” such as main
program, functions, stack etc.

— Need table to track segments.

« Paging: program divided into fixed size

“pages”, each placed in a fixed size
“frame”.

— Need table to track pages.

Colorado State University



Contiguous Allocation

« Main memory must support both OS and
USer processes

« Limited resource, must allocate efficiently
« Contiguous allocation is one early method

* Main memory usually into two partitions:

— Resident operating system, usually held in low
memory with interrupt vectors

— User processes then held in high memory

— Each process contained in single contiguous
section of memory

Colorado State University
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Contiguous Allocation (Cont.)

* Registers used to protect user processes
from each other, and from changing
operating-system code and data

— Relocation (Base) register contains value of
smallest physical address

— Limit register contains range of logical
addresses — each logical address must be less

than the limit register
« MMU maps logical address dynamically

Colorado State University
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Hardware Support for Relocation and Limit Registers

Contiguous Allocation

limit relocation
register register

logical
address

physical
address

CPU

memory

trap: addressing error

MMU maps logical address dynamically
Physical address = relocation reg + valid logical address

Colorado State University
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Multiple-partition allocation

Contiguous Allocation

* Multiple-partition allocation

— Degree of multiprogramming limited by number of partitions

— Variable-partition sizes for efficiency (sized to a given process’ needs)

— Hole — block of available memory; holes of various size are scattered
throughout memory

— When a process arrives, it is allocated memory from a hole large enough to
accommodate it

— Process exiting frees its partition, adjacent free partitions combined

— Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

0S 0S oS OS
process 5 process 5 process 5 process 5
process 9 process 9

process 8 |[——> —> —>| process 10

process 2 process 2 process 2 process 2

Colorado $tate University
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Dynamic Storage-AIIocatlon Problem

How to satisfy a request of size n from a list of free holes?

- First-fit: Allocate the first hole that is big enough
- Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size
— Produces the smallest leftover hole
- Worst-fit: Allocate the largest hole; must also search entire
list
— Produces the largest leftover hole

Simulation studies:

» First-fit and best-fit better than worst-fit in terms of speed and storage

utilization
» Best fit is slower than first fit . Surprisingly, it also results in more

wasted memory than first fit
» Tends to fill up memory with tiny, useless holes

Colorado State University



Fragmentation

21

- External Fragmentation — External fragmentation:
memory wasted due to small chunks of free memory
interspersed among allocated regions

* Internal Fragmentation — allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

« Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation

— 1/3 may be unusable -> 50-percent rule

Colorado State University



Fragmentation (Cont.)

« Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory
together in one large block

— Compaction is possible only if relocation is dynamic,
and is done at execution time

— |/O problem
 Latch job in memory while it is involved in 1/O
* Do I/O only into OS buffers

Colorado State University
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Paging vs Segmentations

Segmentation: program divided into logically divided
“segments” such as main program, function, stack etc.
* Need table to track segments.
« Term “segmentation fault occurs”: improper
attempt to access a memory location

Paging: program divided into fixed size “pages”, each
placed in a fixed size “frame”.

* Need table to track pages.

* No external fragmentation

* Increasingly more common

Colorado State University
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Paging vs Segmentations

Colorado State University
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 Pages and frames

— Addresses: page number, offset

* Page tables: mapping from page # to frame #
— TLB: page table caching

* Memory protection and sharing
 Multilevel page tables

Colorado State University
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Address Translation Scheme

« Address generated by CPU is divided into:

— Page number (p) — used as an index into a page
table which contains base address of each page in
physical memory

— Page offset (d) — combined with base address to
define the physical memory address that is sent to

the memory unit
page number | page offset

Y d

m -n n

— For given logical address space 2™ and page size
2n

Colorado State University
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Paging Hardware

71‘
logical physical J
address address  fO00O ... 0000
P o5 Td EEEY .
f111 ... 1111
p{
»
physical
page table M=iaE
Page number p mapped into the frame number f.
The offset d needs no mapping.
> Colorado State University



Paging Example

0| a 0
1|b
2 me
3|d
4 | e 4 i
5| f f
6|9 0 ;](
7 | h 1]6 | |
8 | Ar e
9| j n
10| k 312 .
11 1 page table p
12| m 12
13 1 8 frames
14| o
15 o8 Frame number 0-to-7
logical memory 16
of a process
Page 0 maps o Example:
to frame 5 b | Logical add: 00 10
o ! Phyical Add: 101 10
f
g
h
28
Ex: m=4 and n=2
« Logical add. space = 2 bytes, physical memory

« 22=4-byte pages

» 32-byte physics memory with 8 frames . .
. Colorado State University



Paging (Cont.)

29

* Internal fragmentation

— Ex: Page size = 2,048 bytes, Process size = 72,766 bytes
« 35 pages + 1,086 bytes
* Internal fragmentation of 2,048 - 1,086 = 962 bytes

— Worst case fragmentation = 1 frame — 1 byte
— On average fragmentation = 1/ 2 frame size

— So small frame sizes desirable?
« But each page table entry takes memory to track
— Page size
« X86-64: 4 KB (common), 2 MB (*huge” for servers), 1B (arge)

* Process view and physical memory now very
different

« By implementation, a process can only access its
Oown Memory unless ..

Colorado State University



Free Frame allocation

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 |page 0
15
AT 15 Ay 15
e —_——
page 0 16 page O 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
19 oliz 19
1|13
A new process arrives 20 2(18 20 |page 3
3[20
That needs four pages 21 new-process page table 21

(a) (b)

Before allocation After allocation

0 Colorado State University
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Implementation of Page Table

Page table is kept in main memory

« Page-table base register (PTBR) points to
the page table

« Page-table length register (PTLR) One page-table
indicates size of the page table For each process

* In this scheme every data/instruction
access requires two memory accesses

— One for the page table and one for the data /
Instruction

The two memory access problem can be
solved by the use of a special fast-lookup
hardware cache called associative memory
or translation look-aside buffers (TLBs)

TLB: cache for Page Table

Colorado State University



Caching: The General Concept

» Widely used concept:

— keep small subset of information likely to needed in
near future in a fast accessible place

— Hopefully the “Hit Rate” is high

Challenges:
— 1. Is the information in cache? 2. Where?
— Hit rate vs cache size

Examples:
— Cache Memory (“Cache’):

Cache for Main memory Default meaning for this class
— Browser cache: for browser
— Disk cache
— Cache for Page Table: TLB

Colorado State University
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Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers
(ASIDs) in each TLB entry — uniquely identifies
each process to provide address-space
protection for that process
— Otherwise need to flush TLB at every context switch

« TLBs typically small (64 to 1,024 entries)

 On a TLB miss, value is loaded into the TLB for
faster access next time
— Replacement policies must be considered
— Some entries can be wired down for permanent fast

access TLB: cache for
page Table

Colorado State University
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Associative Memory (nardware biock)

» Associative memory —parallel search using hardware
— “Content addressable memory”: Electronics is very expensive

Page # Frame #

e Address translation (p, d)
— If p is in associative register, get frame # out ("Hit")
— Otherwise get frame # from page table in memory (“Miss”)

—

Colorado State University
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Paging Hardware With TLB

logical

address
CPU —->| P | d |

page frame
number number

I% TLB hit physical
E I ' address
L f[dF—
TLB T

y

physical
memory

page table

TLB Miss: page table access may be
done using hardware / software

Colorado State University
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Effective Access Time
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On average how long does a memory access take?

* Associative Lookup = ¢ time units

— Can be < 10% of memory access time (MAT)

Hit ratio = o

— Hit ratio — percentage of times that a page number is

found in the associative registers; ratio related to
number of associative registers

Effective Access Time (EAT): probability weighted
EAT = a (e+MAT) + (1 — a)(e+2.MAT)
Ex:

Consider a = 90%, € = negligible for TLB search, 100ns for
memory access time

— EAT=0.90x 100+ 0.10 x 200 = 110ns
Consider more realistic hit ratio -> o = 99%,
— EAT=0.99x 100+ 0.01 x 200 =101ns

Colorado State University
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Memory Protection
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* Memory protection implemented by associating
protection bit with each frame to indicate if
read-only or read-write access is allowed

— Can also add more bits to indicate page execute-
only, and so on
- Valid-invalid bit attached to each entry in the
page table:

— “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal

page
— “invalid” indicates that the page is not in the
process’ logical address space

* Any violations result in a trap to the kernel

Colorado State University



Valid (v) or Invalid (i) Bit In A Page Table

0
1
2| page O
00000 frame number valid—-invalid bit
page O \ / 3| page 1
o~ |
page 1 1 B 4| page 2
2(4|v
age 2 5
heg 3 [
page 3 48|V 6
5 [ESARY
page 4 610/ i 7| page 3
10,468 page 5 7 8| page 4
12,287 page table
9| page 5
“invalid” : page is not .
in the process’s page n
address space.
. Colorado State University



Shared Pages among Processes

« Shared code

— One copy of read-only (reentrant non-seif modifying)
code shared among processes (i.e., text editors,
compilers, window systems)

— Similar to multiple threads sharing the same
process space

— Also useful for interprocess communication if
sharing of read-write pages is allowed

 Private code and data

— Each process keeps a separate copy of the
code and data

— The pages for the private code and data can
appear anywhere in the logical address space

Colorado State University
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Shared Pages Example

ed 1

ed?2

ed 3

data 1

process P,

ed1
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ed 3

data 3

process P,
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Overheads in paging: Page table and internal fragmentation

Optimal Page Size Computation:
page table size vs internal fragmentation tradeoff

* Average process size = s
* Pagesize=p
* Size of each entry in page table =e
— Pages per process = s/p
— se/p: Total page table space for average process

— Total Overhead = Page table overhead + Internal
fragmentation loss

=se/p + p/2 ‘

Colorado State University
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Optimal Page size: Page table and internal fragmentation

* Total Overhead =se/p + p/2

* Optimal: Obtain derivative of overhead with
respect to p, equate to O

-se/p2 +1/2 =0
* j.e. p?’=2se orp=(2se)o
Assume s=128KB and e=8 bytes per entry
* Optimal page size = 1448 bytes
— In practice we will never use 1448 bytes

— Instead, either 1K or 2K would be used
* Why? Pages sizes are in powers of 2 i.e. 2%
* Deriving offsets and page numbers is also easier

Colorado State University
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Page Table Size

Memory structures for paging can get huge using
straight-forward methods

« Consider a 32-bit logical address space as on

recent ProCceSSOI'S 64-bit on 64-bit processors

— Assume page size of 4 KB (212) entries

— Page table would have 1 million entries (232 / 212)

— If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
« Don’ t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte
220 1M mebibyte
230 1G  gigibyte
240 1T  tebibyte

Colorado State University
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Issues with large page tables

* Cannot allocate page table contiguously in
memory

« Solution:
— Divide the page table into smaller pieces
— Page the page-table
 Hierarchical Paging

Colorado State University
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Hierarchical Page Tables

* Break up the logical address
space into multiple page tables

* Asimple technique is a two-level
page table

* We then page the page table

Concise
Oxtord
ENGLISH
page number page offset ]gfmomry
Py P d
12 10 10

P1: indexes the outer page table
P2: page table: maps to frame

Colorado State University
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Two-Level Page-Table Scheme

0
///1'
W 1
/ : 100
500 N
page number page offset :
P, Py d . - 500
12 10 10 ) S
708 —
2 708
outer page T 929
table \ 0
900 7
page of 929
page table
YOO OO XXX XXX XXX XX XX XXXX XXXX page table =
Outer Page table page table offset within page y

Colorado State University
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Two-Level Paging Example

A logical address (on 32-bit machine with 1K page
size) is divided into:

— a page number consisting of 22 bits
— a page offset consisting of 10 bits

Since the page table is paged, the page number is
further diw%e% into: b9 bag

— a 12-bit page number
— a 10-bit page offset

Thus, a logical address is as follows:
page number page offset

Py | P d

12 10 10
yvheredt_91 IS an Index Into the outer page table, and p,
![s gﬂe Isplacement within the page of the inner page
able

Known as forward-mapped page table

Colorado State University



Two-Level Paging Example

* Alogical address is as follows:

page number page offset
P P d
12 10 10

« One Outer page table: size 272
entry: page of the page table

« Often only some of all possible 2'2 Page
tables needed (each of size 210

29 Colorado State University
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