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OS is a systems class, 
where hardware and 
software come together. 
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FAQ

• Why use pages? So that memory does not have be allocated contiguously.

• Where is the page table? Memory, with a part cached in TLB

• How to find the page table in memory? Page table base 

register

• Is there is specific formula for calculating the physical 
address from the logical address? Page number to frame number lookup

• Each process has its own page table? Can there be a 
conflict in sharing physical memory? No, unless..

• Where is the TLB ? On the same chip as CPU. 

• Why use associative memory for TLBs? Fast content-based search to 

find frame number
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Paging Hardware With TLB

TLB: uses content addressable memory.

TLB Miss: page table access may be 
done using hardware or software

Page number  p  to frame number   f
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Effective Access Time

General approach:   expected access time

Effective access time 

       = Pr{access type A}. Access-timeA + 

            Pr{access type B}. Access-timeB 

Ex: effective access time with TLB/page table:

• Associative Lookup =  time units

• Hit ratio = 

• Effective Access Time (EAT): probability weighted

      EAT = (100 + )  + (200+)(1 – )

• Ex:  

   Consider  = 80%,  = negligible for TLB search, 
100ns for memory access
– EAT = 100x0.80 + 200x0.20 = 120ns
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FAQ



6

Memory Protection

• Memory protection implemented by 
associating protection bit with each frame 
to indicate if read-only or read-write access 
is allowed
– Can also add more bits to indicate page 

execute-only, and so on

• Valid-invalid bit attached to each entry in 
the page table:
– “valid” indicates that the associated page is in 

the process’ logical address space, and is thus 
a legal page

– “invalid” indicates that the page is not in the 
process’ logical address space

• Any violations result in a trap to the kernel
– more when we discuss virtual memory
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Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not in the 

process’s address space. 
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Shared Pages among Processes

• Shared code
– One copy of read-only (reentrant non-self modifying) 

code shared among processes (i.e., text editors, 
compilers, window systems)

– Similar to multiple threads sharing the same 
process space

– Also useful for interprocess communication if 
sharing of read-write pages is allowed

• Private code and data 
– Each process keeps a separate copy of the 

code and data

– The pages for the private code and data can 
appear anywhere in the logical address space
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Shared Pages Example

ed1, ed2, ed3
(frames 3, 4, 6) 
shared by P1, P2, P3
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Overhead in paging:   Page table and internal fragmentation 

Optimal Page Size Computation: 

page table size vs internal  fragmentation tradeoff

• Average process size = s

• Page size = p

• Size of each entry in page table = e 
– Pages per process = s/p 

– se/p: Total page table space for average process

• Total Overhead = Page table overhead + Internal 
fragmentation loss 

= se/p + p/2          optimal value of p? 
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Optimal Page size: Page table and internal fragmentation 

• Total Overhead = se/p + p/2 

• Optimal: Obtain derivative of overhead with 
respect to p, equate to 0 

 -se/p2 +1⁄2 = 0 

• i.e.     p2 =2se    or p = (2se)0.5

Assume   s = 128KB and e=8 bytes per entry 

• Optimal page size = 1448 bytes
– In practice we will never use 1448 bytes 

– Instead, either 1K or 2K would be used 
• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier 
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Page Table Size

Memory structures for paging can get huge using 
straight-forward methods

• Consider a 32-bit logical address space as on 
recent processors 64-bit on 64-bit processors

– Assume page size of 4 KB (212) entries

– Page table would have 1 million entries (232 / 212)

– If each entry is 4 bytes -> 4 MB of physical address 
space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024  or 1 kibibyte

220 1M mebibyte

230 1G      gigibyte

240 1T       tebibyte
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Issues with large page tables 

• Cannot allocate page table contiguously in 
memory   

• Solution: 

– Divide the page table into smaller pieces 

– Page the page-table 

• Hierarchical Paging
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Hierarchical Page Tables

• Break up the logical address 

space into multiple page tables

• A simple technique is a two-level 

page table

• We then page the page table

P1: indexes the outer page table
P2:  page table: maps to frame Country code-area code-phone number
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Two-Level Page-Table Scheme

xxxx xxxx xxxx xxxx xxxx xx xx xxxx xxxx 
Outer Page table          page table            offset within page



16

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page 
size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit page number 
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 
is the displacement within the page of the inner page 
table

• Known as forward-mapped page table
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Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212

         entry: page of the page table 

• Often only some of all possible 212 Page 
tables needed (each of size 210)
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Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average 
access time will be close to slightly more than one memory 
access time.
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64-bit add. Space: Three-level Paging Scheme

• Problem: Outer page table has 242 entries!
• Approach: Divide the outer page table into 2 levels

• 4 memory accesses!
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Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!
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Hashed Page Tables

• Useful when address spaces > 32 bits

• The virtual page number is hashed into a page table
– This page table contains a chain of elements hashing to the 

same location

• Each element contains (1) the virtual page number (2) 
the value of the mapped page frame (3) a pointer to the 
next element

• Virtual page numbers are compared in this chain 
searching for a match
– If a match is found, the corresponding physical frame is 

extracted

• Variation for 64-bit addresses is clustered page tables
– Similar to hashed but each entry refers to several pages (such 

as 16) rather than 1

– Especially useful for sparse address spaces (where memory 
references are non-contiguous and scattered) 
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Hashed Page Table

This page table contains a chain of elements hashing to the same location.

Each element contains (1) the virtual page number (2) the value of the mapped   page frame  

(3) a pointer to the next element
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Inverted Page Table

• Rather than each process having 

a page table and keeping track of 

all possible logical pages, track 

all physical pages

– One entry for each real page of 

memory (“frame”)

– Entry consists of the virtual 

address of the page stored in 

that real memory location, with 

information about the process 

that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory 
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Inverted Page Table

• Decreases memory needed to store each 

page table, but increases time needed to 

search the table when a page reference 

occurs

• But how to implement shared memory?

– One mapping of a virtual address to the 

shared physical address. Not possible.

Used in IA-64 ..
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Segmentation Approach

Memory-management scheme that supports 
user view of memory 

• A program is a collection of segments

– A segment is a logical unit such as:

 main program

 procedure, function, method

 object

 local variables, global variables

 common block

 stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)

– Segment-table length register (STLR)

• segments vary in length, can very dynamically

• Segments may be paged

• Used for x86-32 bit

• Origin of term “segmentation fault”
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Examples

• Intel IA-32 (x386-Pentium)

• x86-64 (AMD,  Intel)

• ARM (Acorn > ARM Ltd > Softbank > Nvidea)

Market: Upward compatibility.

Question: Why don’t all the designers all use 

one  single approach?
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Logical to Physical Address Translation in IA-32
(x386-Pentium)
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Intel IA-32 Paging Architecture

Support for two page sizes
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Intel IA-32 Page Address Extensions

n 32-bit address limits led Intel to create page address extension (PAE), 

allowing 32-bit apps access to more than 4GB of memory space

l Paging went to a 3-level scheme

l Top two bits refer to a page directory pointer table

l Page-directory and page-table entries moved to 64-bits in size

l Net effect is increasing address space by increasing  frame address bits. 
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Intel x86-64

n Intel x86 architecture based on AMD 64 bit architecture

n 64 bits is ginormous (> 16 exabytes)

n In practice only implement 48 bit addressing or perhaps 52 or 57

l Page sizes of 4 KB, 2 MB, 1 GB

l Four levels of paging hierarchy

n Can also use PageAddressExtensions so virtual addresses are 48 

bits and physical addresses are 52 (now 57)  bits

Exabyte: 10246 bytes
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Example: ARM Architecture

n Dominant mobile platform chip 

(Apple iOS and Google Android 
devices for example)

n Modern, energy efficient, 32-bit 

CPU  now 64 bit also

n 4 KB and 16 KB pages

n 1 MB and 16 MB pages (termed 
sections)

n One-level paging for sections, two-
level for smaller pages

n Two levels of TLBs

l Outer level has two micro 
TLBs (one data, one 
instruction)

l Inner is single main TLB

l First inner is checked, on 
miss outers are checked, 

and on miss page table 
walk performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits
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Virtual Memory: Objectives

 A virtual memory system

 Demand paging, page-

replacement algorithms, 

allocation of page frames to 

processes

 Threshing, the working-set model

 Memory-mapped files and shared 

memory and

 Kernel memory allocation
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Fritz-Rudolf Güntsch: Virtual Memory

Fritz-Rudolf Güntsch (1925-2012) at the 
Technische Universität Berlin in 1956 in 
his doctoral thesis, Logical Design of a 
Digital Computer with Multiple 
Asynchronous Rotating Drums and 
Automatic High Speed Memory 
Operation.

First used in Atlas, Manchester, 1962

PCs:  Windows 95 

When was Win 95 
introduced?
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Background

• Code needs to be in memory to execute, but entire 
program rarely used
– Error code, unusual routines, large data structures

• Entire program code not needed at the same time
• Consider ability to execute partially-loaded 

program
– Program no longer constrained by limits of physical 

memory
– Each program uses less memory while running -> more 

programs run at the same time
• Increased CPU utilization and throughput with no increase in 

response time or turnaround time

– Less I/O needed to load or swap programs into memory 
-> each user program runs faster
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Background (Cont.)

• Virtual memory – separation of user logical 
memory from physical memory

• Virtual address space – logical view of how 
process views memory
– Usually start at address 0, contiguous addresses until end of 

space

– Meanwhile, physical memory organized in page frames

– MMU must map logical to physical

• Virtual memory can be implemented via:
– Demand paging 

– Demand segmentation That is the 
new idea
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Virtual Memory That is Larger Than Physical Memory
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Virtual-address Space: advantages

 Usually design logical address space for 

stack to start at Max logical address and 

grow “down” while heap grows “up”

 Maximizes address space use

 Unused address space between the 

two is hole

 No physical memory needed until heap 

or stack grows to a given new page

 Enables sparse address spaces with holes 

left for growth, dynamically linked libraries, 

etc.

 System libraries shared via mapping into 

virtual address space

 Shared memory by mapping pages read-

write into virtual address space

 Pages can be shared during fork(), 

speeding process creation
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Shared Library Using Virtual Memory
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Demand Paging
• Could bring entire process into memory at load time

• Or bring a page into memory only when it is needed: Demand paging

– Less I/O needed, no unnecessary I/O

– Less memory needed 

– Faster response

– More users

• Similar to paging system with swapping 

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• “Lazy swapper” – never swaps a page into memory unless page will be needed

– Swapper that deals with pages is a pager
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Demand paging: Basic Concepts

• Demand paging: pager brings in only those pages 
into memory what are needed

• How to determine that set of pages?
– Need new MMU functionality to implement demand 

paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from 

storage
• Without changing program behavior

• Without programmer needing to change code
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Valid-Invalid Bit

• With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table 
entry is i  page fault
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Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk
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Page Fault

• If there is a reference to a page, first reference to 
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference  abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed
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Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:

• Contiguous allocation. Problem: external fragmentation

• Non-contiguous, but entire process in memory: Problem: 
Memory occupied by stuff needed only occasionally. Low 
degree of Multiprogramming.

• Demand Paging: Problem: page faults

• How to minimize page faults?
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Steps in Handling a Page Fault



49

Stages in Demand Paging (worse case)

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the 
interrupted instruction
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Performance of Demand Paging (Cont.)

• Three major activities
– Service the interrupt – careful coding means just several hundred 

instructions needed
– Read the page – relatively long time
– Restart the process – again just a small amount of time

• Page Fault Rate 0  p  1
– if p = 0 no page faults                       
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
 EAT = (1 – p) x memory access time
                 + p (page fault overhead
   + swap page out + swap page in )
    

Hopefully p <<1

Page swap time = seek time + latency time
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Demand Paging Simple Numerical Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 ns + p (8 milliseconds) 
         = (1 – p)  x 200 + p x 8,000,000  nanosec.
              = 200 + p x 7,999,800  ns

• If one access out of 1,000 causes a page fault, then
         EAT = 8.2 microseconds. 
      This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent, p = ?

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Linear with page 
fault rate 

We make some simplifying assumptions here.
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