
1 1

Colorado State University
Yashwant K Malaiya

Fall 25 L17
Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

OS is a systems class,
where hardware and
software come together.

2

FAQ

• Why use pages? So that memory does not have be allocated contiguously.

• Where is the page table? Memory, with a part cached in TLB

• How to find the page table in memory? Page table base

register

• Is there is specific formula for calculating the physical
address from the logical address? Page number to frame number lookup

• Each process has its own page table? Can there be a
conflict in sharing physical memory? No, unless..

• Where is the TLB ? On the same chip as CPU.

• Why use associative memory for TLBs? Fast content-based search to

find frame number

3

Paging Hardware With TLB

TLB: uses content addressable memory.

TLB Miss: page table access may be
done using hardware or software

Page number p to frame number f

4

Effective Access Time

General approach: expected access time

Effective access time

 = Pr{access type A}. Access-timeA +

 Pr{access type B}. Access-timeB

Ex: effective access time with TLB/page table:

• Associative Lookup =  time units

• Hit ratio = 

• Effective Access Time (EAT): probability weighted

 EAT = (100 + )  + (200+)(1 – )

• Ex:

 Consider  = 80%,  = negligible for TLB search,
100ns for memory access
– EAT = 100x0.80 + 200x0.20 = 120ns

5

FAQ

6

Memory Protection

• Memory protection implemented by
associating protection bit with each frame
to indicate if read-only or read-write access
is allowed
– Can also add more bits to indicate page

execute-only, and so on

• Valid-invalid bit attached to each entry in
the page table:
– “valid” indicates that the associated page is in

the process’ logical address space, and is thus
a legal page

– “invalid” indicates that the page is not in the
process’ logical address space

• Any violations result in a trap to the kernel
– more when we discuss virtual memory

7

Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not in the

process’s address space.

8

Shared Pages among Processes

• Shared code
– One copy of read-only (reentrant non-self modifying)

code shared among processes (i.e., text editors,
compilers, window systems)

– Similar to multiple threads sharing the same
process space

– Also useful for interprocess communication if
sharing of read-write pages is allowed

• Private code and data
– Each process keeps a separate copy of the

code and data

– The pages for the private code and data can
appear anywhere in the logical address space

9

Shared Pages Example

ed1, ed2, ed3
(frames 3, 4, 6)
shared by P1, P2, P3

10

Overhead in paging: Page table and internal fragmentation

Optimal Page Size Computation:

page table size vs internal fragmentation tradeoff

• Average process size = s

• Page size = p

• Size of each entry in page table = e
– Pages per process = s/p

– se/p: Total page table space for average process

• Total Overhead = Page table overhead + Internal
fragmentation loss

= se/p + p/2 optimal value of p?

11

Optimal Page size: Page table and internal fragmentation

• Total Overhead = se/p + p/2

• Optimal: Obtain derivative of overhead with
respect to p, equate to 0

 -se/p2 +1⁄2 = 0

• i.e. p2 =2se or p = (2se)0.5

Assume s = 128KB and e=8 bytes per entry

• Optimal page size = 1448 bytes
– In practice we will never use 1448 bytes

– Instead, either 1K or 2K would be used
• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier

12

Page Table Size

Memory structures for paging can get huge using
straight-forward methods

• Consider a 32-bit logical address space as on
recent processors 64-bit on 64-bit processors

– Assume page size of 4 KB (212) entries

– Page table would have 1 million entries (232 / 212)

– If each entry is 4 bytes -> 4 MB of physical address
space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte

220 1M mebibyte

230 1G gigibyte

240 1T tebibyte

13

Issues with large page tables

• Cannot allocate page table contiguously in
memory

• Solution:

– Divide the page table into smaller pieces

– Page the page-table

• Hierarchical Paging

14

Hierarchical Page Tables

• Break up the logical address

space into multiple page tables

• A simple technique is a two-level

page table

• We then page the page table

P1: indexes the outer page table
P2: page table: maps to frame Country code-area code-phone number

15

Two-Level Page-Table Scheme

xxxx xxxx xxxx xxxx xxxx xx xx xxxx xxxx
Outer Page table page table offset within page

16

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page
size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is
further divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2
is the displacement within the page of the inner page
table

• Known as forward-mapped page table

17

Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212

 entry: page of the page table

• Often only some of all possible 212 Page
tables needed (each of size 210)

18

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

19

64-bit add. Space: Three-level Paging Scheme

• Problem: Outer page table has 242 entries!
• Approach: Divide the outer page table into 2 levels

• 4 memory accesses!

20

Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!

21

Hashed Page Tables

• Useful when address spaces > 32 bits

• The virtual page number is hashed into a page table
– This page table contains a chain of elements hashing to the

same location

• Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element

• Virtual page numbers are compared in this chain
searching for a match
– If a match is found, the corresponding physical frame is

extracted

• Variation for 64-bit addresses is clustered page tables
– Similar to hashed but each entry refers to several pages (such

as 16) rather than 1

– Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

22

Hashed Page Table

This page table contains a chain of elements hashing to the same location.

Each element contains (1) the virtual page number (2) the value of the mapped page frame

(3) a pointer to the next element

23

Inverted Page Table

• Rather than each process having

a page table and keeping track of

all possible logical pages, track

all physical pages

– One entry for each real page of

memory (“frame”)

– Entry consists of the virtual

address of the page stored in

that real memory location, with

information about the process

that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory

24

Inverted Page Table

• Decreases memory needed to store each

page table, but increases time needed to

search the table when a page reference

occurs

• But how to implement shared memory?

– One mapping of a virtual address to the

shared physical address. Not possible.

Used in IA-64 ..

25

Segmentation Approach

Memory-management scheme that supports
user view of memory

• A program is a collection of segments

– A segment is a logical unit such as:

 main program

 procedure, function, method

 object

 local variables, global variables

 common block

 stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)

– Segment-table length register (STLR)

• segments vary in length, can very dynamically

• Segments may be paged

• Used for x86-32 bit

• Origin of term “segmentation fault”

26

Examples

• Intel IA-32 (x386-Pentium)

• x86-64 (AMD, Intel)

• ARM (Acorn > ARM Ltd > Softbank > Nvidea)

Market: Upward compatibility.

Question: Why don’t all the designers all use

one single approach?

27

Logical to Physical Address Translation in IA-32
(x386-Pentium)

28

Intel IA-32 Paging Architecture

Support for two page sizes

29

Intel IA-32 Page Address Extensions

n 32-bit address limits led Intel to create page address extension (PAE),

allowing 32-bit apps access to more than 4GB of memory space

l Paging went to a 3-level scheme

l Top two bits refer to a page directory pointer table

l Page-directory and page-table entries moved to 64-bits in size

l Net effect is increasing address space by increasing frame address bits.

30

Intel x86-64

n Intel x86 architecture based on AMD 64 bit architecture

n 64 bits is ginormous (> 16 exabytes)

n In practice only implement 48 bit addressing or perhaps 52 or 57

l Page sizes of 4 KB, 2 MB, 1 GB

l Four levels of paging hierarchy

n Can also use PageAddressExtensions so virtual addresses are 48

bits and physical addresses are 52 (now 57) bits

Exabyte: 10246 bytes

31

Example: ARM Architecture

n Dominant mobile platform chip

(Apple iOS and Google Android
devices for example)

n Modern, energy efficient, 32-bit

CPU now 64 bit also

n 4 KB and 16 KB pages

n 1 MB and 16 MB pages (termed
sections)

n One-level paging for sections, two-
level for smaller pages

n Two levels of TLBs

l Outer level has two micro
TLBs (one data, one
instruction)

l Inner is single main TLB

l First inner is checked, on
miss outers are checked,

and on miss page table
walk performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB

section

32 bits

32 32

Colorado State University
Yashwant K Malaiya

Fall 2022

CS370 Operating Systems

Virtual Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

34 34

Virtual Memory: Objectives

 A virtual memory system

 Demand paging, page-

replacement algorithms,

allocation of page frames to

processes

 Threshing, the working-set model

 Memory-mapped files and shared

memory and

 Kernel memory allocation

35

Fritz-Rudolf Güntsch: Virtual Memory

Fritz-Rudolf Güntsch (1925-2012) at the
Technische Universität Berlin in 1956 in
his doctoral thesis, Logical Design of a
Digital Computer with Multiple
Asynchronous Rotating Drums and
Automatic High Speed Memory
Operation.

First used in Atlas, Manchester, 1962

PCs: Windows 95

When was Win 95
introduced?

36

Background

• Code needs to be in memory to execute, but entire
program rarely used
– Error code, unusual routines, large data structures

• Entire program code not needed at the same time
• Consider ability to execute partially-loaded

program
– Program no longer constrained by limits of physical

memory
– Each program uses less memory while running -> more

programs run at the same time
• Increased CPU utilization and throughput with no increase in

response time or turnaround time

– Less I/O needed to load or swap programs into memory
-> each user program runs faster

37

Background (Cont.)

• Virtual memory – separation of user logical
memory from physical memory

• Virtual address space – logical view of how
process views memory
– Usually start at address 0, contiguous addresses until end of

space

– Meanwhile, physical memory organized in page frames

– MMU must map logical to physical

• Virtual memory can be implemented via:
– Demand paging

– Demand segmentation That is the
new idea

38

Virtual Memory That is Larger Than Physical Memory

39

Virtual-address Space: advantages

 Usually design logical address space for

stack to start at Max logical address and

grow “down” while heap grows “up”

 Maximizes address space use

 Unused address space between the

two is hole

 No physical memory needed until heap

or stack grows to a given new page

 Enables sparse address spaces with holes

left for growth, dynamically linked libraries,

etc.

 System libraries shared via mapping into

virtual address space

 Shared memory by mapping pages read-

write into virtual address space

 Pages can be shared during fork(),

speeding process creation

40

Shared Library Using Virtual Memory

41

42

Demand Paging
• Could bring entire process into memory at load time

• Or bring a page into memory only when it is needed: Demand paging

– Less I/O needed, no unnecessary I/O

– Less memory needed

– Faster response

– More users

• Similar to paging system with swapping

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

• “Lazy swapper” – never swaps a page into memory unless page will be needed

– Swapper that deals with pages is a pager

43

Demand paging: Basic Concepts

• Demand paging: pager brings in only those pages
into memory what are needed

• How to determine that set of pages?
– Need new MMU functionality to implement demand

paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from

storage
• Without changing program behavior

• Without programmer needing to change code

44

Valid-Invalid Bit

• With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table
entry is i  page fault

45

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk

46

Page Fault

• If there is a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference  abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

47

Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:

• Contiguous allocation. Problem: external fragmentation

• Non-contiguous, but entire process in memory: Problem:
Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

• Demand Paging: Problem: page faults

• How to minimize page faults?

48

Steps in Handling a Page Fault

49

Stages in Demand Paging (worse case)

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the
interrupted instruction

50

Performance of Demand Paging (Cont.)

• Three major activities
– Service the interrupt – careful coding means just several hundred

instructions needed
– Read the page – relatively long time
– Restart the process – again just a small amount of time

• Page Fault Rate 0  p  1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
 EAT = (1 – p) x memory access time
 + p (page fault overhead
 + swap page out + swap page in)

Hopefully p <<1

Page swap time = seek time + latency time

51

Demand Paging Simple Numerical Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 ns + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000 nanosec.
 = 200 + p x 7,999,800 ns

• If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds.
 This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent, p = ?

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Linear with page
fault rate

We make some simplifying assumptions here.

	Slide 1
	Slide 2: FAQ
	Slide 3: Paging Hardware With TLB
	Slide 4: Effective Access Time
	Slide 5: FAQ
	Slide 6: Memory Protection
	Slide 7: Valid (v) or Invalid (i) Bit In A Page Table
	Slide 8: Shared Pages among Processes
	Slide 9: Shared Pages Example
	Slide 10: Overhead in paging: Page table and internal fragmentation
	Slide 11: Optimal Page size: Page table and internal fragmentation
	Slide 12: Page Table Size
	Slide 13: Issues with large page tables
	Slide 14: Hierarchical Page Tables
	Slide 15: Two-Level Page-Table Scheme
	Slide 16: Two-Level Paging Example
	Slide 17: Two-Level Paging Example
	Slide 18: Hierarchical Paging
	Slide 19: 64-bit add. Space: Three-level Paging Scheme
	Slide 20: Three-level Paging Scheme
	Slide 21: Hashed Page Tables
	Slide 22: Hashed Page Table
	Slide 23: Inverted Page Table
	Slide 24: Inverted Page Table
	Slide 25: Segmentation Approach
	Slide 26: Examples
	Slide 27: Logical to Physical Address Translation in IA-32 (x386-Pentium)
	Slide 28: Intel IA-32 Paging Architecture
	Slide 29: Intel IA-32 Page Address Extensions
	Slide 30: Intel x86-64
	Slide 31: Example: ARM Architecture
	Slide 32
	Slide 34
	Slide 35: Fritz-Rudolf Güntsch: Virtual Memory
	Slide 36: Background
	Slide 37: Background (Cont.)
	Slide 38: Virtual Memory That is Larger Than Physical Memory
	Slide 39: Virtual-address Space: advantages
	Slide 40: Shared Library Using Virtual Memory
	Slide 41
	Slide 42: Demand Paging
	Slide 43: Demand paging: Basic Concepts
	Slide 44: Valid-Invalid Bit
	Slide 45: Page Table When Some Pages Are Not in Main Memory
	Slide 46: Page Fault
	Slide 47: Technical Perspective: Multiprogramming
	Slide 48: Steps in Handling a Page Fault
	Slide 49: Stages in Demand Paging (worse case)
	Slide 50: Performance of Demand Paging (Cont.)
	Slide 51: Demand Paging Simple Numerical Example

