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FAQ

Why use pageS? So that memory does not have be allocated contiguously.
Where is the page ta ble? Memory, with a part cached in TLB
How to find the page table in memory? Page table base

register

Is there is specific formula for calculating the physical
addreSS from the |0g|ca| addreSS? Page number to frame number lookup

Each process has its own page table? Can there be a
conflict in sharing physical memory? ro, uness.

Where |S the TLB ? On the same chip as CPU.

Why use associative memory for TLBS? Fast content-based search to

find frame number

Colorado State University



Paging Hardware With TLB

Page number p to frame number f

logical
address
CPU —->| P | d |
page frame
number number
Eé TLB hit physical
E || address
LfldF—
TLB 1
p {
TLB miss - f
——— physical
TLB: uses content addressable memory. memory

page table

TLB Miss: page table access may be
done using hardware or software
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Effective Access Time

General approach: expected access time
Effective access time

= Pr{access type A}. Access-time, +
Pr{access type B}. Access-timeg

Ex: effective access time with TLB/page table:

Associative Lookup = ¢ time units

Hit ratio = o

Effective Access Time (EAT): probability weighted
EAT = (100 + ¢) o + (200+€)(1 — o)

Ex:

Consider o = 80%, € = negligible for TLB search,
100ns for memory access

— EAT = 100x0.80 + 200x0.20 = 120ns

Colorado State University
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Memory Protection

* Memory protection implemented by
associating protection bit with each frame
to indicate if read-only or read-write access
Is allowed

— Can also add more bits to indicate page
execute-only, and so on

- Valid-invalid bit attached to each entry in
the page table:

— “valid” indicates that the associated page is in
the process’ logical address space, and is thus

alegalpage
— “invalid” indicates that the page is not in the
process’ logical address space

* Any violations result in a trap to the kernel

— more when we discuss virtual memory

Colorado State University



Valid (v) or Invalid (i) Bit In A Page Table

0
1
2| page O
00000 frame number valid—invalid bit
page O \ / 3| page 1
0 [E28(Rv
page 1 1 B 4| page 2
214 |v
age 2 5
. 3 [FLRV
page 3 48|V 6
5 [ESEIRV
page 4 610/ i 7| page 3
10,468 page 5 7 8| page 4
12,287 page table
9| page 5
“invalid” : page is not in the
process’s address space. Reye
, Colorado State University



Shared Pages among Processes

« Shared code

— One copy of read-only (reentrant non-seif modifying)
code shared among processes (i.e., text editors,
compilers, window systems)

— Similar to multiple threads sharing the same
process space

— Also useful for interprocess communication if
sharing of read-write pages is allowed

 Private code and data

— Each process keeps a separate copy of the
code and data

— The pages for the private code and data can
appear anywhere in the logical address space

Colorado State University



Shared Pages Example

ed 1

ed?2

ed 3

data 1

process P,

ed1

ed?

ed 3

data 3

process P,
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page table
for P,

N | oW

page table
for P,

ed1

ed 2

ed 3

data 2

process £,

~N (oA~ W

page table
for P,

10

11

data 1

data 3

ed 1

ed 2

ed3

data 2

edl, ed2, ed3
(frames 3, 4, 6)
shared by P1, P2, P3

Colorado State University



Overhead in paging: Page table and internal fragmentation

Optimal Page Size Computation:
page table size vs internal fragmentation tradeoff
* Average process size=s§
* Pagesize=p
e Size of each entry in page table=e
— Pages per process = s/p
— se/p: Total page table space for average process

* Total Overhead = Page table overhead + Internal
fragmentation loss
=se/p + p/2 optimal value of p?

=)

Colorado State University
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Optimal Page size: Page table and internal fragmentation

* Total Overhead =se/p + p/2

* Optimal: Obtain derivative of overhead with
respect to p, equate to O

-se/p2 +1/2 =0
* j.e. p?’=2se orp=(2se)o
Assume s=128KB and e=8 bytes per entry
* Optimal page size = 1448 bytes
— In practice we will never use 1448 bytes

— Instead, either 1K or 2K would be used
* Why? Pages sizes are in powers of 2 i.e. 2%
* Deriving offsets and page numbers is also easier

Colorado State University
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Page Table Size

Memory structures for paging can get huge using
straight-forward methods

« Consider a 32-bit logical address space as on

recent ProCceSSOI'S 64-bit on 64-bit processors

— Assume page size of 4 KB (212) entries

— Page table would have 1 million entries (232 / 212)

— If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
« Don’ t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte
220 1M mebibyte
230 1G  gigibyte
240 1T  tebibyte

Colorado State University
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Issues with large page tables

* Cannot allocate page table contiguously in
memory

« Solution:
— Divide the page table into smaller pieces
— Page the page-table
 Hierarchical Paging

Colorado State University
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Hierarchical Page Tables

* Break up the logical address
space into multiple page tables

* Asimple technique is a two-level
page table

* We then page the page table

Concise

Ox/or,
ENGL[SACI{
page number page offset Dictionary
Py | P d (

(

12 10 10 Y /|
/

[/

P1: indexes the outer page table
P2: page table: maps to frame Country code-area code-phone number

Colorado State University
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Two-Level Page-Table Scheme

0
///1'
W 1
/ : 100
500 N
page number page offset :
P, Py d . - 500
12 10 10 ) S
708 —
2 708
outer page T 929
table \ 0
900 7
page of 929
page table
YOO OO XXX XXX XXX XX XX XXXX XXXX page table =
Outer Page table page table offset within page y

Colorado State University
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Two-Level Paging Example

A logical address (on 32-bit machine with 1K page
size) is divided into:

— a page number consisting of 22 bits
— a page offset consisting of 10 bits

Since the page table is paged, the page number is
further diw%e% into: b9 bag

— a 12-bit page number
— a 10-bit page offset

Thus, a logical address is as follows:
page number page offset

Py | P d

12 10 10
yvheredt_91 IS an Index Into the outer page table, and p,
![s gﬂe Isplacement within the page of the inner page
able

Known as forward-mapped page table

Colorado State University



Two-Level Paging Example

* Alogical address is as follows:

page number page offset
P P d
12 10 10

« One Outer page table: size 272
entry: page of the page table

« Often only some of all possible 2'2 Page
tables needed (each of size 210

. Colorado State University



Hierarchical Paging

logical address
Pi | P2 | d

.

>

=

outer page d
table {

page of
page table

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

Colorado State University
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64-bit add. Space: Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

Problem: Outer page table has 242 entries!
e Approach: Divide the outer page table into 2 levels
4 memory accesses!

2nd outer page , outer page | innerpage , offset

P1 P2 P3 d
32 10 10 12
- Colorado State University



Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

* Quter page table has 242 entries!
* Divide the outer page table into 2 levels
4 memory accesses!

2nd outer page , outer page | innerpage , offset

P1 P2 P3 d
32 10 10 12
. Colorado State University



Hashed Page Tables

21

Useful when address spaces > 32 bits

The virtual page number is hashed into a page table
— This page table contains a chain of elements hashing to the
same location

Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element

Virtual page numbers are compared in this chain
searching for a match

— If a match is found, the corresponding physical frame is
extracted

Variation for 64-bit addresses is clustered page tables

— Similar to hashed but each entry refers to several pages (such
as 16) rather than 1

— Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

Colorado State University



Hashed Page Table

physical
logical address J address
p d r d >

physical
-—>Iq|8|’T|JIp|r|_T"- memory

hash table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped page frame
(3) a pointer to the next element

- Colorado State University



Inverted Page Table

» Rather than each process having
a page table and keeping track of
all possible logical pages, track
all physical pages Sosa | | physica

address physical

— One entry for each real page of | PV Pledle [d | [i[dF—1 pjemoy
memory (“frame”)

— Entry consists of the virtual o l _ }i
address of the page stored in —
that real memory location, with
information about the process
that owns that page Te—

pid |

o

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory

Colorado State University
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Inverted Page Table

24

« Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference

OCCUrs

* But how to implement shared memory?

— One mapping of a virtual address to the
shared physical address. Not possible.

Used in 1A-64 ..

Colorado State University



Segmentation Approach

Memory-management scheme that supports
user view of memory

 Aprogram is a collection of segments
— Asegment is a logical unit such as:
main program
procedure, function, method
object

subroutine

. . symbol
local variables, global variables %’aue

common block
stack, arrays, symbol table

Sqrt

main

« Segment table program

—  Segment-table base register (STBR)
—  Segment-table length register (STLR)

* segments vary in length, can very dynamically
« Segments may be paged

* Used for x86-32 bit

»  Origin of term “segmentation fault”

logical address

Colorado State University

25



* Intel 1A-32 (x386-Pentium)
* X86-64 (AMD, Intel)
 ARM (Acorn > ARM Ltd > Softbank > Nvidea)

Colorado State University
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Logical to Physical Address Translation in |A-32

(x386-Pentium)

logical addressl selector ‘ offset ‘
‘ descriptor table
segment descriptor ‘T

32-bit linear address

logical linear physical
cPU address | segmentation | address | paging | address | physical
unit unit memory
page number page offset
P P> d
10 10 12
” Colorado State University
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Intel 1A-32 Paging Architecture

(logical address)

| Page directory page table offset |
31 22 21 12 11 0
Y ) 4
page 4-KB
L 4 table » page
page m
directory

CR3 — X 4-MB

register page
|
. bage directory offset |
31 22 21 0

Support for two page sizes

Colorado State University
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Intel |IA-32 Page Address Extensions

n 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space

CR3
register

Paging went to a 3-level scheme
Top two bits refer to a page directory pointer table
Page-directory and page-table entries moved to 64-bits in size

Net effect is increasing address space by increasing frame address bits.

., Ppage directory | page table | offset |
31[30 29 2120 12 11 0
Y
- ] | 4KB
| page
pége directory ] page ] page ]
pointer table directory table

Colorado State University



Intel x86-64

n Intel x86 architecture based on AMD 64 bit architecture

n 64 bits is ginormous (> 16 exabytes)

n  In practice only implement 48 bit addressing or perhaps 52 or 57
| Page sizes of 4 KB, 2 MB, 1 GB
| Four levels of paging hierarchy

n  Can also use PageAddressExtensions so virtual addresses are 48
bits and physical addresses are 52 (now 57) bits

page map  page directory page page
| unused | level4 | pointertable | directory |  table |  offset
63 48 47 39 38 30 29 2120 1211 0

Exabyte: 1024° bytes

. Colorado State University
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Example: ARM Architecture

Dominant mobile platform chip
(Apple iOS and Google Android
devices for example)

Modern, energy efficient, 32-bit
CPU now 64 bit also

4 KB and 16 KB pages

1 MB and 16 MB pages (termed
sections)

One-level paging for sections, two-
level for smaller pages

Two levels of TLBs

| Outer level has two micro
TLBs (one data, one
instruction)

| Inner is single main TLB

| First inner is checked, on
miss outers are checked,
and on miss page table
walk performed by CPU

32 bits |

outer page

inner page offset

4-KB
or
16-KB

—‘ page

1-MB
or

16-MB
section

Colorado State University
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Virtual Memory: Objectives

www.onlinedatingmagazine.com

" You SaN we weat oot
and | vever caMed?

| Cawnw'y yemember,

My Viltyal MeMovy
Most+ be low ’ e

A virtual memory system

Demand paging, page-
replacement algorithms,
allocation of page frames to
processes

Threshing, the working-set model

Memory-mapped files and shared
memory and

Colorado$tate University
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Fritz-Rudolf Guntsch: Virtual Memory

Fritz-Rudolf Glintsch (1925-2012) at the
Technische Universitat Berlin in 1956 in
his doctoral thesis, Logical Design of a
Digital Computer with Multiple
Asynchronous Rotating Drums and
Automatic High Speed Memory
Operation.

First used in Atlas, Manchester, 1962

PCs: Windows 95

When was Win 95
introduced?

Colorado State University



Background

* Code needs to be in memory to execute, but entire
program rarely used

— Error code, unusual routines, large data structures
* Entire program code not needed at the same time

* Consider ability to execute partially-loaded
program

— Program no longer constrained by limits of physical
memory

— Each program uses less memory while running -> more
programs run at the same time

* Increased CPU utilization and throughput with no increase in
response time or turnaround time

— Less I/O needed to load or swap programs into memory
-> each user program runs faster

Colorado State University
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Background (Cont.)

37

Virtual memory — separation of user logical
memory from physical memory

Virtual address space — logical view of how
process views memory

— Usually start at address 0, contiguous addresses until end of
space

— Meanwhile, physical memory organized in page frames
— MMU must map logical to physical

Virtual memory can be implemented via:
— Demand paging
— Demand segmentation That is the

new idea

Colorado State University



Virtual Memory That is Larger Than Physical Memory

page O

page 1

page 2 <

[\
!

B B O
memory v
map
page v physical
virtual memer
memory
s Colorado State University
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Virtual-address Space: advantages

Usually design logical address space for
stack to start at Max logical address and
grow “down” while heap grows “up”

0 Maximizes address space use

0 Unused address space between the
two is hole

»  No physical memory needed until heap
or stack grows to a given new page

Enables sparse address spaces with holes
left for growth, dynamically linked libraries,
etc.

System libraries shared via mapping into
virtual address space

Shared memory by mapping pages read-
write into virtual address space

Pages can be shared during fork (),
speeding process creation

Max

stack

heap

data

code

Colorado State University
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stack

l

Shared Library Using Virtual Memory

stack

shared library

1

shared
pages

l

shared library

heap

data

code

1

heap

data

code

Colorado State University
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Demand Paging

e Could bring entire process into memory at load time
* Or bring a page into memory only when it is needed: Demand paging
— Less /O needed, no unnecessary 1/0
— Less memory needed
— Faster response
— More users
* Similar to paging system with swapping
* Page is needed = reference to it
— invalid reference = abort
— not-in-memory = bring to memory
* “Lazy swapper” — never swaps a page into memory unless page will be needed
— Swapper that deals with pages is a pager

Colorado State University
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Demand paging: Basic Concepts

 Demand paging: pager brings in only those pages
into memory what are needed
* How to determine that set of pages?
— Need new MMU functionality to implement demand
pPaging
* If pages needed are already memory resident
— No difference from non-demand-paging

* |f page needed and not memory resident

— Need to detect and load the page into memory from
storage
e Without changing program behavior
e Without programmer needing to change code

Colorado State University
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Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

Initially valid—invalid bit is set to i on all entries
 Example of a page table snapshot:

Frame # valid-invalid bit

- g (< <

page table

During MMU address translation, if valid—invalid bit in page table
entry is i = page fault

" Colorado State University



Page Table When Some Pages Are Not in Main Memory

0
1
of A 2
valid—invalid
1 B frame " bit¢ . Y
N
2| ¢C o[ 4 v ‘I
[ {E37 0 O
4 E 2 G\il 6 C I:l
F 4 i
Z = 59 |v ; @
6 i
7 H 7 i 9 E
g page table
e ° UL
-
12
Page 0 in Frame 4 (and disk) 13
Page 1 in Disk 14
15
physical memory
. Colorado State University



Page Fault

46

* If thereis a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault

1. Operating system looks at a table to decide:
— Invalid reference = abort
— Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation

4. Reset tables to indicate page now in memory
Set validation bit=v

5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

Colorado State University
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Technical Perspective: Multiprogramming

al .
693 .

Solving a problem gives rise to a new class of problem:

Contiguous allocation. Problem: external fragmentation

Non-contiguous, but entire process in memory: Problem:
Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

Demand Paging: Problem: page faults
How to minimize page faults?

Colorado State University



Steps in Handling a Page Fault

page is on

backing store //_\
operating
system @
reference

trap

load M

@J@

restart page table
instruction

free frame (e —
® @

reset page bring in
table missing page

physical
memory

Colorado State University
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voR W e

Stages in Demand Paglng (worse case)

Trap to the operating system
Save the user registers and process state
Determine that the interrupt was a page fault
Check that the page reference was legal and determine the location of the page on the disk
Issue a read from the disk to a free frame:
1. Waitin a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
While waiting, allocate the CPU to some other user
Receive an interrupt from the disk I/O subsystem (I/O completed)
Save the registers and process state for the other user

Determine that the interrupt was from the disk

. Correct the page table and other tables to show page is now in memory
. Wait for the CPU to be allocated to this process again
. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

Colorado State University



Performance of Demand Paging (Cont.)

* Three major activities

— Service the interrupt — careful coding means just several hundred
instructions needed

— Read the page —relatively long time
— Restart the process —again just a small amount of time

e Page FaultRate0<p<1
— if p =0 no page faults
— if p =1, every reference is a fault
* Effective Access Time (EAT) Hopefully p <<1
EAT = (1 — p) x memory access time
+ p (page fault overhead

+ swap page out + swap pagein)

Page swap time = seek time + latency time

Colorado State University
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Demand Paging Simple Numerical Example

* Memory access time = 200 nanoseconds
* Average page-fault service time = 8 milliseconds
e EAT =(1-p)x200ns+ p (8 milliseconds)

=(1-p) x200 + p x 8,000,000 nanosec. Linear with page
=200+ p x 7,999,800 ns fauitrate

* If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

* If want performance degradation < 10 percent, p="?

— 220>200+ 7,999,800 x p
20> 7,999,800 x p

— p <.0000025
— < one page fault in every 400,000 memory accesses

We make some simplifying assumptions here.

Colorado State University
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