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- C Review
- Dynamic Memory

« Remote Lab Machines



Overview of Assignment

- Required files:
 Driver.c
- MemoryManager.c
- MemoryManager.h
- Makefile
- README.txt

*** Please don't put these files in a subdirectory to create zip file. Just select all the files
and zip it.



Driver.c

- Takes in one command line argument
= Perform argument check
Set the seed with srand()
atoi()
Invoke functions in MemoryManager.c
float running_ratio = get_running_ratio();

What should be included in Driver.c so that it can call the functions in
MemoryManager.c?



MemoryManager.c (Memory Management)

- static int memory_allocations

« int* safe_malloc(int size)

« int* tracked _malloc(int size)

« void tracked free(void *ptr, int size)

« void print_memory_summary()

You are encouraged to define new functions as you see fit.



Utility Methods

int random_in_range(int lower_bound, int upper_bound)

bool is_perfect sgr(int n)

void populate_array(int * array, int size, int lower _bound, int upper_bound)

int count_perfect _sqr(int * array, int size)



MemoryManager.c (Ratio Implementation)

float get_running_ratio();

« Controls flow of the program

1. Calculate the number of iterations for your loop. The iteration should start with 1.
2 Allocate an array with the appropriate number of elements on each iteration.
3.  Populate the array with random integers.

A Calls count_perfect_sqr()

5.  Calculate the perfect square/non-perfect square ratio

6. Keep track of the iteration with the largest count of square numbers.

7.  Keep a running sum of the ratio of (square/non-square)

8.  Returns average ratio across all iterations

=> (running sum-from step (7)) / total iterations of step (1)



C Review

- The following slides are based on material gathered from CS370- Spring2022 Help
Session 1.

- Materials and images found on the following websites:
1. https://ig.opengenus.org/pointers-in-c/
2. https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
3. https://www.cprogramming.com/tutorial/makefiles.html
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C Review: Pointers

- A pointer declared datatype *var_name is a reference to a section of memory
allocated for some type of object.

- * operator is the de-referencing operator.
It has dual meaning.
1) declaring a pointer int *p;
2) Accessing what the pointer is pointing to printf(“%d”, *p);

« Warning regarding dangling pointers!!!!



References

The & operator is used to obtain the
address of an object so that it may
be assigned to a pointer.

int *p;
If int x =5; and p = &x

Then return *p equals?

#include<stdio.h>

int *fun()

{
staticRintEXE=—85"
return &x;

}

int main()

{

IintEEoR=0FUn ()
printf("%d",*p);

Image taken from:

httos:// oointers-in-c/
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References continued

- Use the & operator to pass an object void passByValue(int n) {

by address. } a=>5;
. Why’_) void passByAddress(int *b) {
*h =10
- It's less costly than copying the object. 1

int main(void) {
IntRcR="%10:
passbyValue(c);
passbyAddress(&c);
return 0;

Image taken from: https://ig.opengenus.org/pointers-in-c/
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Arrays

« Declaring an array
o Data_type array_name [ array_size ];

o Data_type array_name[n] = {x0,x1,x2,x3, .. xn-1} where (x0,..,xn-1) are objects of the data_type
and n is the size of the array.

NOTE: this is how you declare and innitialize an array on the stack. Your assignment requires
you to do so on the heap. More on that next!

NOTE: [n] may be omitted in favor of []. Which implies you do not have to give a size when
you declare and initialize in the same step.
« Indexing in arrays -zero based index
Array_name|[0] = 5
return Array_name[0] -> returns 5



Arrays as pointers

. Int my_array[] = {1,2,3,4,5};
« Int *p = my_array;
- What does p contain? What about *p?
« Int x = *(p+i) equivalent to x = pli]
p= &my_array[2]
- What does p contain?

- My_array[i] is equivalent to *(my_array+i)



More Operations on Pointers

o p++
Says give me the value at p, then increment p such that it points to the next

element. By how much is it incremented?
o T+4p

Says increment p and give me the value that p is now pointing to.
« ++*p

Says increment the value at p



Pointers and Strings

- A string in C is an array of char types.

- It is terminated by \0’ which is the null character.
- char my_string[] =“Hello World!"

- What is the size of my_string?

- Check it yourself

o printf("%lu\n", (sizeof(my_string)/sizeof(char)));



Arrays as pointers

int array[10];
int e ptris=Sacray:;
pErliONE=11"

*Carray + 1)
*(1 + array)

Image taken from:

https://i oointers-in.c/


https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

THE HEAP!

- Your assignment requires you to allocate on the heap.

. void* malloc(size_t size):

“allocates memory block of given size (in bytes) and returns a pointer to the beginning of
the block.”

malloc() doesn't initialize the allocated memory.

- void* calloc(size_t num, size_t size);

Similar to malloc but initiallises the memory to zero

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-example
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Sample array on the heap and using free()

#include <stdio.h>

f$include <stdlib.h>

int main()
]
1

int* arr;

aryr = (int*)malloc(5S *

arr = (int*)calloc (5,

Image taken from: https://www.geeksforgeeks.org/difference-between-malloc-and-

examples/
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Makefile

 We have provided you a Makefile for this assignment
* You should not have to worry about writing your own Makefile



Makefile continued

« A Makefile is simply a way of associating short names, called targets, with a series of
commands to execute when the action is requested
« Default target: make
« Alternate target: make clean



Makefile continued

- Basic macro: CC=gcc
- Convert a macro to its value in a target: $(CC)
- Ex: $(CC) a_source_file.c gets expanded to gcc a_source_file.c

« To execute: make

« To clean: make clean



Makefile Sample

files=Programl.c Program2.c

out_exe= Program]

$(out_exe): $(files)

$(CC) -0 $(out_exe) $(files)
tar:

tar -cvzf John_Doe.tar *.c *.h *.txt Makefile
clean:

rm -f $(out_exe) *.0

Save with filename makefile or Makefile
Note indentation is by using a Tab



Makefile Sample with math.h library

You may need math.h library to use mathematical formulas. E.g., sqrt()

« files=Programl.c Program2.c

« out_exe= Program]

$(out_exe): $(files)
$(CC) -0 $(out_exe) $(files)|-lm

tar:

tar -cvzf John_Doe.tar *.c *.h *.txt Makefile
clean:

rm -f $(out_exe) *.0



Compile A Program Using Makefile & Run

« To compile via Makefile
$ make

« To clean
$ make clean

- To make a tar:

$ make tar



Remote A Lab Machine by SSH

« ssh <user_id>@<lab_machine_name>.cs.colostate.edu
You can look at Infospaces

e« Choosing a Remote Machine for SSH

« Remote Login From Windows via SSH

« Remote Login From Mac OSX via SSH
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Questions?
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