HELP SESSION 1
HW1 and C Review

CS370
COLORADO STATE UNIVERSITY

Outline

- Overview of the assignment

- C Review
- Dynamic Memory

« Remote Lab Machines

Overview of Assignment

- Required files:
 Driver.c
- MemoryManager.c
- MemoryManager.h
- Makefile
- README.txt

*** Please don't put these files in a subdirectory to create zip file. Just select all the files
and zip it.

Driver.c

- Takes in one command line argument
= Perform argument check
Set the seed with srand()
atoi()
Invoke functions in MemoryManager.c
float running_ratio = get_running_ratio();

What should be included in Driver.c so that it can call the functions in
MemoryManager.c?

MemoryManager.c (Memory Management)

- static int memory_allocations

« int* safe_malloc(int size)

« int* tracked _malloc(int size)

« void tracked free(void *ptr, int size)

« void print_memory_summary()

You are encouraged to define new functions as you see fit.

Utility Methods

int random_in_range(int lower_bound, int upper_bound)

bool is_perfect sgr(int n)

void populate_array(int * array, int size, int lower _bound, int upper_bound)

int count_perfect _sqr(int * array, int size)

MemoryManager.c (Ratio Implementation)

float get_running_ratio();

« Controls flow of the program

1. Calculate the number of iterations for your loop. The iteration should start with 1.
2 Allocate an array with the appropriate number of elements on each iteration.
3. Populate the array with random integers.

A Calls count_perfect_sqr()

5. Calculate the perfect square/non-perfect square ratio

6. Keep track of the iteration with the largest count of square numbers.

7. Keep a running sum of the ratio of (square/non-square)

8. Returns average ratio across all iterations

=> (running sum-from step (7)) / total iterations of step (1)

C Review

- The following slides are based on material gathered from CS370- Spring2022 Help
Session 1.

- Materials and images found on the following websites:
1. https://ig.opengenus.org/pointers-in-c/
2. https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
3. https://www.cprogramming.com/tutorial/makefiles.html

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.cprogramming.com/tutorial/makefiles.html

C Review: Pointers

- A pointer declared datatype *var_name is a reference to a section of memory
allocated for some type of object.

- * operator is the de-referencing operator.
It has dual meaning.
1) declaring a pointer int *p;
2) Accessing what the pointer is pointing to printf(“%d”, *p);

« Warning regarding dangling pointers!!!!

References

The & operator is used to obtain the
address of an object so that it may
be assigned to a pointer.

int *p;
If int x =5; and p = &x

Then return *p equals?

#include<stdio.h>

int *fun()

{
staticRintEXE=—85"
return &x;

}

int main()

{

IintEEoR=0FUn ()
printf("%d",*p);

Image taken from:

httos:// oointers-in-c/

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

References continued

- Use the & operator to pass an object void passByValue(int n) {

by address. } a=>5;
. Why’_) void passByAddress(int *b) {
*h =10
- It's less costly than copying the object. 1

int main(void) {
IntRcR="%10:
passbyValue(c);
passbyAddress(&c);
return 0;

Image taken from: https://ig.opengenus.org/pointers-in-c/

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

Arrays

« Declaring an array
o Data_type array_name [array_size];

o Data_type array_name[n] = {x0,x1,x2,x3, .. xn-1} where (x0,..,xn-1) are objects of the data_type
and n is the size of the array.

NOTE: this is how you declare and innitialize an array on the stack. Your assignment requires
you to do so on the heap. More on that next!

NOTE: [n] may be omitted in favor of []. Which implies you do not have to give a size when
you declare and initialize in the same step.
« Indexing in arrays -zero based index
Array_name|[0] = 5
return Array_name[0] -> returns 5

Arrays as pointers

. Int my_array[] = {1,2,3,4,5};
« Int *p = my_array;
- What does p contain? What about *p?
« Int x = *(p+i) equivalent to x = pli]
p= &my_array[2]
- What does p contain?

- My_array[i] is equivalent to *(my_array+i)

More Operations on Pointers

o p++
Says give me the value at p, then increment p such that it points to the next

element. By how much is it incremented?
o T+4p

Says increment p and give me the value that p is now pointing to.
« ++*p

Says increment the value at p

Pointers and Strings

- A string in C is an array of char types.

- It is terminated by \0’ which is the null character.
- char my_string[] =“Hello World!"

- What is the size of my_string?

- Check it yourself

o printf("%lu\n", (sizeof(my_string)/sizeof(char)));

Arrays as pointers

int array[10];
int e ptris=Sacray:;
pErliONE=11"

*Carray + 1)
*(1 + array)

Image taken from:

https://i oointers-in.c/

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

THE HEAP!

- Your assignment requires you to allocate on the heap.

. void* malloc(size_t size):

“allocates memory block of given size (in bytes) and returns a pointer to the beginning of
the block.”

malloc() doesn't initialize the allocated memory.

- void* calloc(size_t num, size_t size);

Similar to malloc but initiallises the memory to zero

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-example

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Sample array on the heap and using free()

#include <stdio.h>

f$include <stdlib.h>

int main()
]
1

int* arr;

aryr = (int*)malloc(5S *

arr = (int*)calloc (5,

Image taken from: https://www.geeksforgeeks.org/difference-between-malloc-and-

examples/

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Makefile

 We have provided you a Makefile for this assignment
* You should not have to worry about writing your own Makefile

Makefile continued

« A Makefile is simply a way of associating short names, called targets, with a series of
commands to execute when the action is requested
« Default target: make
« Alternate target: make clean

Makefile continued

- Basic macro: CC=gcc
- Convert a macro to its value in a target: $(CC)
- Ex: $(CC) a_source_file.c gets expanded to gcc a_source_file.c

« To execute: make

« To clean: make clean

Makefile Sample

files=Programl.c Program2.c

out_exe= Program]

$(out_exe): $(files)

$(CC) -0 $(out_exe) $(files)
tar:

tar -cvzf John_Doe.tar *.c *.h *.txt Makefile
clean:

rm -f $(out_exe) *.0

Save with filename makefile or Makefile
Note indentation is by using a Tab

Makefile Sample with math.h library

You may need math.h library to use mathematical formulas. E.g., sqrt()

« files=Programl.c Program2.c

« out_exe= Program]

$(out_exe): $(files)
$(CC) -0 $(out_exe) $(files)|-lm

tar:

tar -cvzf John_Doe.tar *.c *.h *.txt Makefile
clean:

rm -f $(out_exe) *.0

Compile A Program Using Makefile & Run

« To compile via Makefile
$ make

« To clean
$ make clean

- To make a tar:

$ make tar

Remote A Lab Machine by SSH

« ssh <user_id>@<lab_machine_name>.cs.colostate.edu
You can look at Infospaces

e« Choosing a Remote Machine for SSH

« Remote Login From Windows via SSH

« Remote Login From Mac OSX via SSH

https://infospaces.cs.colostate.edu/watch.php?id=224
https://infospaces.cs.colostate.edu/watch.php?id=224
https://infospaces.cs.colostate.edu/watch.php?id=196
https://infospaces.cs.colostate.edu/watch.php?id=196
https://infospaces.cs.colostate.edu/watch.php?id=220
https://infospaces.cs.colostate.edu/watch.php?id=220

Questions?

Acknowledgements

- These slides are based on contributions of current and past CS370 instructors and TAs,
including Jack Applin, Abhishek Yeluri, Kevin Bruhwiler, Yashwant Malaiya, Shrideep
Pallickara, Anindya Roy Chowdhury, and Wilson Valentine.

	Slide 1: HELP SESSION 1 HW1 and C Review
	Slide 2: Outline
	Slide 3: Overview of Assignment
	Slide 4: Driver.c
	Slide 5: MemoryManager.c (Memory Management)
	Slide 6: Utility Methods
	Slide 7: MemoryManager.c (Ratio Implementation)
	Slide 8: C Review
	Slide 9: C Review: Pointers
	Slide 10: References
	Slide 11: References continued
	Slide 12: Arrays
	Slide 13: Arrays as pointers
	Slide 14: More Operations on Pointers
	Slide 15: Pointers and Strings
	Slide 16: Arrays as pointers
	Slide 17: THE HEAP!
	Slide 18: Sample array on the heap and using free()
	Slide 19: Makefile
	Slide 20: Makefile continued
	Slide 21: Makefile continued
	Slide 22: Makefile Sample
	Slide 23: Makefile Sample with math.h library
	Slide 24: Compile A Program Using Makefile & Run
	Slide 25: Remote A Lab Machine by SSH
	Slide 26: Questions?
	Slide 27: Acknowledgements

