
HELP SESSION 1
HW1 and C Review

C S 3 7 0

C O L O R A D O S T A T E U N I V E R S I T Y

Outline

• Overview of the assignment

• C Review

• Dynamic Memory

• Remote Lab Machines

Overview of Assignment

• Required files:

• Driver.c

• MemoryManager.c

• MemoryManager.h

• Makefile

• README.txt

*** Please don't put these files in a subdirectory to create zip file. Just select all the files
and zip it.

Driver.c

• Takes in one command line argument

 Perform argument check

• Set the seed with srand()

• atoi()

• Invoke functions in MemoryManager.c

• float running_ratio = get_running_ratio();

• What should be included in Driver.c so that it can call the functions in

MemoryManager.c?

MemoryManager.c (Memory Management)

• static int memory_allocations

• int* safe_malloc(int size)

• int* tracked_malloc(int size)

• void tracked_free(void *ptr, int size)

• void print_memory_summary()

You are encouraged to define new functions as you see fit.

• int random_in_range(int lower_bound, int upper_bound)

• bool is_perfect_sqr(int n)

• void populate_array(int * array, int size, int lower_bound, int upper_bound)

• int count_perfect_sqr(int * array, int size)

Utility Methods

MemoryManager.c (Ratio Implementation)

• Controls flow of the program

1. Calculate the number of iterations for your loop. The iteration should start with 1.

2. Allocate an array with the appropriate number of elements on each iteration.

3. Populate the array with random integers.

4. Calls count_perfect_sqr()

5. Calculate the perfect square/non-perfect square ratio

6. Keep track of the iteration with the largest count of square numbers.

7. Keep a running sum of the ratio of (square/non-square)

8. Returns average ratio across all iterations

=> (running sum-from step (7)) / total iterations of step (1)

float get_running_ratio();

C Review

• The following slides are based on material gathered from CS370- Spring2022 Help

Session 1.

• Materials and images found on the following websites:

1. https://iq.opengenus.org/pointers-in-c/

2. https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

3. https://www.cprogramming.com/tutorial/makefiles.html

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.cprogramming.com/tutorial/makefiles.html

• A pointer declared datatype *var_name is a reference to a section of memory

allocated for some type of object.

• * operator is the de-referencing operator.

It has dual meaning.

1) declaring a pointer int *p;

2) Accessing what the pointer is pointing to printf(“%d”, *p);

• Warning regarding dangling pointers!!!!

C Review: Pointers

References
• The & operator is used to obtain the

address of an object so that it may

be assigned to a pointer.

• int *p;

• If int x = 5; and p = &x

• Then return *p equals?

Image taken from:

https://iq.opengenus.org/pointers-in-c/

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

References continued

Image taken from: https://iq.opengenus.org/pointers-in-c/

• Use the & operator to pass an object

by address.

• Why?

• It's less costly than copying the object.

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

Arrays
• Declaring an array

o Data_type array_name [array_size];

o Data_type array_name[n] = {x0,x1,x2,x3, … xn-1} where (x0,..,xn-1) are objects of the data_type
and n is the size of the array.

NOTE: this is how you declare and innitialize an array on the stack. Your assignment requires
you to do so on the heap. More on that next!

NOTE: [n] may be omitted in favor of []. Which implies you do not have to give a size when
you declare and initialize in the same step.

• Indexing in arrays –zero based index

Array_name[0] = 5

return Array_name[0] -> returns 5

Arrays as pointers

• Int my_array[] = {1,2,3,4,5};

• Int *p = my_array;

• What does p contain? What about *p?

• Int x = *(p+i) equivalent to x = p[i]

• p= &my_array[2]

• What does p contain?

• My_array[i] is equivalent to *(my_array+i)

• *p++

Says give me the value at p, then increment p such that it points to the next

element. By how much is it incremented?

• *++p

Says increment p and give me the value that p is now pointing to.

• ++*p

Says increment the value at p

More Operations on Pointers

Pointers and Strings

• A string in C is an array of char types.

• It is terminated by ‘\0’ which is the null character.

• char my_string[] =“Hello World!”

• What is the size of my_string?

• Check it yourself

• printf("%lu\n", (sizeof(my_string)/sizeof(char)));

Arrays as pointers

Image taken from:

https://iq.opengenus.org/pointers-in-c/

https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/
https://iq.opengenus.org/pointers-in-c/

THE HEAP!

• Your assignment requires you to allocate on the heap.

• void* malloc(size_t size);

“allocates memory block of given size (in bytes) and returns a pointer to the beginning of

the block. ”

malloc() doesn’t initialize the allocated memory.

• void* calloc(size_t num, size_t size);

Similar to malloc but initiallises the memory to zero

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
http://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

Sample array on the heap and using free()

Image taken from: https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-
examples/

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/

• We have provided you a Makefile for this assignment
• You should not have to worry about writing your own Makefile

Makefile

Makefile continued

• A Makefile is simply a way of associating short names, called targets, with a series of
commands to execute when the action is requested

• Default target: make
• Alternate target: make clean

Makefile continued

• Basic macro: CC=gcc

• Convert a macro to its value in a target: $(CC)

• Ex: $(CC) a_source_file.c gets expanded to gcc a_source_file.c

• To execute: make

• To clean: make clean

Makefile Sample

files=Program1.c Program2.c

out_exe= Program1

$(out_exe): $(files)

 $(CC) -o $(out_exe) $(files)

tar:

 tar -cvzf John_Doe.tar *.c *.h *.txt Makefile

clean:

 rm -f $(out_exe) *.o

Save with filename makefile or Makefile
Note indentation is by using a Tab

• files=Program1.c Program2.c

• out_exe= Program1

$(out_exe): $(files)

 $(CC) -o $(out_exe) $(files) -lm

tar:

 tar -cvzf John_Doe.tar *.c *.h *.txt Makefile

clean:

 rm -f $(out_exe) *.o

You may need math.h library to use mathematical formulas. E.g., sqrt()

Makefile Sample with math.h library

Compile A Program Using Makefile & Run

• To compile via Makefile

$ make

• To clean

$ make clean

• To make a tar:

$ make tar

Remote A Lab Machine by SSH

• ssh <user_id>@<lab_machine_name>.cs.colostate.edu

You can look at Infospaces

• Choosing a Remote Machine for SSH

• Remote Login From Windows via SSH

• Remote Login From Mac OSX via SSH

https://infospaces.cs.colostate.edu/watch.php?id=224
https://infospaces.cs.colostate.edu/watch.php?id=224
https://infospaces.cs.colostate.edu/watch.php?id=196
https://infospaces.cs.colostate.edu/watch.php?id=196
https://infospaces.cs.colostate.edu/watch.php?id=220
https://infospaces.cs.colostate.edu/watch.php?id=220

This Photo by Unknown Author is licensed under CC BY-NC-
ND

Questions?

Acknowledgements

• These slides are based on contributions of current and past CS370 instructors and TAs,

including Jack Applin, Abhishek Yeluri, Kevin Bruhwiler, Yashwant Malaiya, Shrideep

Pallickara, Anindya Roy Chowdhury, and Wilson Valentine.

	Slide 1: HELP SESSION 1 HW1 and C Review
	Slide 2: Outline
	Slide 3: Overview of Assignment
	Slide 4: Driver.c
	Slide 5: MemoryManager.c (Memory Management)
	Slide 6: Utility Methods
	Slide 7: MemoryManager.c (Ratio Implementation)
	Slide 8: C Review
	Slide 9: C Review: Pointers
	Slide 10: References
	Slide 11: References continued
	Slide 12: Arrays
	Slide 13: Arrays as pointers
	Slide 14: More Operations on Pointers
	Slide 15: Pointers and Strings
	Slide 16: Arrays as pointers
	Slide 17: THE HEAP!
	Slide 18: Sample array on the heap and using free()
	Slide 19: Makefile
	Slide 20: Makefile continued
	Slide 21: Makefile continued
	Slide 22: Makefile Sample
	Slide 23: Makefile Sample with math.h library
	Slide 24: Compile A Program Using Makefile & Run
	Slide 25: Remote A Lab Machine by SSH
	Slide 26: Questions?
	Slide 27: Acknowledgements

