
CS370 - Homework 3

Palindrome Checker

Parallel Processes with Shared Memory and Pipes

Program Description

The purpose of this program will be to process a list of words in

parallel using IPC. You will utilize both pipes and shared memory to

communicate between the parent and child processes. This program

will successfully validate palindromes concurrently and report the

results back to the user.

2CS 370 - Operating Systems – Fall 2024

Manager Description

• Manager receives n words as command-line arguments

o ./Manager racecar kayak apple abcba hello

• Manager then creates n pipes and n shared memory segments

o Each child process will have its own pipe and shared memory segment

• For each child process the Manager will:

o Use the pipe to provide the name of the shared memory segment

o Use shared memory segment to provide the word for the child to check

• Manager will launch all child processes before waiting

• As the child processes finish the Manager will then retrieve the results from the individual shared memory

segments and write the results to the console
3CS 370 - Operating Systems – Fall 2024

Palindrome Description

• Palindrome will receive a pipe FD (read end) as a command-line argument

• It will then complete a series of steps:

✓Read the shared memory name from the pipe

✓Retrieve the assigned word from the struct in the shared memory

segment

✓Check if the word is a palindrome

✓Write the result (0 or 1) to the result field in the struct

4CS 370 - Operating Systems – Fall 2024

Pipe/Shared Memory

Communication between the manager and each child happens in two

phases:

Pipe: One-way communication from the manager child

(manager sends the shared memory name to child)

Shared Memory: Two-way access

(manager writes the word child writes back the result)

Parallel Processing

• In Assignment 2, the wait condition for the child was written before the

parent process forked the next child.

• This leads to linear/sequential execution. However, for this assignment, we

need to execute the processes in parallel.

• Hence, for the concurrent processes the Manager must fork the child

processes and then use the wait() command for each.

6CS 370 - Operating Systems – Fall 2024

Function Description

• pipe()

• shm_open()

• ftruncate()

• mmap()

• shm_unlink()

• sprintf()

7CS 370 - Operating Systems – Fall 2024

pipe()

8

Syntax: int pipe(int pipefd[2]);

Arguments: pipefd[2] is the array to represent two ends of the pipe. Each

end is a file descriptor (FD).

Example: int pipefds[2];

int result_pipe = pipe(pipefds);

CS 370 - Operating Systems – Fall 2024

Syntax: int shm_open(const char *name, int oflag, mode_t mode);

Arguments: name: name of the memory segment

oflag: can take the following values: O_RDONLY, O_RDWR,

O_CREAT, O_EXCL, O_TRUNC

mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;

int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR,

0666);

shm_open()

9CS 370 - Operating Systems – Fall 2024

ftruncate()

10

Syntax: int ftruncate(int fd, off_t length);

Arguments: fd: is the file descriptor

length: is the desired size of the memory segment. (Will be

initialized to 0)

Example: int result = ftruncate(fd, 1234);

CS 370 - Operating Systems – Fall 2024

mmap()

11

Syntax: void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

Arguments: addr: beginning address of the memory object

length: length of the memory object in bytes

prot: protection of the pages (PROT_EXEC, PROT_READ,

PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes

mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)

CS 370 - Operating Systems – Fall 2024

mmap()

12

Arguments: fd: returned by shm_open

offset: is 0 in here

Example: mmap(0, size, PROT_READ, MAP_SHARED, shm_fd, 0);

CS 370 - Operating Systems – Fall 2024

shm_unlink()

13

Syntax: int shm_unlink(const char *name);

Arguments: name: is the memory object name to be unlinked

Example: int error = shm_unlink(shm_Name);

CS 370 - Operating Systems – Fall 2024

sprintf()

14

Syntax: int sprintf(char * buffer, const char * string, ...);

Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);

CS 370 - Operating Systems – Fall 2024

Makefile

• Makefile provided, please use it. This is the file we will use to test your

program. So, its best if you use it while completing the assignment.

14CS 370 - Operating Systems – Fall 2024

Other Requirements

• Code should compile and run on CS Department computers.

• Submit all .c, along with Makefile and README.txt. Please remember to

submit your assignment in a zipped file.

16CS 370 - Operating Systems – Fall 2024

Resources

• Read & Write with Pipe

• POSIX Shared Memory

17CS 370 - Operating Systems – Fall 2024

https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://linuxhint.com/posix-shared-memory-c-programming/
https://linuxhint.com/posix-shared-memory-c-programming/

Thank You

If you have any questions, please stop by office hours

and we can provide 1on1 assistance!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Pipe/Shared Memory
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

