CS370 - Homework 3

Palindrome Checker
Parallel Processes with Shared Memory and Pipes

Program Description

The purpose of this program will be to process a list of words in
parallel using IPC. You will utilize both pipes and shared memory to .

communicate between the parent and child processes. This program

will successtully validate palindromes concurrently and report the
results back to the user.

CS 370 - Operating Systems — Fall 2024 2

Manager Description

® Manager receives n words as command-line arguments

O ./Manager racecar kayak apple abcba hello

® Manager then creates n pipes and n shared memory segments

O Each child process will have its own pipe and shared memory segment
® For each child process the Manager will:

O Use the pipe to provide the name of the shared memory segment

O Use shared memory segment to provide the word for the child to check
* Manager will launch all child processes before waiting

® As the child processes finish the Manager will then retrieve the results from the individual shared memory

segments and write the results to the console
CS 370 - Operating Systems — Fall 2024 3

T —— e e e e " - R r————

Palindrome Description

* Palindrome will recetve a pipe FD (read end) as a command-line argument

. * Tt will then complete a series of steps: -

v'Read the shared memory name from the pipe

v Retrieve the assigned word from the struct in the shared memory
segment

v’ Check if the word is a palindrome

v Wite the result (0 or 1) to the result field in the struct

CS 370 - Operating Systems — Fall 2024 4

Pipe/Shared Memory

Communication between the manager and each child happens in two
phases:

Pipe: One-way communication from the manager » child
(manager sends the shared memory name to child)

Shared Memory: Two-way access
(manager writes the word < — child writes back the result)

Parallel Processing

* In Assignment 2, the wait condition for the child was written before the

parent process forked the next child. -

* This leads to linear/sequential execution. However, for this assignment, we

need to execute the processes in parallel.

* Hence, for the concurrent processes the Manager must fork the child
processes and then use the wait() command for each.

CS 370 - Operating Systems — Fall 2024 6

Function Description

* pipe()

* shm_open()

* ftruncate()

* mmap()
* shm_unlink()
* sprintf()

CS 370 - Operating Systems — Fall 2024

pipe(

Syntax: int pipe(int pipetd|[2]);

. Arguments: pipefd|2] is the array to represent two ends of the pipe. Each
end is a file descriptor (FD).

Example: int pipefds[2];
int result_pipe = pipe(pipetds);

CS 370 - Operating Systems — Fall 2024 8

shm_open()

Syntax:

. Arguments:

int shm_open(const char *name, int oflag, mode_t mode);

name: name of the memory segment

oflag: can take the following values: O_RDONLY, O_RDWR,
O_CREAT, O_EXCL, O_TRUNC

mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;
int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR,
0660);

ftruncate()

Syntax: int ftruncate(int fd, off_t length);

. Arguments: fd: is the file descriptor -

length: 1s the desired size of the memory segment. (Will be
initialized to 0)

Example: int result = ftruncate(fd, 1234);

CS 370 - Operating Systems — Fall 2024 10

mmap()

Syntax:

. Arguments:

void *mmap(void *addr, size_t length, int prot, int flags,
int td, off_t offset);

addr: beginning address of the memory object
length: length of the memory object in bytes

prot: protection of the pages (PROT_EXEC, PROT_READ,
PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes
mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)

CS 370 - Operating Systems — Fall 2024

11

mmap()

Arguments: fd: returned by shm_open

offset: is O in here

Example: mmap (0, size, PROT_READ, MAP_SHARED, shm_fd, 0);

CS 370 - Operating Systems — Fall 2024

shm_unlink()

Syntax: int shm_unlink(const char *name);

. Arguments: name: is the memory object name to be unlinked -

Example: int error = shm_unlink(shm_Name);

CS 370 - Operating Systems — Fall 2024 13

sprintf() %

Syntax: int sprintf(char * buffer, const char * string, ...);

. Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);

CS 370 - Operating Systems — Fall 2024 14

Makefile

* Makefile provided, please use it. This is the file we will use to test your
program. So, its best if you use it while completing the assignment.

CS 370 - Operating Systems — Fall 2024

Other Requirements

. * Code should compile and run on CS Department computers.

* Submit all .c, along with Makefile and README.txt. Please remember to
submit your assignment in a zipped file.

CS 370 - Operating Systems — Fall 2024

16

T —— e e e e " - R r————

* Read & Write with Pipe
* POSIX Shared Memotry

CS 370 - Operating Systems — Fall 2024

Resources

https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://linuxhint.com/posix-shared-memory-c-programming/
https://linuxhint.com/posix-shared-memory-c-programming/

Thank You

It you have any questions, please stop by office hours
and we can provide lonl assistancel!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Pipe/Shared Memory
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

