
CS 370

HW4 help session

First Come First Serve, SJF, and Round Robin

Fall 2025

Homework-4 Review

Write a Python program to demonstrate the following scheduling algorithms

• First Come First Serve (FCFS)

• Shortest Job First with pre-emption (SJF-P)

• Round Robin (RR) with quantum

Evaluation:

• Sequence of execution in (Gantt chart)

• Individual and Average turnaround time.

• Individual and Average waiting time.

• Throughput.

Homework-4 Review

A CSV file is provided which contains all the processes.

processes.csv (We might not use this name when grading so be sure you can account for that)

• You can expect a maximum of 9 processes existing in the test processes.csv file

Process ID 1 2 3 4

Arrival Time 0 0 5 3

Burst Time 3 5 11 2

First Come First Serve

• Non preemptive.

• Schedules with respect to arrival time.

• Process that arrived first will get the CPU burst until it completes.

• If multiple processes arrive at the same time, execute lower PID first from

the csv.

Let’s work on an example.

First Come First Serve

Proc

ID

Arrival

Time

Burst

Time

2 0 5

1 0 3

4 3 2

3 12 6

Process

ID

Arrival

Time

Burst

Time

1 0 3

2 0 5

4 3 2

3 12 6

Sort by

Arrival time

First Come First Serve

Process

ID

Arrival

Time

Burst

Time

1 0 3

2 0 5

4 3 2

3 12 6

0 3 8 10 12 18

Gantt Chart

P1 P2 P4 IDLE P3

Pseudo Code to proceed with the Algorithm

Sort by PID

Sort by ArrivalTime

#No process to run --> IDLE

if(cur_time < arr) :
gantt<-----------((cur_time, arr, 'IDLE'))

#Process arrived and has waited

if(cur_time > arr) :

gantt<-------------------------((cur_time, cur_time+burst, pid))
#Get total wait time (no preemption)

#Advance to end of burst

#Process arrived and has not waited
else :

gantt<----------------------------(arr, arr+burst, pid))

#Advance to end of burst

SJF with Preemption

• The process with shortest job completion will execute first.

• Preemption - if a job comes in with a lower completion time, it gets to

execute right away.

Again, let’s work with an example.

First things First

• Let’s first go over SJF without preemption.

• It lets us understand the basic idea before moving onto the preemption.

Shortest Job First without Preemption

Process

ID

Arrival

Time

Burst Time

1 12 8

2 0 5

3 0 6

4 13 6

0 5 11 12 20

Gantt Chart

P2 P3 P1 P4IDLE

26

SJF with Preemption

• When Preemption is used, if a process with a lower running time arrives, the

process becomes the new running process.

• The running process is then preempted by the job with the shorter running

time.

• You need to track the processes in the Ready Queue, along with their

remaining burst times. A process in the Ready Queue is selected based on

burst time.

SJF with Preemption

Process

ID

Arrival

Time

Burst Time

1 12 8

2 0 5

3 0 6

4 13 6

0 11 19

Gantt Chart

P2 P4P1P3

13

IDLE

5 12

P1

26

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 8

2 0 5 5

3 0 6 6

4 13 6 6

Ready Queue

Time elapsed = 0

SJF Scheduling with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 8

2 0 5 1

3 0 6 6

4 13 6 6

P3

Ready Queue

Time elapsed = 4

0

P2

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 8

2 0 5 0

3 0 6 3

4 13 6 6

Ready Queue

Time elapsed = 8

0

P2 P3

5

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 8

2 0 5 0

3 0 6 0

4 13 6 6

Ready Queue

Time elapsed = 11

0

P2 P3

50 11

P2 P3 IDLE

5

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 8

2 0 5 0

3 0 6 0

4 13 6 6

Ready Queue

Time elapsed = 12

0

P2 P3

50 11

P2 P1P3 IDLE

5 12

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 7

2 0 5 0

3 0 6 0

4 13 6 6

Ready Queue

Time elapsed = 13

0

P2 P3

5

P4

0 11

P2 P4P1P3

13

IDLE

5 12

P1 was replaced by a process with less

burst time.

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 4

2 0 5 0

3 0 6 0

4 13 6 0

Ready Queue

Time elapsed = 22

0

P2 P3

50 11

P2 P4P1P3

13

IDLE

5 120 11 19

P2 P4P1P3

13

IDLE

5 12

P1

SJF with Preemption

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 12 8 0

2 0 5 0

3 0 6 0

4 13 6 0

Ready Queue

Time elapsed = 26

0 11 19

P2 P4P1P3

13

IDLE

5 12

P1

26

Round Robin

• Round robin – Everyone gets a chance.

• The quantum (integer) is used to determine the time quantum for round

robin. (Command line argument)

• Ready Queue is First come First served.

• For this assignment, if a new process arrives the same instant when a

process is switched out, the new process gets in the ready queue first.

Round Robin (quantum 2) – (1)

Process

ID

Arrival Time Burst

Time

Remaini

ng Burst
time

1 0 3 3

2 1 5 5

4 3 2 2

3 12 6 6

0

P1

Ready Queue

Time elapsed = 0

Round Robin (quantum 2) – (2)

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 1

2 1 5 5

4 3 2 2

3 12 6 6

0 2

P1

P2 P1

Ready Queue

Time elapsed = 2

Round Robin (quantum 2) – (3)

P1 P4 P2

Ready Queue

Time elapsed = 4

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 1

2 1 5 3

4 3 2 2

3 12 6 6

0 2

P1 P2

4

Round Robin (quantum 2) – (4)

P4 P2

Ready Queue

Time elapsed = 5

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 0

2 1 5 3

4 3 2 2

3 12 6 6

0 2

P1 P2

4

P1

5

Round Robin (quantum 2) – (5)

P2

Ready Queue

Time elapsed = 7

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 0

2 1 5 3

4 3 2 0

3 12 6 6

0 2

P1 P2

4

P1

5

P4

7

Round Robin (quantum 2) – (6)

Ready Queue

Time elapsed = 10

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 0

2 1 5 0

4 3 2 0

3 12 6 6

0 2

P1 P2

4

P1

5

P4

7

P2

10

Round Robin (quantum 2) – (7)

Ready Queue

Time elapsed = 12

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 0

2 1 5 0

4 3 2 0

3 12 6 6

0 2

P1 P2

4

P1

5

P4

7

P2

10

IDLE

12

Round Robin (quantum 2) – (8)

Ready Queue

Time elapsed = 18

Process

ID

Arrival

Time

Burst

Time

Remaining

Burst time

1 0 3 0

2 1 5 0

4 3 2 0

3 12 6 0

0 2

P1 P2

4

P1

5

P4

7

P2

10

IDLE

12

P3

18

Method accepts (data, Time Quantum)

create Ready Queue

Sort by pid

Sort by arrival time

Add all processes arriving at time 0 to ready queue
Remove them from unarrived queue

Hold objects once finished in finished_queue

while ready_queue is !empty or not all process arrived or prev_run_process is not

None :

Now in this while Loop implement the following

Check if every process has arrived to prevent early termination upon IDLE.

Add new arrivals to ready queue and remove from unarrived queue

Add most recently run process to ready queue after new arrivals

Checks if IDLE and sets process to correct time while updating Gantt Chart

Get next process in ready queue
Add waiting time

If process has more than time quantum remaining. Burst and store to put back on ready

queue.

Else burst remaining amount and set to finished. Do not add back on queue

Notes:

• The maximum length of the Gantt chart will not exceed 100 intervals.

• Processes may not appear in the file in order

• The processID is not related to arrival time, priority, or anything else

The processID’s may not always be consecutive numbers e.x. {1,3,6}

• There may be multiple processes with the same arrival time.
• Break ties by processID

• processID’s are always unique

Other Requirements

• Language: Python.

• Must run on department machines.

• Use Canvas to submit a single .zip file named HW4.zip that contains:

• All files related to the assignment. (Please document your code)

• A README.txt file containing a description of each file and any information you feel
the grader may need.

• If your code exists in multiple files then there must exist one driver program which runs
all the three scheduling algorithms. We execute only one file.

Questions?

Check Teams for Help Desk Hours.

Acknowledgements

• These slides are based on contributions of current and past CS370
instructors and TAs, including Phil.Sharp ,J. Applin, S. R. Chowdhury, K.
Bruhwiler, Y. K. Malaiya, S. Pallickara, K. Drago

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

