o R el ey P A L s
LR A g R t“- - L ‘ -
P R P * T et wmu-.-—v-.—... - >
- . g - e - PR S Bt o & | B PR, Y)4
: v [t e i erat *? ‘I.l“ Sl W el . -
o ‘ ! e as . - (-"u J‘.\.\ 4'&9 d

— A -
- P > 1Y N S dLlw
&—’ h. -w-—-{n:u v<‘ :74 -0 e ‘-. .,,_r._,_‘_v e z

CS 370
HW4 help session

First Come First Serve, SJF, and Round Robin
Fall 2025

--'q.ﬂlo—'.—— e
-W.’I" . ér".”
¥

VAR . gy g

-4),_._.~—‘“‘ AL

/ 4 A L
on -y) ¢ — s -'*"." \-‘\‘x A -

- ¥ B =, s oy By A, = 3
::*. Rt e - o S g -y ity 'u 7(- TR et AL e e i A - Lo 258 Sovy.
usﬁr.“l -

WY | T 8
ats s

]
e N N

Homework-4 Review

Write a Python program to demonstrate the following scheduling algorithms
FebitstComelBifstiServe (BEHS)

* Shortest Job First with pre-emption (SJF-P)

* Round Robin (RR) with quantum

Evaluation:

* Sequence of execution in (Gantt chart)
Individual and Average turnaround time.
Individual and Average waiting time.

Throughput.

Homework-4 Review

A CSV ftile is provided which contains all the processes.

processes.csv (We might not use this name when grading so be sure you can account for that)
- Process 1D 1 2 3 4
Arrival Time 0 0 5 3
E Burst Time 3 5 11 2
* You can expect a maximum of 9 processes existing in the test processes.csv file

y - - A N . A oty : e, Y P P NN el g 018 & Ay
EARRIE L S e 11078 U By e PR - - ."" P Wbt sl o0 -
. R T o S wn e Ay g L_.'—’.'~ ,\0’--5.1--1:‘-—’-010.-_-,-4‘-—”.:;. 2 Lt i e th S Sl AR
e e e G b it 203 SO Ak it -

Lo "V 3 - Ty o
e NP O R T T vty Soi” o

First Come First Serve

Non preemptive.
Schedules with respect to arrival time.
Process that arrived first will get the CPU burst until it completes.

It multiple processes arrive at the same time, execute lower PID first from
the csv.

I.et’s work on an example.

First Come First Serve

Proc
ID

2

1
4
3

Arrival
Time
0
0

3

Burst Process
Time Sort by ID

Arrival
Time

5 Arrival time

0

R

0

3

-— ey
N -—‘m‘-o-ww.—“- - -iie
P, > N‘I‘ -qu_— " ~—\._~ h— , *

. '&. 44 %

:-._; -

First Come First Serve

ID Time Time

1 0 3
- Gantt Chart

2 5
4 3 2 ‘
3 12 6

P1

Process Arrival ‘ Burst ‘

Pseudo Code to proceed with the Algorithm

Sort by PID
Sort by ArrivalTime

#No process to run --> IDLE

I rr) -
—ﬁ(cupume_ﬁa_ rr) .

#Process arrived and has waited
if(cur_time > arr) :
gantt< ((cur_time, cur_time+burst, pid))
#Get total wait time (no preemption)

#Process arrived and has not waited
else :

gantt< (arr, arr+burst, pid))
#Advance to end of burst

oy, S ¥ e . oA .-,.“,,.,.,_ ohe By
q\’q—b ..,¢,'s, g =) ——— Dt 03

AP A A g ..
Lt '*l'""»-:—m‘ 3 ..p--.-.«—.r- S

-t - -‘~,"“ R :n

ol e K A 1, s _\: { 9_“ -\,. U‘i:";‘ -4«.'-4-,' ...“ el ‘v‘~ AN e e w4 $

__-o-\ "y e P A e , i ') 'le(- T e U <f -.Iu'. = :. —.’ Pams s “A A T: "..' e TR

A:_Lsﬁr.-a —{-‘~ N T R *yws 2 - - e d : e e e R Y N

SJE with Preemption

* The process with shortest job completion will execute first.

Preemption - if a job comes in with a lower completion time, it gets to
execute right away.

Again, let’s work with an example.

-— ‘_
v e N -—‘m‘-o-ww.—... - -—rtim
P, N‘I‘ -qu_— " R S, e . *

. b&s 4 v

B AL

First things First

* Let’s first go over SJF without preemption.

* It lets us understand the basic idea before moving onto the preemption.

-y - ——
R ARy WO Al -N-‘#u—‘o b et ,Jﬁ_ﬁ.—.'.,.. . "_..".’.

P -
ETVENT S N et e e
CIVv i B e s oy : , (‘Q Y |-WO»'. - " A
e "T”"’““‘“Lt-

PN YN ST 4] b *n\ Y = -

Shortest Job First without Preemption

Process Arrival Burst Time
‘ ® i ‘ Gantt Chart

1 12
0

2
3 0
4 13

P3

SJE with Preemption

* When Preemption is used, if a process with a lower running time arrives, the

. process becomes the new running process.

* The running process is then preempted by the job with the shorter running
time.

* You need to track the processes in the Ready Queue, along with their
remaining burst times. A process in the Ready Queue is selected based on
burst time.

Nt
:-._«- 't
s N‘I“'ﬁ-pﬂ.f. ol — e
X fﬂ‘qr'\—‘.’ ;

SJE with Preemption

Process
ID

1

2
3
4

Time

12
0

: U
13

IDLE P1

Ar_rival ‘ Burst Time Gantt Chart

11 2

““"5‘ -—'M‘-o-wm._... - —pow

SJE with Preemption

Process

Arrival
Time

Remaining
Burst time

Time elapsed = 0
Ready Queue

SJF Scheduling with Preemption

Process | Arrival Burst Remaining
ID Time Time Burst time e elapsed -4
1 Lc: 8 4 Ready Queue
2 0 5 1
3 0 6 6 P3
4 18 6 6
P2
0

SJE with Preemption

Process

Arrival
Time

Remaining
Burst time

Time elapsed = 8
Ready Queue

SJE with Preemption

Process

Arrival
Time

Remaining
Burst time

Time elapsed = 11

Ready Queue

SJE with Preemption

Process

Arrival
Time

Remaining
Burst time

Time elapsed = 12

Ready Queue

IDLE P1

11

12

SJE with Preemption

Process | Arrival Burst Remaining
ID Ti Ti B [:
ime ime urst time e elapsed =13
1 Lc: 8 L Ready Queue
2 0 5 0
3 0 6 0 P4
4 18 6 6
P2 P3 IDLE P1 P4 458 - e ey "
1 was replaccd DY a proCess witn 1ess
0 5 1 12 15 burst time.

SJE with Preemption

Process | Arrival Burst Remaining

ID Time Time Burst time e elapsed — 929

1 Lc: 8 : Ready Queue

2 0 5 0

3 0 6 0

4 18 6 0

P2 P3 IDLE P1 P4 P1 #

0 5 11 12 19

SJE with Preemption

Process | Arrival Burst Remaining

ID Time Time Burst time e elapsed =26

1 Lc: 8 O Ready Queue

2 0 5 0

3 0 6 0

4 18 6 0

P2 P3 IDLE P1 P4 P1 #

0 5 11 12 19 26

e R Ay B b Wy 07 E—-
" - e

Round Robin

Round robin — Everyone gets a chance.

The quantum (integer) 1s used to determine the time quantum for round
robin. (Command line argument)

Ready Queue is First come First served.

For this assignment, if a new process arrives the same instant when a
process 1s switched out, the new process gets in the ready queue first.

Round Robin (quantum 2) — (1)

Process

Arrival Time

Remaini
ng Burst
time

3

Time elapsed = 0
Ready Queue

Al

5
2
6

e - = ’
- = 3 > ,‘*‘Mociw-.w;. -
b Pt) R (o = -
vy — "s. e -‘--'\r:. ..‘:p .-..-..‘ Ko ‘..a—-,” »ﬂ“l,r_llkt;_i‘ -
Ve 3 : M oy o & g

Round Robin (quantum 2) — (2)

Process
ID

2
4

Arrival
Time

0
1
3

Burst Remaining
Time Burst time

3 1
5 Ready Queue

Time elapsed = 2

)

2 2
P2 | P1

6

2R MG SYI (UG b S S BN
I e e
T =y

- -
.
) N S

2

=t ad , | # K - o
e .J.."‘“H‘,—JF.**-\A;«-——-—-*‘-._._
. 1_—6-vy i T S SSL PP p—t

Round Robin (quantum 2) — (3)

Process Arrival Burst Remaining
ID Time Time Burst time

1 0 3 1

B 3 Ready Queue

Time elapsed = 4

5
4 3 2 2
: P1 | P4 | P2

2E IR TR TN o A T O R
- - 2 Mo (Vi - -
T —

» -
»
) A Y o B

2

BN P 8 I At ré s e
_;'- -J-"’*&-.‘\‘.'ﬁ-——-—ﬂvotl.<-
> U MO bl S S L PR ot

Round Robin (quantum 2) — (4)

Process
ID

2
4

Arrival Burst Remaining
Time Time Burst time

0 3 0
1

Time elapsed = 5
Ready Queue

5 3
3 2 2
: : P4 | P2

PRI IR D st e SN PR
TS TR R b g s w s A
) {f——aay A~

- .
-
Rt SN N Vi < W0

o

bl - | il » - -
- _J_.”-A-‘ol.d:h.__ o A il itge 4
. 1_—6-vy i T S SSL PP p—t

Round Robin (quantum 2) — (5)

Process
ID

1
2

Arrival
Time

0
1
3

Burst Remaining
Time Burst time

3 . Time elapsed = 7

Ready Queue

P2

5 3
2 0
6 6

P1

PO AMITY FUI| TN -“".-“, A
= * 2 LN e e s e B Pecd
- -y =+ 0P rep ~d --"‘.- v

> -
»
Rt SN Rl v < 5.

2

A L e o B
e .J_n”*‘ ‘P_&..-\A“ﬁ-———ﬂvotl.q_ PRI
" = gt . s’ s 8 0 pt

Round Robin (quantum 2) — (6)

Process Arrival Burst Remaining
ID Time Time Burst time

1 0 3 0

4 3 2 0
3 12 6 6

P2 P1 P4 P2

Time elapsed = 10
Ready Queue

o, e
P APy | s
e v

Round Robin (quantum 2) — (7)

Process Arrival Burst Remaining
ID Time Time Burst time

3 0

Time elapsed = 12
Ready Queue

5 0
2 0
6 6

. e,
R e v e M)

L PR

Round Robin (quantum 2) — (8)

Process

ID
1

2

Arrival
Time

0
1
3

I

P1

P2

Burst
Time

3

S
2
6

P1

Remaining
Burst time

P4

0

0
0
0

Time elapsed = 18
Ready Queue

P2

. e B R e
g e a

e s —

BT e § Al NN it 4 % o

- SR el oy 80 T p— .

RN R e R TSR
5 - -..'.‘.. &3

Ml O e

» o o g
S v Rty T b

Method accepts (data, Time Quantum)

create Ready Queue
Sort by pid
Sort by arrival time

Add all processes arriving at time 0 to ready queue
Remove them from unarrived queue

Hold objects once finished in finished _queue

while ready _queue is lempty or not all process arrived or prev_run_process is not
None :

Now in this while Loop implement the following

Check if every process has arrived to prevent early termination upon IDLE.
Add new arrivals to ready queue and remove from unarrived queue

Add most recently run process to ready queue after new arrivals

Checks if IDLE and sets process to correct time while updating Gantt Chart
Get next process in ready queue

Add waiting time

If process has more than time quantum remaining. Burst and store to put back on ready
queue.

Else burst remaining amount and set to finished. Do not add back on queue

XYty d &
P APy | 4w
e -

* The maximum length of the Gantt chart will not exceed 100 intervals.

* Processes may not appear in the file in order

* The processID 1s not related to arrival time, priority, or anything else

The processID’s may not always be consecutive numbers e.x. {1,3,6}

* There may be multiple processes with the same arrival time.
* Break ties by processID
* processID’s are always unique

Other Requirements

* Language: Python.

° Must run on department machines.

* Use Canvas to submit a single .zip file named HW4.zip that contains:
* All files related to the assignment. (Please document your code)

* A README.txt file containing a description of each file and any information you feel
the grader may need.

If your code exists in multiple files then there must exist one driver program which runs
all the three scheduling algorithms. We execute only one file.

- S " i

. ARy @ § =] n.—o PR S ¢ - e

- 4B L e G A P AP it g 0]\ S e - -t »

> = 6‘--—' P N
Sl e

- Tig

i | 4 L e 4 1 =

ey oy e —dan . - N T,

Questions?

Check Teams for Help Desk Hours.

. Bl ¥ e . oA .-,.“,,.,.,_ ohe By
q\’q—b ..,¢, Sl & =) ——— Dt 03

R e ..
LYK wtﬁr.,—‘ >y -.-.«—.ro >

-t - -‘~,"“ R :n

ol e K A 1, s ._ { 9_“ -\,. U‘i:";‘ -4«.'-4-,' ...“ el ‘v‘~ AN e e w4 $

__-o-\ "y e P A e , i .\"'le(- T e U <f -.Iu'. = :. —.’ Pams s “A A T: "..' e TR

A:_Lsﬁr.-a —{-‘~ N T R *yws 2 - - e d : e e e R Y N

Acknowledgements

* These slides are based on contributions of current and past CS370
instructors and TAs, including Phil.Sharp ,J. Applin, S. R. Chowdhury, K.
Bruhwiler, Y. K. Malaiya, S. Pallickara, K. Drago

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

