
HW 5 Overview

Course : Operating System

Topic: Synchronization of Producer and
Consumer Threads

• Goal: Learn how threads share a buffer safely in Java.
Students will:

• Implement a bounded circular buffer

• Use wait() and notify() for synchronization

• Coordinate multiple producers and consumers

• Verify correct ordering and matching of data

Topic: Synchronization of producer and
Consumer Threads
Think of:

• producers = Chefs producing dishes

• Buffer = Serving table with limited plates

• Consumers = Waiters picking up dishes

Rules:

• Chefs wait if table is full.

• Waiters wait if table is empty.

• Everyone shares the same table safely.

What You’ll Build
Four Java classes:

Buffer.java – Shared circular FIFO storage

Producer.java – Producer threads (add letters)

Consumer.java – Consumer threads (remove letters)

Coordinator.java – Main program (start threads & check results)

Flowchart
Coordinator

↓

Creates Buffer + Threads

↓

Producers produce → Buffer insert (wait if full)

↓

Consumers consume ← Buffer remove (wait if empty)

↓

notifyAll() → wake waiting threads

↓

Coordinator verifies consonant counts

↓

End

Buffer (Shared Area)

Holds fixed # of items (10 – 15).

FIFO → first inserted = first removed.

Uses synchronized blocks.

wait() → pause if buffer full/empty.

notifyAll() → wake threads after insert/delete.

Guarantees no data loss & no simultaneous access.

Producer

Produces random capital letters: (char)('A'+rand.nextInt(26))

Uses alphabetSeed for repeatable sequence.

Inserts letters into buffer; waits if full.

Prints:

Counts consonants generated.

Consumer

Removes letters from buffer; waits if empty.

Prints:

Counts consonants consumed

Uses notifyAll() so producers can resume.

Coordinator (Main)
Run as:

Seed decides buffer size & # threads.

alphabetSeed decides letter sequence.

Random ranges:

Buffer size 10–15

Total items 20–40

3–7 producers & consumers

Starts threads → joins them → checks if

consonants produced = # consumed.

Seeds Example
Command:

java Coordinator 2022 370

→ Seed = 2022 sets sizes and counts.

→ alphabetSeed = 370 sets letter pattern.

Same inputs = same output each run.

Correctness Requirements
Consume each item exactly once.

FIFO order preserved.

Producers wait when full; consumers wait when empty.

Threads terminate cleanly (no deadlocks).

Consonant counts match.

Example Output

Submission Checklist
Submit one .zip or .tar file containing:

Coordinator.java

Producer.java

Consumer.java

Buffer.java

Makefile with build, run, clean

Name file like: FirstName-LastName-HW5.zip

Grading
Major deductions :

Unbounded buffer(-20)

Using Thread.sleep() for sync(-25)

Using advanced Java sync classes(-80)

Using flag variables instead of wait()/notify()(-80)

Key Takeaways

Threads must coordinate shared resources carefully.

wait() + notifyAll() solve producer–consumer conflicts.

Seeds make random behavior reproducible.

Deadlock-free, deterministic synchronization

Thank you
Masfiq Reza

masfiq.reza@colostate.edu

	Slide 1: HW 5 Overview
	Slide 2: Topic: Synchronization of Producer and Consumer Threads
	Slide 3: Topic: Synchronization of producer and Consumer Threads
	Slide 4: What You’ll Build
	Slide 5: Flowchart
	Slide 6: Buffer (Shared Area)
	Slide 7: Producer
	Slide 8: Consumer
	Slide 9: Coordinator (Main)
	Slide 10: Seeds Example
	Slide 11: Correctness Requirements
	Slide 12: Example Output
	Slide 13: Submission Checklist
	Slide 14: Grading
	Slide 15: Key Takeaways
	Slide 16: Thank you

