COLORADO STATE
UNIVERSITY

HW 5 Overview

Course : Operating System

Topic: Synchronization of Producer and
Consumer Threads

« Goal: Learn how threads share a buffer safely in Java.
Students wiill:

Implement a bounded circular buffer
Use wait() and notify() for synchronization
Coordinate multiple producers and consumers

Verify correct ordering and matching of data

Topic: Synchronization of producer and
Consumer Threads

Think of:

® Q producers = Chefs producing dishes

i) Buffer = Serving table with limited plates

§ Consumers = Waiters picking up dishes
Rules:

Chefs wait if table is full.

Waiters wait if table is empty.

Everyone shares the same table safely.

What You'll Build

Four Java classes:

Buffer.java — Shared circular FIFO storage
Producer.java — Producer threads (add letters)
Consumer.java — Consumer threads (remove letters)

Coordinator.java — Main program (start threads & check results)

Flowchart

Coordinator

|

Creates Buffer + Threads
|

Producers produce — Buffer insert (wait if full)
|

Consumers consume « Buffer remove (wait if empty)
|

notifyAll() — wake waiting threads
|

Coordinator verifies consonant counts
|

End

Buffer (Shared Area)

Holds fixed # of items (10 — 15).

FIFO — first inserted = first removed.

Uses synchronized blocks.

wait() — pause if buffer full/empty.

notifyAll() — wake threads after insert/delete.

Guarantees no data loss & no simultaneous access.

Producer

Produces random capital letters: (char)('A'+rand.nextint(26))
Uses alphabetSeed for repeatable sequence.
Inserts letters into buffer; waits if full.

Prints:

. 1nserted A at index 6 at time 2025-10-29 16:28:29.681649300

Counts consonants generated.

consumer

Removes letters from buffer; waits if empty.

Prints:

[Consumer 1]: consumed W at index © at time 2025-10-29 12:30:U6.3LL835800

Counts consonants consumed

Uses notifyAll() so producers can resume.

Coordinator (Main)

Run as: java Coordinator 10 27

Seed decides buffer size & # threads.
alphabetSeed decides letter sequence.
Random ranges:

Buffer size 10—-15

Total items 20—-40

3—7 producers & consumers

Starts threads — joins them — checks if

consonants produced = # consumed.

Seeds Example

Command:

java Coordinator 2022 370

— Seed = 2022 sets sizes and counts.

— dlphabetSeed = 370 sets letter pattern.

Same inputs = same output each run.

Correctness Requirements

Consume each item exactly once.

FIFO order preserved.

Producers wait when full; consumers wait when empty.
Threads terminate cleanly (no deadlocks).

Consonant counts match.

Example Output

D:\BABU\DOWNLOADS\Solution>java Coordinator 10
[Coordinator] Buffer Size: 13
[Coordinator] Total Items: 35
[Coordinator] No. of Producer: 3

[Coordinator] No. of Consumers: 6

[Producer

inserted

W

at

index

[Producer

insertec

at

index

[Producer

inserted

at

index

[Producer

insertec

at

index

[Producer

insertec

at

index

Producer

inserted

at

 Consumer
[Consumer
 Consumer
 Consumer
[Consumer
 Consumer

consumed
consumec
consumedc
consumedc
consumed

consumedc

at
at
at
at
at
at

index

index
index
index
index
index
index

2025-10-29
2025-10-29
2025-10-29
2025-10-29
2025-10-29
2025-10-29

2025-10-29
2025-10-29
2025-10-29
2025-10-29
2025-10-29
2025-10-29

477209400
.030344400
.933887400
.933887400
. 939657900
.939657900

.092342400
. 000U86300
. 000U86300
. 000U 86300
. 000U86300
.066110400

Submission Checklist

Submit one .zip or .tar file containing:
Coordinator.java

Producer.java

Consumer.java

Buffer.java

Makefile with build, run, clean

Name file like: FirstName-LastName-HWS.zip

Grading

Major deductions :

Unbounded buffer(-20)

Using Thread.sleep() for sync(-25)
Using advanced Java sync classes(-80)

Using flag variables instead of wait()/notify()(-80)

Key Takeaways

Threads must coordinate shared resources carefully.

wait() + notifyAll() solve producer—consumer conflicts.

Seeds make random behavior reproducible.

Deadlock-free, deterministic synchronization

COLORADO STATE
UNIVERSITY

Thank you

Masfig Reza

masfig.reza@colostate.edu

	Slide 1: HW 5 Overview
	Slide 2: Topic: Synchronization of Producer and Consumer Threads
	Slide 3: Topic: Synchronization of producer and Consumer Threads
	Slide 4: What You’ll Build
	Slide 5: Flowchart
	Slide 6: Buffer (Shared Area)
	Slide 7: Producer
	Slide 8: Consumer
	Slide 9: Coordinator (Main)
	Slide 10: Seeds Example
	Slide 11: Correctness Requirements
	Slide 12: Example Output
	Slide 13: Submission Checklist
	Slide 14: Grading
	Slide 15: Key Takeaways
	Slide 16: Thank you

