CS 370

Producer and Consumer, Synchronization

by

Richi Rodriguez
Assignment Review

• You are supposed to implement a solution to the Producer and Consumer problem, using a circular FIFO buffer.

• There will be at least one Consumer and at least one Producer.

• **Producers**: is/are supposed to generate a certain number of elements. Elements will be randomly generated numbers between 0 and 99 (both inclusive). It also keeps track of the sum of all elements it produced.

• **Consumers**: is/are supposed to consume the elements, produced by the Producer(s). Each consumer will keep its own sum of elements that it consumed.

• Both, Producers and all Consumers, are supposed to report the number produced/consumed along with the index and timestamp with nanosecond resolution.
Producer.java

• The Producers will produce the total number of elements which will be passed as the second argument.
• An identification is passed as the third argument (begin with 1 and increment) to identify each Producer.
• A seed is used to set the random number generator to generate the same sequence every time the same seed is given. It is passed as the fourth argument.
• Generate a number between 0 and 99 (both inclusive) and insert it into the buffer.
• A producer cannot insert an element into the buffer when the buffer is full; if a number is inserted into the buffer successfully, it is added to the checksum the Producer is keeping.
Consumer.java

• A Consumer consumes an element from the buffer.
• Each Consumer will consume a ratio of the total elements (number of elements / number of consumers) if it is evenly divisible.
• A Consumer cannot consume an element when the buffer is empty.
• Once a Consumer consumes an element from the buffer successfully, it adds that number to the checksum it is keeping.
Buffer.java

- Buffer.java contains the circular FIFO buffer that will be used among all the producers and the consumers.
- It also has the required functions that is used to insert or remove an element, and it returns the appropriate values.
- It may additionally have other functions such as isFull(), isEmpty(), etc. depending on your implementation.
Coordinator.java

• This acts as the Coordinator program for this assignment.
• It creates one instance of the buffer, creates required number of threads of producers, creates required number of threads of consumers, and then waits for all of them to finish.
• Reports the final grand check sum representing Producers and Consumers.
Synchronization in Java

- Java has inbuilt monitors
 - Allows threads to have mutual exclusion
 - Allows threads the ability to wait (block) for a condition to become true
- Signalling is done using
 - `wait()`
 - `notify()` or `notifyAll()`

- Built in thread class can be extended and used
 - Instantiate and use `myThread.start()`
 - `@Override run()` to change what a thread does

CS 370 - Operating Systems - Spring 2021
public class PhilosopherThread extends Thread
{
 @Override
 public void run()
 {
 // Thread entry point
 }
}
Creating and Starting threads

```java
public class PhilosopherThread extends Thread {
    @Override
    public void run() {
        // Thread entry point
    }
}

PhilosopherThread Socrates = new PhilosopherThread(table, seat);
Socrates.start(); // begins Socrates thread invokes the run() method
```
Synchronized methods

- A piece of logic marked with synchronized becomes a synchronized block, allowing only one thread to execute at any given time.

```java
public synchronized void pickup(int i) throws InterruptedException {
    //Synchronized code goes in here
}
```
wait(), notify() and notifyAll()

• wait()
 • Causes current thread to wait until another thread invokes the notify() or notifyAll() method
• notify()
 • notify() wakes up one thread waiting for the lock
• notifyAll()
 • The notifyAll() method wakes up all the threads waiting for the lock; the JVM selects one of the threads from the list of threads waiting for the lock and wakes that thread up
CS 370

Raspberry Pi

- Anteneh Zeleke
Topics

• Intro to Raspberry Pi
• Setting up a Raspberry Pi
• Term Project Requirements
• Term Project Expectations
• Helpful Links
Why Raspberry Pi’s

- Small and Portable
- Cheap
- Well-Documented
- Versatile
- Support for many peripherals (thanks to Linux)

Third Best Selling Computer Brand in the World
Raspberry Pi Models

Raspberry Pi 3 Model B+
- 1.4GHz 64-bit quad-core processor
- dual-band wireless LAN
- Bluetooth 4.2/BLE
- faster Ethernet
- Power-over-Ethernet support (with separate PoE HAT)
- Raspberry Pi 4 - Even more memory
Raspberry Pi Setup

- Can connect to monitor, keyboard, mouse
- Usable as a normal desktop
- Optionally use `ssh` instead of a monitor
Raspberry Pi Operating Systems

Expect most groups to use Raspbian (officially supported OS)

Other options are available - some OS’s for specific use cases
Raspberry Pi Operating Systems

GPIO Pin mapping

Used to send signals to external devices (usually)

Alternatively, communicate with other devices over WiFi or mesh network
GPIO Libraries

Python/C

- **RPi.GPIO** (Python)
 - RPi.GPIO code samples
- **RPIO.GPIO** (Python)
- **wiringPi** (Python/C)
- **pigpio** (Python/C/JavaScript)
- **gpiozero** (Python)
- **bcm2835** (C)
Programming Languages

Basically any language will work (Python, C, Java, C++, Javascript, Ruby, Lisp, Rust, R, etc…)

Most projects done in Python or C
Term Project Requirements

Project must involve:

- A single board computer (Raspberry Pi)
 - With WiFi capability + operating system
- Communication with at least one other computer
 - Another board, desktop, assistant, etc.
- At least one sensing or interacting device
 - Heat sensor, motion detector, camera, motor, controller, etc...
Term Project TODO

- Team Composition and Proposal (done)
- Progress Report (due tomorrow)
- Final Report and Demo
 - Report: 1500 - 2500 words
 - Code
 - 10 - 15 Minute Demo
- Presentation
- Peer Review

CS 370 - Operating Systems - Spring 2021
Term Project Expectations

- **Originality**
 - Several groups with similar projects (temperature sensors, plant waterers, etc...)
 - Come up with a unique selling point
 - Find similar projects online, then do something different

- **Thoroughness**
 - Think about the evaluations you’re performing - design careful experiments and control for variables
 - Try to learn something you couldn’t have guessed
Example Projects

- Retro Gaming Console
- RC Car
- Weather Station
- Facial Recognition
- Telescope
Helpful Links

- Help Guides
 - Setup instructions
 - SSH with Raspberry Pi’s
 - Help videos
 - FAQ’s
 - Embedded Linux wiki

- Forums and Tutorials
 - Raspberry Pi forums / projects
 - Hackaday Projects
 - Adafruit Learning Guides
 - Raspberry Pi subreddit
Thank you - Questions?