
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 Lecture 19

CS370 Operating Systems

Virtual Memory
Virtual Machines

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Demand paging: Basic Concepts
• Demand paging: pager brings in only those pages

into memory what are needed
• How to determine that set of pages?

– Need new MMU functionality to implement demand
paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from

storage
• Without changing program behavior
• Without programmer needing to change code

3

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk

4

Page Fault

• If there is a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault
• Operating system looks at a table to decide:

– Invalid reference Þ abort
– Just not in memory, but in backing storage, ->2

• Find free frame
• Get page into frame via scheduled disk operation
• Reset tables to indicate page now in memory

Set validation bit = v
• Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

5

Steps in Handling a Page Fault

6

Performance of Demand Paging (Cont.)
• Three major activities

– Service the interrupt – careful coding means just several hundred
instructions needed

– Read the page – relatively long time
– Restart the process – again just a small amount of time

• Page Fault Rate 0 £ p £ 1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access time

+ p (page fault overhead
+ swap page out + swap page in)

Hopefully p <<1

Page swap time = seek time + latency time

7

Demand Paging Simple Numerical Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 ns + p (8 milliseconds)

= (1 – p) x 200 + p x 8,000,000 nanosec.
= 200 + p x 7,999,800 ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent, p = ?

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Linear with page
fault rate

We make some simplifying assumptions here.

8

Demand paging and the limits of logical memory

• Without demand paging
– All pages of process must be in physical memory
– Logical memory limited to size of physical memory

• With demand paging
– All pages of process need not be in physical memory
– Size of logical address space is no longer constrained by

physical memory

• Example
– 40 pages of physical memory
– 6 processes each of which is 10 pages in size

• But each process only needs 5 pages as of now

– Run 6 processes with 10 pages to spare

Higher degree of
multiprogramming

9

Coping with over-allocation of memory

Example
• Physical memory = 40 pages
• 6 processes each of which is of size 10 pages

– But are using 5 pages each as of now
• What happens if each process needs all 10 pages?

– 60 physical frames needed

• Option: Terminate a user process
– But paging should be transparent to the user

• Option: Swap out a process
– Reduces the degree of multiprogramming

• Option: Page replacement: selected pages.
Policy? soon

10

Solving the Fork mystery(Copy-on-Write)

• Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory
– If either process modifies a shared page, only then is page copied

• COW allows more efficient process creation as only modified pages are
copied

• In general, free pages are allocated from a pool of zero-fill on-demand
pages
– Pool should always have free frames for fast demand page execution

• Don’t want to have to free a frame as well as other processing on
page fault

– Why zero-out a page before allocating it? (security)

For
security

11

Copy-on-write
Before Process 1 Modifies Page C

After Process 1 Modifies Page C

12

What Happens if there is no Free Frame?

• Could be all used up by process pages or
kernel, I/O buffers, etc
– How much to allocate to each?

• Page replacement – find some page in
memory, but not really in use, page it out
– Algorithm – terminate? swap out? replace the

page?
– Performance – want an algorithm which will result

in minimum number of page faults
• Same page may be brought into memory

several times
Continued to Page replacement etc...

13

Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to include
page replacement

• Page replacement completes separation
between logical memory and physical memory
– large virtual memory can be provided on a
smaller physical memory

• Use modify (dirty) bit to reduce overhead of
page transfers – only modified pages are
written to disk

14

Basic Page Replacement

1. Find the location of the desired page on disk
2. Find a free frame:

I. If there is a free frame, use it
II. If there is no free frame, use a page replacement algorithm to select a

victim frame
III. Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update
the page and frame tables

4. Continue the process by restarting the instruction that caused
the trap

Note now potentially 2 page transfers for page fault – increasing
EAT

15

Page Replacement

Page table after swap

16

More algorithms …

17

Virtual Machines
• We need to do a context switch here.
• The next assignment involves containers. WE need to

start this now to allow us to focus on the project in the
later part of the semester.

• Let us look at Virtual machines and Containers next,
and we’ll restore the context and come back to Page
replacement algorithms.

18 18

Colorado State University
Yashwant K Malaiya

Fall 2021

CS370 Operating Systems

Virtualization &
Containerization

Slides based on
• Various sources

19

Virtualization

• Why we need virtualization?
• The concepts and terms
• Brief history of virtualization
• Types of virtualization
• Implementation Issues
• Containers

Ch 18 + external

We will skip implementation specific details. Please consult the
documentation and watch related videos.

20

Isolation and resource allocation
Isolation levels:
• Process: Isolated address space
• Container: Isolated set of processes, files and network
• Virtual Machines (VM): Isolated OSs
• Physically isolated machines
Resource allocation:
• Resources need to be allocated to

processes/containers/VMs and
• managed to serve needs best.

21

Virtualization

• A Virtual scheme provides a simpler perspective of a
Physical scheme. Needs mapping.
– Example: each process a separate virtual address space.
– OS allocates physical memory and disk space and handles mapping.

• System (“machine”) virtualization
– A machine needs its own CPU, memory, storage, I/O to run its OS

and apps. “Machine” = {CPU, memory, storage, I/O, OS, apps}
– Needs to be isolated from other machines.
– “Virtual machines” allocated resources from physical hardware,

with allocation done by a Virtual Machine Monitor (VMM or
hypervisor.

– A virtual machine can be “migrated” from one physical system to
another.

22

Virtualization

23

Virtualization

• Processors have gradually become very powerful
• Dedicated servers can be very underutilized (5-15%)
• Virtualization allow a single server to support several

virtualized servers: typical consolidation ratio 6:1

• Power cost a major expense for data centers
– Companies frequently locate their data centers in the middle of

nowhere where power cost is low

• If a hardware server crashes, would be nice to migrate the
load to another one.

• A key component of cloud computing

24

Virtual Machines (VM)

• Virtualization technology enables a single PC/server to
simultaneously run multiple Virtual Machines,
– with different operating systems or multiple sessions of a single OS.

• A machine with virtualization can host many applications,
including those that run on different operating systems, on
a single platform.

• The host operating system can support a number of virtual
machines, each of which has the characteristics of a
particular OS.

• The software that enables virtualization is a virtual
machine monitor (VMM), or hypervisor.

25

Virtual Machines (VM)

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

Traditional
physical machine

Hypervisor with
virtual machines

OS

OS OS OS

26

Kinds of Virtual Systems

Virtualization
• Hypervisor based

– Full virtualization: bare metal hypervisor
– Para virtualization: modified guest OS
– Host OS virtualization

• Container system: multiple user space instances
• Environment virtualization

– Java virtual machine, Dalvic virtual machine

• Software simulation of hardware/ISA
– Android JDK
– SoftPC etc.

• Emulation using microcode

27

Brief history

• Early 1960s IBM experimented with two independently
developed hypervisors - SIMMON and CP-40

• Common CPU modes: user and supervisor (Privileged)
• In 1974, Popek and Goldberg published a paper which listed

what conditions a computer architecture should satisfy to
support virtualization efficiently
– Privileged instructions: Those that trap if the processor is in user mode

and do not trap if it is in system mode (supervisor mode).
– Sensitive instructions: that attempt to change the configuration of

resources in the system or whose behavior or result depends on the
configuration of resources

– Theorem. For any conventional third-generation computer, an effective
VMM may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

– The x86 architecture that originated in the 1970s did not meet these
for requirements for decades.

•

28

“Strictly Virtualizable”

A processor or mode of a processor is strictly virtualizable if,
when executed in a lesser privileged mode:

• all instructions that access privileged state trap
• all instructions either trap or execute identically

29

Brief history (recent)

• Stanford researchers developed a new hypervisor and then
founded VMware
– first virtualization solution for x86 in 1999
– Linux, windows

• Others followed
– Xen, 2003 University of Cambridge, Xen Project

community
– KVM, 2007 startup/Red Hat
– VirtualBox (Innotek GmbH/Sun/Oracle) , 2007
– Hyper-V (Microsoft), 2008

• Cgroups (2007 Google), Docker Engine 2013

30

Implementation of VMMs
– Type 1 hypervisors - Operating-system-like software built

to provide virtualization. Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems that
provide standard functions as well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard
operating systems but provide VMM features to guest
operating systems
• Including VMware Workstation and Fusion, Parallels Desktop, and Oracle

VirtualBox

31

Implementation of VMMs

https://microkerneldude.files.wordpress.com/2012/01/type1-vs-2.png

A higher layer uses services of the lower layers.

32

Market share

All 3 are Type 1 http://www.virtualizationsoftware.com/top-5-enterprise-type-1-hypervisors/

33

User mode and Kernel (supervisor) mode

• Special instructions:
• Depending on whether it is executed in kernel/user mode

– “Sensitive instructions”

• Some instructions cause a trap when executed in user-
mode
– “Privileged instructions”

• A machine is virtualizable only if sensitive instructions are a
subset of privileged instructions
– Intel’s 386 did not always do that. Several sensitive 386 instructions

were ignored if executed in user mode.

• Fixed in 2005 virtualization may need to be enabled using BIOS

– Intel CPUs: VT (Virtualization Technology)
– AMD CPUs: SVM (Secure Virtual Machine)

34

Virtualization support

• Terminology:
– Guest Operating System

• The OS running on top of the hypervisor

– Host Operating System
• For a type 2 hypervisor: the OS that runs on the hardware ¨executions

• Create environments in which VMs can be run
• When a guest OS is started in an environment, continues to

run until it causes an exception and traps to the hypervisor
– For e.g., by executing an I/O instruction

• Set of operations that trap is controlled by a hardware bit
map set by hypervisor
– trap-and-emulate approach becomes possible

35

Implementation of VMMs

What problems do you see?
• What mode does hypervisor run in? Guest OSs?
• Are Guest OSs aware of hypervisor?
• How is memory managed?
• How do we know what is the best choice?

36

Virtual Machine (VM) as a software construct

• Each VM is configured with some number of processors,
some amount of RAM, storage resources, and connectivity
through the network ports.

• Once the VM is created it can be activated on like a physical
server, loaded with an operating system and software
solutions, and used just like a physical server.

• Unlike a physical server, VM only sees the resources it has
been configured with, not all of the resources of the
physical host itself.

• The hypervisor facilitates the translation and I/O between
the virtual machine and the physical server.

37

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,
– how many virtual processors (vCPUs)
– how much RAM is allocated,
– which I/O devices the VM has access to,
– how many network interface cards (NICs) are in the virtual server
– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

38

Virtualization benefits

• Run multiple, OSes on a single machine
– Consolidation, app dev, …

• Security: Host system protected from VMs, VMs
protected from each other
– Sharing though shared file system volume, network communication

• Freeze, suspend, running VM
– Then can move or copy somewhere else and resume

• Live migration

– Snapshot of a given state, able to restore back to that state
– Clone by creating copy and running both original and copy

• Hence – cloud computing

39

Building Block – Trap and Emulate

• VM needs two modes: both in real user mode
– virtual user mode and virtual kernel mode

• When Guest OS attempts to execute a privileged
instruction, what happens?
– Causes a trap
– VMM gains control, analyzes error, executes operation

as attempted by guest
– Returns control to guest in user mode
– Known as trap-and-emulate

• Trap-and-emulate was the technique used for
implementing floating point instructions in CPUs
without floating point coprocessor

40

Handling sensitive instructions

• Some CPUs didn’t have clean separation between
privileged and non-privileged instructions
– Sensitive instructions

• Consider Intel x86 popf instruction
• If CPU in privileged mode -> all flags replaced
• If CPU in user mode -> on some flags replaced

– No trap is generated

• Binary translation (complex) solves the problem
1. If guest VCPU is in user mode, guest can run instructions natively
2. If guest VCPU in kernel mode (guest believes it is in kernel mode)

1. VMM examines every instruction guest is about to execute by reading a
few instructions ahead of program counter

2. Special instructions translated into new set of instructions that perform
equivalent task (for example changing the flags in the VCPU)

3. Cached translations can reduce overhead
• Not needed in newer processors with virtualization

support.

41

Type 1 Hypervisors

• Run on top of bare metal
• Guest OSs believe they are running on bare metal, are unaware of

hypervisor
– are not modified
– Better performance

• Choice for data centers
• Consolidation of multiple OSes and apps onto less HW
• Move guests between systems to balance performance
• Snapshots and cloning

• Hypervisor creates runs and manages guest OSes
– Run in kernel mode
– Implement device drivers
– provide traditional OS services like CPU and memory management

• Examples: VMWare esx (dedicated) , Windows with Hyper-V (includes
OS)

42

Type 2 Hypervisors

• Run on top of host OS
• VMM is simply a process, managed by host OS
– host doesn’t know they are a VMM running guests

• poorer overall performance because can’t take
advantage of some HW features

• Host OS is just a regular one
– Individuals could have Type 2 hypervisor (e.g.

Virtualbox) on native host (perhaps windows), run one
or more guests (perhaps Linux, MacOS)

43

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.
– Introduced and developed by Xen

• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support
– allowed virtualization of older x86 CPUs without binary

translation
– Not used by Xen on newer processors

44

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest
– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like

native operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs
– Some add fairness aspect

45

CPU Scheduling (cont)

• Oversubscription of CPUs means guests may get
CPU cycles they expect
– Time-of-day clocks may be incorrect
– Some VMMs provide application to run in each guest to

fix time-of-day

