
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 L20
Containers, Virtual Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Implementation of VMMs

Type 1: (ex VMWare esx) Low overhead, choice for data centers
– Run in kernel mode, Implement device drivers, provide traditional OS services

Type2: (ex Virtualbox) Individuals, small organizations
– VMM is simply a process, managed by host OS

A higher layer uses services of the lower layers.

Q: Do we really always need
multiple copies of the OS?

3

Full vs Para-virtualization

• Full virtualization: Guest OS is unaware of the
hypervisor. It thinks it is running on bare metal.

• Para-virtualization: Guest OS is modified and
optimized. It sees underlying hypervisor.
– Introduced and developed by Xen

• Modifications needed: Linux 1.36%, XP: 0.04% of code base

– Does not need as much hardware support
– allowed virtualization of older x86 CPUs without binary

translation
– Not used by Xen on newer processors

4

D2 Submission
• Research and Development Canvas groups will be

created in a couple of days by us.
– All members of a team must join an applicable type of Canvas

Groups.

• Only one team member (leader) will submit.
Submission will be in the team leaders’ section.
– Grade will automatically apply to all members, if they are in

the same section.
– Please give section numbers of all members in a multi-

section team.

5

CPU Scheduling

• One or more virtual CPUs (vCPUs) per guest
– Can be adjusted throughout life of VM

• When enough CPUs for all guests
– VMM can allocate dedicated CPUs, each guest much like

native operating system managing its CPUs

• Usually not enough CPUs (CPU overcommitment)
– VMM can use scheduling algorithms to allocate vCPUs
– Some add fairness aspect

6

CPU Scheduling (cont)

• Oversubscription of CPUs means guests may get
CPU cycles they expect
– Time-of-day clocks may be incorrect
– Some VMMs provide application to run in each guest to

fix time-of-day

7

Memory Management

Memory mapping:
• On a bare metal machine: OS uses page table/TLB to map Virtual page

number (VPN) to Physical page number (PPN) (physical memory is
shared). Each process has its own page table/TLB.
– VPN -> PPN

• VMM: Real physical memory (machine memory) is shared by the OSs.
Need to map PPN of each VM to MPN (Shadow page table)

PPN ->MPN

8

Memory Management

• VMM: Real physical memory (machine memory) is
shared by the OSs. Need to map PPN of each VM
to MPN (Shadow page table)

PPN ->MPN

• Where is this done?
– Has to be done by hypervisor type 1. Guest OS knows

nothing about MPN.
– Page Table/TLB updates are trapped to VMM.

It needs to do VPN->PPN ->MPN.
– It can do VPN->MPN directly (VMware ESX)

9

Handling memory oversubscription

Oversubscription solutions:
– Deduplication by VMM determining if same page loaded

more than once, memory mapping the same page into
multiple guests

– Double-paging, the guest page table indicates a page is
in a physical frame but the VMM moves some of those
to disk.

– Install a pseudo-device driver in each guest (it looks like a device
driver to the guest kernel but really just adds kernel-mode code to the guest)

• Balloon memory manager communicates with VMM and is told
to allocate or deallocate memory to decrease or increase
physical memory use of guest, causing guest OS to free or have
more memory available.

10

Virtual Machine (VM) as a set of files

• Configuration file describes the attributes of the virtual
machine containing
– server definition,
– how many virtual processors (vCPUs)
– how much RAM is allocated,
– which I/O devices the VM has access to,
– how many network interface cards (NICs) are in the virtual server
– the storage that the VM can access

• When a virtual machine is instantiated, additional files are
created for logging, for memory paging etc.

• Copying a VM produces not only a backup of the data but
also a copy of the entire server, including the operating
system, applications, and the hardware configuration itself

11

Live Migration

Running guest can be moved between systems, without interrupting user
access to the guest or its apps

– for resource management,
– maintenance downtime windows, etc

• Migration from source VMM to target VMM

– Needs to migrate all pages gradually, without
interrupting execution (details in next slide)

– Eventually source VMM freezes guest, sends vCPU’s final
state, sends other state details, and tells target to start
running the guest

– Once target acknowledges that guest running, source
terminates guest

12

Live Migration

• Migration from source VMM to target VMM
– Source establishes a connection with the target
– Target creates a new guest
– Source sends all read-only memory pages to target
– Source starts sending all read-write pages
– Source VMM freezes guest, sends final stuff,
– Once target acknowledge that guest running, source terminates

guest.

Guest Target running

5 – Send Dirty Pages (repeatedly)

4 – Send R/W Pages

3 – Send R/O Pages

1 – Establish0 – Running
Guest Source

V
M

M
 S

ou
rc

e

7 – Terminate
Guest Source

V
M

M
 T

ar
ge

t

2 – Create
Guest Target

6 – Running
Guest Target

13

VIRTUAL APPLIANCES: “shrink-wrapped” virtual machines

• Developer can construct a virtual machine with
– required OS, compiler, libraries, and application code
– Freeze them as a unit … ready to run

• Customers get a complete working package
• Virtual appliances: “shrink-wrapped” virtual machines
• Amazon’s EC2 cloud offers many pre-packaged virtual

appliances examples of Software as a service

• Question: do we really have to include a whole kernel in a
shrink wrapped VM?

14 14

Colorado State University
Yashwant K Malaiya

Spring 2022

CS370 Operating Systems

Containers
Slides based on
• Various sources

15

Linux Containers and Docker

• Linux containers (LXC 2008) are “lightweight” VMs
• Comparison between LXC/docker (2013) and VM

• Containers provide “OS-level Virtualization” vs “hardware level”.
• Containers can be deployed in seconds.
• Very little overhead during execution, even better than Type 1 VMM.

Note

16

VMs vs Containers

VMs Containers (“virtual environment”)
Heavyweight several GB Lightweight tens of MB
Limited performance Native performance
Each VM runs in its own OS All containers share the host OS
Hardware-level virtualization OS virtualization
Startup time in minutes Startup time in milliseconds
Allocates required memory Requires less memory space
Fully isolated and hence more
secure

Process-level isolation, possibly less
secure

17

Container: basis

Linux kernel provides
• “control groups” (cgroups) functionality for a set of processes

–allows allocation and prioritization of resources (CPU, memory, block
I/O, network, etc.) without the need for starting any VM

• “namespace isolation” functionality
–allows complete isolation of an applications' view of the operating

environment including Process trees, networking, user
IDs and mounted file systems.

• Managed by
–Docker (or competitors): build, share, run containerized apps.
–Kubernetes (or competitors): orchestration platform for managing,

automating, and scaling containerized applications

Docker – podman/buildah Docker swarm – Kubernetes, OPENSHIFT

18

•Standardized packaging for
software and dependencies

• Isolate apps from each other

•Share the same OS kernel

•Works for all major Linux
distributions

•Docker Desktop for Windows uses
Windows-native Hyper-V
virtualization (Win10)

•Containers native to Windows
Server 2016

• Docker: a popular container
management service technology.
Alternatives: Podman etc

What is a container?

Container

19

Some Docker vocabulary

• Docker Image
• The basis of a Docker container. Represents a full application

• Docker Container
• The standard unit in which the application service resides and executes

• Docker Engine
• Creates, ships and runs Docker containers deployable on a physical or

virtual, host locally, in a datacenter or cloud service provider
• Registry Service (Docker Hub(Public) or Docker Trusted

Registry(Private))
• Cloud or server based storage and distribution service for images (can

be pulled or pushed)
• Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image using docker build
command.

19

Correspondence: excecutable:image container:process

20

Some Docker vocabulary: Analogies

Containers have their own jargon. Here are some analogous terms.
Note that some analogies can be questionable.

20

Docker Non-containerized code

What is executed Docker Image executable

Isolation unit Docker Container process

to create what is executed Dockerfile makefile

Docker engine OS/JVM

Registry Service code repository

• Only a high-level look here. For details see documentation and videos.
• Help Session this Wed 5:30 PM.
• Several interrelated technologies. Significant experience needed to gain expertise.

21

Some Docker vocabulary
• Dockerfile is a text document that contains all the commands a user could

call on the command line to assemble an image using docker build
command.

• Ex:

syntax=docker/dockerfile:1
FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

Each instruction creates one layer:
• FROM creates a layer from the ubuntu:18.04 Docker image.
• COPY adds files from your Docker client’s current directory.
• RUN builds your application with make.
• CMD specifies what command to run within the container.

22

Docker Volumes

22

• Volumes mount a directory on the host into the container at a specific location

• Can be used to share (and persist) data between containers
•Directory persists after the container is deleted

• Unless you explicitly delete it

• Can be created in a Dockerfile or via CLI

23

Docker Compose: Multi Container Applications

49

• Build and run one container at a time
• Manually connect containers together
• Must be careful with dependencies and start

up order

• Define multi container app in compose.yml file
• Single command to deploy entire app
• Handles container dependencies
• Works with Docker Swarm, Networking,

Volumes, Universal Control Plane

24

version: '2' # specify docker-compose version

Define the services/containers to be run
services:
angular: # name of the first service
build: client # specify the directory of the Dockerfile
ports:
- "4200:4200" # specify port forewarding

express: #name of the second service
build: api # specify the directory of the Dockerfile
ports:
- "3977:3977" #specify ports forewarding

database: # name of the third service
image: mongo # specify image to build container from
ports:
- "27017:27017" # specify port forewarding

Docker Compose: Multi Container Applications

25

• Docker technology used for containers and can
deploy single, containerized applications.

• Docker Compose for configuring and starting
multiple Docker containers on the same host.

• Docker swarm is a container orchestration tool
that allows you to run and connect containers on
multiple hosts.

• Kubernetes is a container orchestration tool that is
similar to Docker swarm, but has ease of
automation and ability to handle higher demand.

Terms

26

• docker — — version get the currently installed version of docker
• docker build <path to docker file> build an image from a specified docker file
• docker login login to the docker hub repository
• docker pull <image name> pull images from the docker repository hub.docker.com
• docker push <username/image name>
• docker run -it -d <image name> create a container from an image
• docker stop <container id> stops a running container
• docker kill <container id> kills the container by stopping its execution immediately
• docker rm <container id> delete a stopped containerdocker ps list the running

containers
• docker exec -it <container id> bash to access the running container
• docker commit <conatainer id> <username/imagename> creates a new image of

an edited container
• docker images lists all the locally stored docker images

Some Docker Commands

27

Unique features

• Containers run in the user space
• Each container has it own: process space, network interface,

booting mechanism with configuration
• Share kernel with the host
• Can be packaged as Docker images to provide microservices.

28

Monolithic architecture vs microservices

29

Microservices Accessing the Shared Database

29

30

Microservices Characteristics

• Many smaller (fine grained), clearly
scoped services
– Single Responsibility Principle
– Independently Managed

• Clear ownership for each service
– Typically need/adopt the “DevOps” model

• 100s of MicroServices
– Need a Service Metadata Registry

(Discovery Service)
• May be replicated as needed
• A microservice can be updated without

interruption

31

Microservices. Scalability

32

Back from VMs & Containers
• We need to do a context switch back here.

33 33

Colorado State University
Yashwant K Malaiya

Spring 2022 Lecture 20

CS370 Operating Systems

Virtual Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

34

Page Replacement Algorithms

• Page-replacement algorithm
– Which frames to replace
– Want lowest page-fault rate

• Evaluate algorithm by running it on a particular
string of memory references (reference string) and
computing the number of page faults on that string
– String is just page numbers, not full addresses
– Repeated access to the same page does not cause a page

fault
– Results depend on number of frames available

• In all our examples, we use 3 frames, and the
reference string of referenced page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

35

Graph of Page Faults Versus The Number of Frames

What we would generally expect

36

Page Replacement Algorithms
Algorithms
• FIFO
• “Optimal”
• The Least Recently Used (LRU)

– Exact Implementations
• Time of use field, Stack

– Approximate implementations
• Reference bit
• Reference bit with shift register
• Second chance: clock
• Enhanced second chance: dirty or not?

• Other

37

FIFO page replacement algorithm:
Out with the old; in with the new

• When a page must be replaced
– Replace the oldest one

• OS maintains list of all pages currently in
memory
– Page at head of the list: Oldest one
– Page at the tail: Recent arrival

• During a page fault
– Page at the head is removed
– New page added to the tail

38

First-In-First-Out (FIFO) Algorithm
• Reference string:

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time

per process)

• 15 page faults (out of 20 accesses)
• Sometimes a page is needed soon after

replacement 7,0,1,2,0,3 (0 out),0, ..

39

Belady’s Anomaly
• Consider Page reference string 1,2,3,4,1,2,5,1,2,3,4,5

– 3 frames, 9 faults, 4 frames 10 faults! Try yourself.
– Sometimes adding more frames can cause more page

faults!
• Belady’s Anomaly

Lazlo Belady was
here at CSU. Guest

in my CS530!

n
u
m

b
e
r

o
f
p
a
g
e
 f
a
u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7 Budapest, 1928

40

“Optimal” Algorithm Belady 66

• Replace page that will not be used for longest period of time

– 4th access: replace 7 because we will not use if got the longest time…
– 9 page replacements is optimal for the example

• But how do we know the future pages needed?
– Can’t read the future in reality.

• Used for measuring how well an algorithm performs.

41

Least Recently Used (LRU) Algorithm
• Use past knowledge rather than future
• Replace page that has not been used in the most amount

of time (4th access – page 7 is least recently used …_)
• Associate time of last use with each page

• 12 faults – better than FIFO (15) but worse than OPT (9)
• Generally good algorithm and frequently used
• But how to implement it by tracking the page usage?

Track usage
carefully!

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

42

Least Recently Used (LRU) Algorithm
LRU page number is marked (*).
Unmarked if that page is accessed.

LRU applied to cache memory.

https://www.youtube.com/watch?v=wwQTmLZ_t8M
https://www.youtube.com/watch?v=R5ON3iwx78M

43

Least Recently Used (LRU) Algorithm

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7* 7* 2 2 2* 2* 4 4 4* 0 0 0* 1

0 0 0* 0 0 0 0 0* 3 3 3 3 3

1 1 1* 3 3 3* 2 2 2 2* 2 2

* Use past knowledge rather than future
• 12 faults – better than FIFO (15) but worse than

OPT (9)
• Tracking the page usage. One approach: mark

least recently used page each time.

• Other approach: use stack for tracking (soon)

44

LRU Algorithm: Implementations
Possible tracking implementations
• Counter implementation

– Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the
counter

– When a page needs to be changed, look at the counters
to find smallest value
• Search through table needed

• Stack implementation
– Keep a stack of page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– Each update expensive
– No search for replacement needed (bottom is least recently used)

45

Use Of A Stack to Record Most Recent Page References

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

Too slow if done in software

Least recently used ->

Most recently used ->

This shows tracking stack,
not actual frames.

46

Use Of A Stack to Record Most Recent Page References
Examine this at home.

Least recently used ->

Most recently used ->
4 7 0 7 1 0 1 2 1 2 7 1 2

4 7 0 7 1 0 1 2 1 2 7 1 2

4 7 0 7 1 0 1 2 1 2 7 1

4 4 0 7 7 0 0 0 1 2 7

4 4 4 7 7 7 0 0 0

4 4 4 4 4 4

Detailed version of previous slide.
This shows tracking stack, not actual frames.

47

Use Of A Stack to Record Most Recent Page References

LRU->

MRU->

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 0 1 2 0 3 0 4 2 3 0 3

7 0 1 2 0 3 0 4 2 3 0

7 0 1 2 2 3 0 4 2 2

Earlier problem (upper) revisited.
This shows tracking stack, not actual frames.

48

LRU Approximation Algorithms
• LRU needs special hardware and still slow
• Reference 1 bit per frame to track history

– With each page associate a bit, initially = 0
– When the page is referenced, bit set to 1
– Replace any page with reference bit = 0 (if one

exists)
• 0 implies not used since initialization
• We do not know the order, however.

• Advanced schemes using more bits: preserve more
information about the order

49

Ref bit + history shift register
LRU approximation 9 bits per frame to track history

Ref bit: 1 indicates used, Shift register records history. Examples:

Ref Bit Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000

1 1001 0001 1100 1000

0 0110 0011 0011 0001

• Interpret 8-bit bytes as unsigned integers
• Page with the lowest number is the LRU page: replace.

Examples:
• 00000000 : Not used in last 8 periods
• 01100101 : Used 4 times in the last 8 periods
• 11000100 used more recently than 01110111

50

Second-chance algorithm
• Second-chance algorithm

– Generally FIFO, plus hardware-provided reference
bit

– Avoid throwing out a heavily used page
– “Clock” replacement (using circular queue): hand

as a pointer
– Consider next page

• Reference bit = 0 -> replace it
• reference bit = 1 then: give it another chance

– set reference bit 0, leave page in memory
– consider next page, subject to same rules

51

Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

• Clock replacement: hand
as a pointer

• Consider next page
– Reference bit = 0 ->

replace it
– reference bit = 1 then:

• set reference bit 0, leave
page in memory

• consider next page,
subject to same rules

Example:
(a) Change to 0, give it
another chance
(b) Already 0. Replace page

52

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if
available) in concert clean page: better replacement candidate

• Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to

replace
2. (0, 1) not recently used but modified – not quite as good,

must write out before replacement
3. (1, 0) recently used but clean – probably will be used again

soon
4. (1, 1) recently used and modified – probably will be used

again soon and need to write out before replacement
• When page replacement called for, use the clock scheme

but use the four classes replace page in lowest non-empty
class
– Might need to search circular queue several times

53

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page
– Not common

• Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

54

Clever Techniques for enhancing Perf
• Keep a buffer (pool) of free frames, always

– Then frame available when needed, not found at fault
time

– Read page into free frame and select victim to evict
and add to free pool

– When convenient, evict victim
• Keep list of modified pages

– When backing store is otherwise idle, write pages there
and set to non-dirty (being proactive!)

• Keep free frames’ previous contents intact and
note what is in them
– If referenced again before reused, no need to load

contents again from disk
– Generally useful to reduce penalty if wrong victim

frame selected

55

Buffering and applications

• Some applications (like databases) often
understand their memory/disk usage better
than the OS
– Provide their own buffering schemes
– If both the OS and the application were to buffer

• Twice the I/O is being utilized for a given I/O

– OS may provide “raw access” disk to special
programs without file system services.

