CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Fall 2021 L21

Virtual Memory

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

Please be considerate

* Allow other students to focus
— No talking (except for iClicker sessions), humming, etc.
— No cell phone use (except for iClicker)

— No laptop/handheld use, unless pledge submitted, and rules
followed.

— No leaving in the middle of the class or just after an iClicker
session.

Colorado State University

First-In-First-Out (FIFO) Algorithm

e Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

e 3 frames (3 pages can be in memory at a time
per process)

reference string
7 012 0 3 0 4 2 3 03 21 2017 01

7| 7] 7] 2| [2] [2] 4] [4] 4] Jo 0| o
| o] o] o] [3] 3] |3] |2 [2] |2 1] [1] Jo] o]
L) [lof fof ol 3] [3 3 2 2] [2] [1]

page frames

e 15 page faults (out of 20 accesses)

 Sometimes a page is needed soon after

replacement 7,0,1,2,0,3 (0 out),0, .. o
Colorado State University

Belady’s Anomaly

* Consider Page reference string 1,2,3,4,1,2,5,1,2,3,4,5
— 3 frames, 9 faults, 4 frames 10 faults!
— Sometimes adding more frames can cause more page

faults!
, Lazlo Belady was
* Belady s Anomaly here at CSU. Guest
in my CS530!
16
o 14}
5
S 12}
o
g 10
o
o 8k
3
£ O
>
c 4 -
2 -
1 1 1 1 1

1
1 o 3 4 5 6 7 Budapest, 1928

number of frames
Colorado State University

II)

Algorithm .

“Optima

* Replace page that will not be used for longest period of time

reference string
7 0 2 0 3 0 4 2 3 0 38 2 7 0 1

0

page frames

— 4™ access: replace 7 because we will not use if got the longest time...
— 9 page replacements is optimal for the example

* But how do we know the future pages needed?
— Can’ t read the future in reality.

e Used for measuring how well an algorithm performs.

Colorado State University

Least Recently Used (LRU) Algorithm

Use past knowledge rather than future

Replace page that has not been used in the most amount
of time (4t access — page 7 is least recently used ...)

. . _ Track usage
Associate time of last use with each page carefully!

reference string
O 3 0 4 2 3

7772
32

page frames

12 faults — better than FIFO (15) but worse than OPT (9)
Generally good algorithm and frequently used
But how to implement it by tracking the page usage?

LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Colorado State University

Least Recently Used (LRU) Algorithm

* Use past knowledge rather than future

e 12 faults — better than FIFO (15) but worse than
OPT (9)

* Tracking the page usage. One approach: mark
least recently used page each time.

2 N N X N N N N N N N EN N EN EN N E ER
7 7% 7 2 2 2 2 4 4 4* 0 0 0* 1
o o o 0o o O o o0 3 3 3 3 3
1 1 1* 3 3 3* 2 2 2 2 2 2

e Other approach: use stack for tracking (soon)

Colorado State University

LRU Algorithm: Implementations

Possible tracking implementations

* Counter implementation

— Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the

counter
— When a page needs to be changed, look at the counters
to find smallest value
e Search through table needed

e Stack implementation
— Keep a stack of page numbers in a double link form:
— Page referenced:

* move it to the top
* requires 6 pointers to be changed

— Each update expensive
— No search for replacement needed (bottom is least recently used)

Colorado State University

Use Of A Stack to Record Most Recent Page References

reference string

4 7 0 7 1 0 1 2

Most recently used -> 2 7

1 2

0 1

7 0

Least recently used -> 4 4
stack stack
before after

a b

Too slow if done in software

This shows tracking stack,
not actual frames.

Colorado State University

Use Of A Stack to Record Most Recent Page References

Examine this at home.

Most recently used -> 0 1 2 1 2 2
4 7 0 7 1 0 1 2 1 2 7 1
4 4 0 7 7 0 0 O 1 2 7
4 4 4 7 7 7 0 0 O
Least recently used -> 4 4 4 4 4 4
Detailed version of previous slide.
This shows tracking stack, not actual frames.
0 Colorado State University

Use Of A Stack to Record Most Recent Page References

reference string
2 0 3 0 4 2 3 0 3 2

7772
322

page frames

Earlier problem (upper) revisited.
This shows tracking stack, not actual frames.

MRU-> 12 0 3 0 4 2 3 0 3
/701 2 0 3 0 4 2 3 O
/70 1 2 2 3 0 4 2 2

LRU->

Colorado State University

11

LRU Approximation Algorithms

* LRU needs special hardware and still slow

¢ REferenCE 1 bit per frame to track history
— With each page associate a bit, initially =0
— When the page is referenced, bit setto 1

— Replace any page with reference bit = 0 (if one
exists)
* 0 implies not used since initialization
 We do not know the order, however.
 Advanced schemes using more bits: preserve more
information about the order

Colorado State University

12

Ref bit + history shift register

LRU apprOXimation 9 bits per frame to track history
Ref bit: 1 indicates used, Shift register records history. Examples:

Shift Register Shift Register after OS timer interrupt

1 0000 0000 1000 0000
1 1001 0001 1100 1000
0 0110 0011 0011 0001

* Interpret 8-bit bytes as unsigned integers
e Page with the lowest number is the LRU page: replace.
Examples:
e 00000000 : Not used in last 8 periods
e 01100101 : Used 4 times in the last 8 periods
e 11000100 used more recently than 01110111

Colorado State University

13

Second-chance algorithm

* Second-chance algorithm

— Generally FIFO, plus hardware-provided reference
bit
— Avoid throwing out a heavily used page

— “Clock” replacement (using circular queue): hand
as a pointer

— Consider next page
» Reference bit =0 ->replace it
* reference bit = 1 then:
— set reference bit 0, leave page in memory
— consider next page, subject to same rules

Colorado State University

14

Second-Chance (clock) Page-Replacement Algorithm

reference pages
bits

[o]

next
victim

l
=]
R I = I - R ==

.

H.-.

v

N

circular queue of pages

(@)

15

reference pages

o
v
B
v
o
v
o
v
=b(3]
v
N\

circular queue of pages

(b)

* Clock replacement: hand
as a pointer

* Consider next page

— Reference bit=0->
replace it

— reference bit = 1 then:

* set reference bit O, leave
page in memory

e consider next page,
subject to same rules

Example:

(a) Change to O, give it
another chance

(b) Already 0. Replace page

Colorado State University

Enhanced Second-Chance Algorithm

16

Improve algorithm by using reference bit and modify bit (if
available) INn concert clean page: better replacement candidate

1.

2.

Take ordered pair (reference, modify)
(0, 0) neither recently used not modified — best page to
replace

(0, 1) not recently used but modified — not quite as good,
must write out before replacement

. (1, 0) recently used but clean — probably will be used again

soon
(1, 1) recently used and modified — probably will be used
again soon and need to write out before replacement

When page replacement called for, use the clock scheme
but use the four classes replace page in lowest non-empty
class

— Might need to search circular queue several times

Colorado State University

Counting Algorithms

17

* Keep a counter of the number of references
that have been made to each page

— Not common

e Least Frequently Used (LFU) Algorithm:
replaces page with smallest count

* Most Frequently Used (MFU) Algorithm:
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

Colorado State University

Clever Techniques for enhancing Perf

* Keep a buffer (pool) of free frames, always
— Then frame available when needed, not found at fault
time
— Read page into free frame and select victim to evict
and add to free pool

— When convenient, evict victim
* Keep list of modified pages

— When backing store is otherwise idle, write pages there
and set to non-dirty (being proactivel)

* Keep free frames’ previous contents intact and
note what is in them

— |If referenced again before reused, no need to load
contents again from disk

— Generally useful to reduce penalty if wrong victim
frame selected

s Colorado State University

Buffering and applications

 Some applications (like databases) often

understand their memory/disk usage better
than the OS

— Provide their own buffering schemes

— If both the OS and the application were to buffer
* Twice the I/O is being utilized for a given 1/0O

— OS may provide “raw access” disk to special
programs without file system services.

Colorado State University

19

Allocation of Frames

How to allocate frames to processes?

— Each process needs minimum number of frames
Depending on specific needs of the process

— Maximum of course is total frames in the system

 Two major allocation schemes
— fixed allocation
— priority allocation

* Many variations

Colorado State University

20

Fixed Allocation

* Equal allocation — For example, if there are 100 frames
(after allocating frames for the OS) and 5 processes, give
each process 20 frames

— Keep some as free frame buffer pool

* Proportional allocation — Allocate according to the size of
process (need based)

— Dynamic as degree of multiprogramming, process sizes change

Example:

sj= size of process p; Processes P1,p2 m = 62
S = Z Sj 51 =10
m = total number of frames 127
S; 19 ~
a; = allocation for p; = 2L xm 137 S X62 ~ 4

S

az_£ X62 ~ 57

Colorado State Unlver51ty

21

Priority Allocation

* Use a proportional allocation scheme using
priorities rather than size

* |If process P; generates a page fault,
— select for replacement one of its frames or

— select for replacement a frame from a process
with lower priority number

Colorado State University

22

Global vs. Local Allocation

* Global replacement — process selects a
replacement frame from the set of all frames;
one process can take a frame from another

— But then process execution time can vary greatly
— But greater throughput, so more common

* Local replacement — each process selects from
only its own set of allocated frames

— More consistent per-process performance
— But possibly underutilized memory

Colorado State University

23

Problem: Thrashing

* |If a process does not have “enough” pages, the
page-fault rate is very high
— Page fault to get page
— Replace existing frame
— But quickly need replaced frame back

— This leads to:
* Low CPU utilization, leading to

* Operating system thinking that it needs to increase the
degree of multiprogramming leading to

* Another process added to the system

* Thrashing = a process is busy swapping pages in
and out

Colorado State University

24

Thrashing (Cont.)

A

|
| thrashing

CPU utilization

degree of multiprogramming

Colorado State University

25

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
— Process migrates from one locality to another
— Localities may overlap

 Why does thrashing occur in a process?

size of locality > total memory size allocated

— Limit effects by using local or priority page replacement

Colorado State University

26

27

Locality In A Memory-Reference Pattern

memory address

page numbers

34 p i i ﬁ‘ “““
' \ ”Mh s “lHHWMHW i "””‘”'”\‘ e m\ sl \H‘
I
32 I ‘\”‘ it “”" ‘}M “i[U‘ ‘ \ H \” H‘ \||lM H ’”I W‘ ‘
‘\“UH o Ll di ‘ L IH‘HI!‘ H“t \H'm 5‘”\ |
1 \ |
) ‘ HH‘“ “ : ; m‘ ,\| ‘ .‘ H I ‘m‘ ‘.H“ w ‘
30 }\VHW\ o Ll ‘i - M’ Tt _
| |) il
H\” HM‘H M‘Mll M \MHIHHH”)u\H\HlI”HHHHHHHIHH!HHI H ’
28
26 J‘mlﬁ\
m
w'
04 [, '] “ i l’h‘) I
'M‘H I \IH “” ' ‘ lui}
et
i ‘\I.H\hHl\l??!\‘!W”‘H‘Y\TTMU!“IM 'H\““‘N””H e) Imlmmn
22 [
S m
sl ‘\ “““
‘ | “;Il\‘ [l
SO TR B 1|
] 1”“1111:1:::”“.‘,:511”” R ‘Ili T um‘ o
—_H ‘;”‘[‘ i ‘ ‘ u.,'w‘n‘“'i'iH”JFC“”H”H ““““ ‘ “““ ‘
18] ‘ B 4H““”’)”‘HUN'\”‘”“H””‘I‘”H‘ “'H‘HHE!H Mn‘ihuwuml\ T T

execution time ——

Colorado State University

Working-Set Model

* A =working-set window = a fixed number of page references

Example: A =10
page reference table
...2615777751623412344434344413234443444...

s s]
|

g t,

WS(t) = {1,2,5,6,7) WSi(t,) = {34}

A
—

* WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in time)

— if A too small, working set will not encompass entire locality
— if Atoo large, working set will encompass several localities
— ws is an approximation of locality

* D=2X WSS, =total demand for frames
— if D> m = Thrashing

— Policy if D > m, then suspend or swap out one of the processes

Colorado State University

28

29

Page-Fault Frequency Approach

More direct approach than WSS

Establish “acceptable” page-fault frequency (PFF)
rate for a process and use local replacement policy

— If actual rate too low, process loses frame
— If actual rate too high, process gains frame

page-fault rate

increase number
of frames

upper bound

lower bound

decrease number
of frames

number of frames

Colorado State University

30

Working Sets and Page Fault Rates

Direct relationship between working set of a process and its page-

fault rate

Working set changes over time

Peaks and valleys over time

working set

page
fault
rate

time

Peaks occur at locality changes: 3 working sets

Colorado State University

31

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

File is then in memory instead of disk
A file is initially read using demand paging
— A page-sized portion of the file is read from the file system into a
physical page
— Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

Simplifies and speeds file access by driving file I/O through
memory rather than read () and write () system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared

But when does written data make it to disk?
— Periodically and / or at file close () time
— For example, when the pager scans for dirty pages

Colorado State University

%)
P
L
O
()
Q.
Q.
(qV)
>
>
. -
o
&
D
>

process A
virtual memory

e
o
D £
S o
— ||| (0| © wm
S5
S E
T T T 1 1 =
[e S e e T
1 T U
I I T Y S - | I
I e B 1 !
1 - =7 1 :
. | 1 11 _@l_| _
\ 4 \A 4 v Vv YY ¥ ©
W, el
o)
e L
= <
™ © — |0 < | = —
Qo ke
3 L
= o\
S L
A Y —
i 7 1.1 0| |5
II _.I 1 1 1]
1 | [B I |
1 | =A== 1
| re=é¢ e -
[T T I R
— ||| (oo

oo
£
o
o
(¢0)
n £
4
cr
o8
O T
ww
S S
SS
L)
o)
L5
_th
Q
2 ¥
(=
@
~
{2
o

ersI

Colorado State

32

Allocating Kernel Memory

* Treated differently from user memory

e Often allocated from a free-memory pool

— Kernel requests memory for structures of varying sizes
* Process descriptors, semaphores, file objects etc.
e Often much smaller than page size

— Some kernel memory needs to be contiguous
» e.g. for device I/O

— approaches (skipped)

13 Colorado State University

Other Considerations -- Prepaging

* Prepaging

— To reduce the large number of page faults that
occurs at process startup

— Prepage all or some of the pages a process will
need, before they are referenced

— But if prepaged pages are unused, I/O and memory
was wasted

— Assume s pages are prepaged and fraction a of the
pages is used

* Iscost of s * a saved pages faults > or < than the cost of
prepaging s *(1- a) unnecessary pages?

* o near zero = greater prepaging loses

Colorado State University

34

Other Issues — Page Size

 Sometimes OS designers have a choice
— Especially if running on custom-built CPU

* Page size selection must take into consideration:
— Fragmentation
— Page table size
— 1/0 overhead
— Number of page faults
— Locality
— TLB size and effectiveness

* Always power of 2, usually in the range 212 (4,096
bytes) to 222 (4,194,304 bytes)

* On average, growing over time

Colorado State University

35

36

Page size issues — TLB Reach

TLB Reach - The amount of memory accessible
from the TLB

TLB Reach = (TLB Size) X (Page Size)

|deally, the working set of each process is stored
in the TLB

— Otherwise there is a high degree of page faults

Colorado State University

Other Issues — Program Structure

* Program structure
— 1int[128,128] data; 1: row, J: column
— Each row is stored in one page

— Program 1
for (jJ = 0; j <128; J++)
for (1 = 0;, 1 < 128; 1++) ...

dataf[i,J] = 0;
128 x 128 = 16,384 page faults
— Program 2 inner loop =1 row =1 page
for (1 = 0; 1 < 128; i++)

for (J = 0; 7 < 128; J++) .
data([i,J] = 0;

128 page faults

Colorado State University

37

Colorado State University

38

39

FAQ

TLB VS Ca C h e ? Caches contains instructions and data, TLB contains only page-to-frame

Can the page table be accessed by the user
prOgra mS? Kernel space

Working set canmean
— Pages accessed in a specified time Window teois available
— Pages currently allocated to a process

Reference bit: set to one if frame accessed.

Minimal info needed for LRU

What page replacement algorithms are
Ccu rrently in USEe variations of LRU/Clock

Second Cha nce/C|OCk: combination of LRU approx. and sequential

search

Colorado State University

https://www.researchgate.net/publication/316511142_A_Survey_Of_Page_Replacement_Algorithms_In_Linux

