
1 1

Colorado State University
Yashwant K Malaiya
Spring 22 Lecture 2

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Notes
Logistics:
• Help Sessions: material not covered in lectures

– Required: attend or watch video.
– Coming Tues/Wed/Th (5:30-6 PM) : HW1 inc C pointers, dynamic

memory allocation, makefiles, Valgrind
• On-line quizzes

– Released Fri evening, due Monday evening 11 PM.
– Allow enough time. Some may take 30-40 minutes or more.
– No collaboration of any type among the students is allowed.

• IC Quizzes
– In-class, iClicker
– Almost everyday 1-2 times.
– Distance students evaluated differently

3

FAQ
Assignments & Quizzes:
• You must work individually. No collaboration is permitted.

– TAs will check to ensure there was no collaboration.
– Automated/manual/data-based approaches

• HW Requirements (C/Java/Python):
– submissions must compile and run on the machines in the CSB-120

Linux lab.
• C and Java: You will provide your own makefile

– the TAs will test them on department machines.
– More details in assignment documents
– HW1 will be available today

http://www.cs.colostate.edu/~info/machines

4

Short History of Operating Systems

• One application at a time
– Had complete control of hardware

• Batch systems
– Keep CPU busy by having a queue of jobs
– OS would load next job while current one runs

• Multiple programs on computer at same time
– Multiprogramming: run multiple programs at

seemingly at the “same time”
– Multiple programs by multiple or single user

• Multiple processors in the same computer
• Multiple OSs on the same computer

1960s
80286
(1984)

Dual
core
2004

Vt-x
2005

5

One Processor One program View
Early processors (LC-3 is an example, simplified ARM)
• Instructions and data fetched from Main Memory using

a program counter (PC)
• Traps and Subroutines
– Obtaining address to branch to, and coming back
– Using Stack Frames for holding

• Prior PC, FP
• Arguments and local variables

• Dynamic memory allocation and heap
• Global data

6

One Processor One program View
• External devices: disk, network, screen, keyboard etc.
• Device interface: Status and data registers
• User and Supervisor modes for processor

– User mode (for user programs)
• Some resources cannot be used directly by a user program
• I/O can be done only using system calls (traps)

– Supervisor (or Kernel, priveiledged) mode
• Access to all resources
• Input/output operations are done in kernel mode, hence require system calls.

• I/O
– Device drivers can use polling or interrupt
– Interrupts need context switch
– I/O done in supervisor mode
– System calls invoke devise drivers

Enough info to
resume

(registers, process
state etc)

7

What a simple view don’t include
• Cache between CPU and main memory
– Makes the main memory appear much faster

• Direct memory access (DMA) between Main Memory
and Disk (or network etc)
– Transfer by blocks at a time

• Neglecting the fact that memory access slower than
register access

• Letting program run concurrently (Multiprogramming)
or with many threads

• Multiple processors in the system (like in Multicore)

Like the
browser

cache

8

Information transfer in a system
• CPU Registers – (Caches) - Memory
– CPU addresses memory locations
– Bytes/words at a time
– Included in CS270 and similar classes

• Memory – (Controllers hw/sw) - external devices
– Chunks of data
– External devices have their own timing

• DMA with interrupts

– Disk is “external”!

9

System I/O (Chap 1, 12 SGG 10the)

Central
brain

10

I/O Hardware (Cont.)
• I/O Devices have associated registers where

device driver places commands, addresses,
and data
– Data-in register, data-out register
– status register, control register
– Typically, 1-4 bytes, or FIFO buffer

• Devices have associated addresses, used by
– Direct I/O instructions
– Memory-mapped I/O

• Device data and command registers mapped to
processor address space

11

I/O Transfer rates MB/sec

0.1 100.001 10E6000001000110000.0

modem

mouse

keyboard

hard disk

FireWire

SCSI bus

Gigabit Ethernet

Serial ATA (SATA-300)

In!niband (QDR 12X)

PCI Express 2.0 (32)

HyperTransport (32-pair)

system bus

12

Polling vs Interrupt
• Polling: IO initiated by software (P&P, ch 8)

– CPU monitors readiness
– Keeps checking a bit to see if it is time for an

IO operation,
– not efficient

• Interrupts: IO is initiated by hardware (P&P
ch 10.2, YZ ch. 10)

– CPU is informed when the external device is
ready for an IO

– CPU does something else until interrupted

Patt & Patel (CS), Yifeng Zhu (ECE)

13

Interrupts
• Polling is slow
• Interrupts used in practice
• CPU Interrupt-request line triggered by I/O

device
– Checked by processor after each instruction

• Interrupt handler receives interrupts
– Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct
handler
– Context switch at start and end
– Based on priority

• Some interrupts maybe nonmaskable
• Interrupt chaining if more than one device at same

interrupt number

Exact
details cpu

specific

14

Interrupts (Cont.)

• Interrupt mechanism also used for
exceptions, which include
– Terminate process, crash system due to

hardware error
– Page fault executes when memory access

error
– OS causes switch to another process
– System call executes via trap to trigger

kernel to execute request

15

Direct Memory Access (DMA)
• for movement of a block of data
– To/from disk, network etc.

• Requires DMA controller
• Bypasses CPU to transfer data directly

between I/O device and memory
• OS writes DMA command block into memory

– Source and destination addresses
– Read or write mode
– Count of bytes
– Writes location of command block to DMA controller
– Bus mastering of DMA controller – grabs bus from CPU

• Or Cycle stealing from CPU but still much more efficient
– When done, interrupts to signal completion

16

Interrupt-Driven I/O Cycle

Block-by-Block DMA Transfers

17

Six Step Process to Perform DMA Transfer

IDE disk
controller

xDMA/bus/
interrupt
controller

buffer
x

memoryCPU memory bus

PCI bus

cache

CPU

5. DMA controller
 transfers bytes to
 buffer X, increasing
 memory address
 and decreasing C
 until C ! 0

1. device driver is told
 to transfer disk data
 to buffer at address X
2. device driver tells
 disk controller to
 transfer C bytes
 from disk to buffer
 at address X

6. when C ! 0, DMA
 interrupts CPU to signal
 transfer completion

3. disk controller initiates
 DMA transfer
4. disk controller sends
 each byte to DMA
 controllerdisk

disk

disk

disk

Interrupt
when
done

Device driver: sw
Device controller: hw

18

Direct Memory Access Structure

• high-speed I/O devices
• Device controller transfers

blocks of data from buffer
storage directly to main
memory without CPU
intervention

• Only one interrupt is generated
per block

19

I/O Subsystem

• One purpose of OS is to hide peculiarities
of hardware devices from the user

• I/O subsystem responsible for
– Memory management of I/O including

• buffering (storing data temporarily while it is being
transferred),

• caching (storing parts of data in faster storage for
performance),

• spooling (the overlapping of output of one job with
input of other jobs) like printer queue

– General device-driver interface
– Drivers for specific hardware devices

20

A Kernel I/O Structure

21

Application I/O Interface
• I/O system calls encapsulate device behaviors in generic

classes
• Device-driver layer hides differences among I/O

controllers from kernel
• New devices talking already-implemented protocols need

no extra work
• Each OS has its own I/O subsystem structures and device

driver frameworks
• Devices vary in many attributes

– Character-stream or block
– Sequential or random-access
– Synchronous or asynchronous (or both)
– Sharable or dedicated
– Speed of operation
– read-write, read only, or write only

22

Storage

23

Storage Structure
• Main memory – only large storage media that the CPU can access directly

– Random access
– Typically volatile (except for ROM)

• Secondary storage – extension of main memory that provides large nonvolatile
storage capacity
– Hard disks (HDD) – rigid platters covered with magnetic recording material

• Disk surface divided into tracks, which are subdivided into sectors
• The disk controller – transfers between the device and the processor

– Solid-state disks (SSD) – faster than hard disks, lower power consumption
• More expensive, but becoming more popular

• Tertiary/removable storage
– External disk, thumb drives, cloud backup etc.

Memory
for short

Disk
for short

24

Storage Hierarchy

• Storage systems organized in hierarchy
– Speed
– Cost
– Volatility

• Caching – copying information into faster
storage system; main memory can be
viewed as a cache for secondary storage

• Device Driver for each device controller to
manage I/O
– Provides uniform interface between

controller and kernel

25

Storage-Device Hierarchy

One or
the other

26

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit
• Cache managed by hardware. Makes main memory appear much

faster.
• Disks are several orders of magnitude slower.

Level

Name

Typical size

Implementation
technology

Access time (ns)

Bandwidth (MB/sec)

Managed by

Backed by

1

registers

< 1 KB

custom memory
with multiple
ports CMOS

0.25 - 0.5

20,000 - 100,000

compiler

cache

2

cache

< 16MB

on-chip or
o!-chip
CMOS SRAM

0.5 - 25

5,000 - 10,000

hardware

main memory

3

main memory

< 64GB

CMOS SRAM

80 - 250

1,000 - 5,000

operating system

disk

4

solid state disk

< 1 TB

"ash memory

25,000 - 50,000

500

operating system

disk

5

magnetic disk

< 10 TB

magnetic disk

5,000,000

20 - 150

operating system

disk or tape

27

General Concept: Caching
• Important principle, performed at many levels in a

computer (in hardware, operating system, software)
• Information in use copied from slower to faster storage

temporarily
• Faster storage (cache) checked first to determine if

information is there
– If it is, information used directly from the cache (fast)
– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem
– Cache size and replacement policy

• Examples: “cache”, browser cache ..

Cache la
Poudre?

28

Multilevel Caches
• Cache: between registers and main memory

– Cache is faster and smaller than main memory

– Makes main memory appear to be much faster, if the stuff is
found in the cache much of the time

– Hardware managed because of speed requirements

• Multilevel caches
– L1: smallest and fastest of the three (about 4 cycles, 32 KB)

– L2: bigger and slower than L1 (about 10 cycles, 256KB)

– L3: bigger and slower than L2 (about 50 cycles, 8MB)

– Main memory: bigger and slower than L3 (about 150 cycles, 8GB)

• You can mathematically show that multi-level caches
improve performance with usual high hit rates.

29

Multiprocessors

30

Multiprocessors

• Past systems used a single general-purpose processor
– Most systems have special-purpose processors as well

• Multiprocessor systems were once special, now are
common
– Advantages include:

1. Increased throughput
2. Economy of scale
3. Increased reliability – graceful degradation or fault tolerance

– Two types:
1. Asymmetric Multiprocessing – each processor is assigned a

specific task. (older systems)
2. Symmetric Multiprocessing – each processor performs all tasks

31

Multiprocessor
Multi-chip and multicore
• Multi-chip: Systems containing all chips

– Chassis containing multiple separate systems
• Multi-core: chip containing multiple CPUs

Symmetric Multiprocessing Architecture

32

Multiprogramming and multitasking
• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at all times
– Multiprogramming organizes jobs (code and data) so CPU always has one

to execute
– A subset of total jobs in system is kept in memory
– One job selected and run via job scheduling
– When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing
– Response time should be < 1 second
– Each user has at least one program executing in memory [process
– If several jobs ready to run at the same time [CPU scheduling
– If processes don’t fit in memory, swapping moves them in and out to run
– Virtual memory allows execution of processes not completely in memory

33

Multiprogramming, Multitasking, Multiprocessing

• Multiprogramming: multiple program under execution at
the same time, switching programs when needed (older
term)

• Timesharing (multitasking): sharing a CPU among multiple
users using time slicing (older term). Multitasking among
people …

• Multiprocessing: multiple processors in the system
running in parallel.

34

Memory Layout for Multiprogrammed System

35

Switching between modes

• User and Kernel modes
– Handling system class
– Switching processes

• “Interrupts” (hardware and software)

36

Operating-System Operations

• “Interrupts” (hardware and software)
– Hardware interrupt by one of the devices
– Software interrupt (exception or trap):
• Software error (e.g., division by zero)
• Request for operating system service
• Other process problems like processes

modifying each other or the operating
system

37

Operating-System Operations (cont.)

• Dual-mode operation allows OS to protect
itself and other system components

– User mode and kernel mode
– Mode bit provided by hardware

• Provides ability to distinguish when system is
running user code or kernel code

• Some instructions designated as privileged, only
executable in kernel mode

• System call changes mode to kernel, return from call
resets it to user

• Increasingly CPUs support multi-mode
operations
– i.e. virtual machine manager (VMM) mode for

guest VMs

called Supervisor mode
in LC3 processor in P&P book

38

Transition from User to Kernel Mode
• Ex: to prevent a process from hogging resources

– Timer is set to interrupt the computer after some time period
– Keep a counter that is decremented by the physical clock.
– Operating system set the counter (privileged instruction)
– When counter zero generate an interrupt
– Set up before scheduling process to regain control or

terminate program that exceeds allotted time
• Ex: System calls are executed in the kernel mode

39

Multiple modes

Newer processors may offer multiple modes (“rings”)
• Ring -1 hypervisor
• Ring 0 Supervisor
• Rings 1,2 Device drivers
• Ring 3 Applications

To simplify discussions, we will consider only two. Linux uses
only these two.

40

Process Management
• A process is a program in execution. It is a unit of work within the

system. Program is a passive entity; process is an active entity.
• Process needs resources to accomplish its task

– CPU, memory, I/O, files
– Initialization data

• Process termination requires reclaim of any reusable resources
• Single-threaded process has one program counter specifying location

of next instruction to execute
– Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread
• Typically, system has many processes (some user, some operating

system), running concurrently on one or more CPUs
– Concurrency by multiplexing the CPUs among the processes / threads

A program may
involve multiple

processes.

Our text uses terms job and process interchangeably.

41

Process Management Activities

• Creating and deleting both user and system processes
• Suspending and resuming processes
• Providing mechanisms for

– process synchronization
– process communication
– deadlock handling

The operating system is responsible for the following
activities in connection with process management:

More about these
later

