
1 1

Colorado State University
Yashwant K Malaiya
Spring 22 Lecture 5

OS Structures/Processes

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
• API vs system call User programs in a high level language use APIs, APIs are

wrappers for system calls that call system routines. Example Linux x-86 system call code.

• System call examples: soon in the class
• Why do we need API (application programing

interface)? So that we don’t have to write the code in assembly. Example

• Who came up with API standard POSIX? Committees of experts.

• Is Windows POSIX compliant? Yes, ..

https://www.cs.utexas.edu/~bismith/test/syscalls/syscalls.html
https://linux.die.net/man/3/read

3

Course notes
• HW2 available due Feb 10.
– Help Session 2: This wed 5:30 PM Room CSB 425

• Self exercises in Teams
• TA: Office hours course website/TEAMSs
– Available on Help Desk in TEAMs

4 4

Colorado State University
Yashwant K Malaiya

ICQ 9/7/21

CS370 Operating Systems

5 5

CS370 OS Ch3 Processes
• Process Concept: a program in execution
• Process Scheduling
• Processes creation and termination
• Interprocess Communication using shared

memory and message passing

6

Process Concept
• An operating system executes a variety of

programs:
– Batch system – jobs
– Time-shared systems – user programs or

tasks
• Textbook uses the terms job and process

almost interchangeably
• Process – a program in execution; process

execution must progress in sequential
fashion. Includes
– The program code, also called “text section”
– Current activity including program counter,

processor registers
– Stack containing temporary data

• Function parameters, return addresses,
local variables

– Data section containing global variables
– Heap containing memory dynamically

allocated during run time

7

Diagram of Process State

Transitions:
Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue

Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: I/O or event done

In the Ready
Queue

8

Process Control Block (PCB)
Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of

instruction to next execute
• CPU registers – contents of all process-

centric registers
• CPU scheduling information- priorities,

scheduling queue pointers
• Memory-management information –

memory allocated to the process
• Accounting information – CPU used,

clock time elapsed since start, time
limits

• I/O status information – I/O devices
allocated to process, list of open files

9

CPU Switch From Process to Process

10

Processes on my computer
• Mac: apps> utilities> activity monitor > CPU etc.
• https://support.apple.com/guide/activity-monitor/welcome/mac

– See information about processes
– Name, PID, threads, details ..

• Windows 10 Ctrl+Alt+Del
• https://www.howtogeek.com/405806/windows-task-manager-the-complete-

guide/ : Task manager

https://support.apple.com/guide/activity-monitor/welcome/mac
https://www.howtogeek.com/405806/windows-task-manager-the-complete-guide/

11

Threads

• So far, process has a single thread of
execution

• Consider having multiple program
counters per process
– Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB

• Coming up in next chapter

12

PCB Representation in Linux
Represented by the C structure task_struct.
Fields may include

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

Unlike an array, the elements of a struct can be of different data types

13

Process Scheduling

Process Scheduling

14

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU for time sharing

• Process scheduler selects among available
processes for next execution on CPU

• Maintains scheduling queues of processes
– Job queue – set of all processes in the system
– Ready queue – set of all processes residing in main

memory, ready and waiting to execute
– Device queues – set of processes waiting for an I/O

device
– Processes migrate among the various queues

15

Ready Queue And Various I/O Device Queues

16

Representation of Process Scheduling

! Queueing diagram represents queues, resources, flows

Assumes a single CPU. Common until recently

17

Schedulers
• Short-term scheduler (or CPU scheduler) – selects which process should be

executed next and allocates CPU
– Sometimes the only scheduler in a system
– Short-term scheduler is invoked frequently (milliseconds) Þ (must be

fast)
• Long-term scheduler (or job scheduler) – selects which processes should be

brought into the ready queue
– Long-term scheduler is invoked infrequently (seconds, minutes) Þ (may

be slow)
– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
– CPU-bound process – spends more time doing computations; few very

long CPU bursts
• Long-term scheduler strives for good process mix

18

Multitasking in Mobile Systems
• Some mobile systems (e.g., early version of iOS) allow only one

process to run, others suspended
• Due to screen real estate, user interface limits iOS provides for

a
– Single foreground process- controlled via user interface
– Multiple background processes– in memory, running, but not on the display,

and with limits
• Limits include single, short task, receiving notification of events, specific long-

running tasks like audio playback

• Newer iOS supports multitasking better. iOS 14: picture in picture

• Android runs foreground and background, with fewer limits
– Background process uses a service to perform tasks
– Service can keep running even if background process is suspended
– Service has no user interface, small memory use.

19

20

Context Switch
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process
via a context switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system

does no useful work while switching
– The more complex the OS and the PCB è the longer

the context switch
• Time dependent on hardware support

– Some hardware provides multiple sets of registers
per CPU è multiple contexts loaded at once

21

Processes creation & termination

22

Process Creation

• Parent process create children processes,
which, in turn create other processes,
forming a tree of processes

• Generally, process identified and managed
via a process identifier (pid)

• Resource sharing options
– Parent and children share all resources
– Children share subset of parent’s resources
– Parent and child share no resources*

• Execution options
– Parent and children execute concurrently
– Parent waits until children terminate

23

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

24

Process Creation (Cont.)
• Address space

– Child duplicate of parent
– Child has a program loaded into it

• UNIX examples
– fork() system call creates new process
– exec() system call used after a fork() to replace the

process’memory space with a new program

25

Fork () to create a child process
• Fork creates a copy of process
• Return value from fork (): integer
– When > 0:

• Running in (original) Parent process
• return value is pid of new child

– When = 0:
• Running in new Child process

– When < 0:
• Error! Perhaps exceeds resource constraints. sets errno (a global variable in errno.h)

• Running in original process

• All of the state of original process duplicated in
both Parent and Child! Almost ..

– Memory, File Descriptors (next topic), etc…

26

Process Management System Calls
• UNIX fork – system call to create a copy of the current process,

and start it running
– No arguments!

• UNIX exec – system call to change the program being run by the
current process. Several variations.

• UNIX wait – system call to wait for a process to finish
• Details: see man pages
Some examples:
pid_t pid = getpid(); /* get current processes PID */;
waitpid(cid, 0, 0); /* Wait for my child to terminate. */
exit (0); /* Quit*/
kill(cid, SIGKILL); /* Kill child*/

http://man7.org/linux/man-pages/man3/execl.3.html

27

UNIX Process Management

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

main () {
 ...

}

exec

wait

fork

child

parent

28

C Program Forking Separate Process

execlp(3) - Linux man page
http://linux.die.net/man/3/execlp

<sys/types.h> definitions of derived types
<unistd.h> POSIX API

http://linux.die.net/man/3/execlp

29

Forking PIDs
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main(){

pid_t cid;

/* fork a child process */
cid = fork();
if (cid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed\n");
return 1;

}
else if (cid == 0) { /* child process */

printf("I am the child %d, my PID is %d\n", cid, getpid());
execlp("/bin/ls","ls",NULL);

}
else { /* parent process */

/* parent will wait for the child to complete */
printf("I am the parent with PID %d, my parent is %d, my child is %d\n",getpid(), getppid(), cid);
wait(NULL);

printf("Child Complete\n");
}

return 0;
}

Ys-MacBook-Air:ch3 ymalaiya$./newproc-posix_m
I am the parent with PID 494, my parent is 485, my child is 496
I am the child 0, my PID is 496
DateClient.java newproc-posix_m

Child Complete
Ys-MacBook-Air:ch3 ymalaiya$

https://www.tutorialspoint.com/compile_c_online.phpSee self-exercise in Teams

https://www.tutorialspoint.com/compile_c_online.php

30

wait/waitpid

• Wait/waitpid () allows caller to suspend execution
until child’s status is available

• Process status availability
– Generally after termination
– Or if process is stopped

• pid_t waitpid(pid_t pid, int *status, int options);
• The value of pid can be:

– 0 wait for any child process with same process group ID
(perhaps inherited)

– > 0 wait for child whose process group ID is equal to the
value of pid

– -1 wait for any child process (equi to wait ())
• Status: where status info needs to be saved

31

Linux: fork ()

• Search for man fork()
• http://man7.org/linux/man-pages/man2/fork.2.html

NAME fork - create a child process
SYNOPSIS #include <unistd.h>

pid_t fork(void);
DESCRIPTION fork() creates a new process by duplicating the calling
process. The new process is referred to as the child process. …
The child process and the parent process run in separate memory spaces…
The child process is an exact duplicate of the parent process except for the
following points: ….
RETURN VALUE On success, the PID of the child process is returned in the
parent, and 0 is returned in the child. On failure, -1 is returned in the
parent, no child process is created, and errno is set appropriately.
EXAMPLE See pipe(2) and wait(2).
…

errno is a global variable in errno.h

http://man7.org/linux/man-pages/man2/fork.2.html

32

Process Group ID

• Process group is a collection of related
processes

• Each process has a process group ID
• Process group leader?
– Process with pid==pgid

• A process group has an associated controlling
terminal, usually the user’s keyboard
– Control-C: sends interrupt signal (SIGINT) to all

processes in the process group
– Control-Z: sends the suspend signal (SIGSTOP) to

all processes in the process group
Applies to foreground processes: those interacting
With the terminal

33

Process Groups

A child Inherits parent’s process group ID. Parent or
child can change group ID of child by using setpgid.
By default, a Process Group comprises:
• Parent (and further ancestors)
• Siblings
• Children (and further descendants)
A process can only send signals to members of its
process group
• Signals are a limited form of inter-process

communication used in Unix.
• Signals can be sent using system call

– int kill(pid_t pid, int sig);

http://man7.org/linux/man-pages/man2/kill.2.html

34

Process Termination

• Process executes last statement and then asks
the operating system to delete it using the
exit() system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating

system
• Parent may terminate the execution of children

processes using the kill() system call.
Some reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does

not allow a child to continue if its parent terminates

kill(child_pid,SIGKILL);

35

Process Termination
• Some operating systems do not allow child to exists if its

parent has terminated. If a process terminates, then all its
children must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);
• If no parent waiting (did not invoke wait()) process is a

zombie
• If parent terminated without invoking wait , process is an

orphan (it is still running, reclaimed by init)

Zombie: a process that has completed execution (via
the exit system call) but still has an entry in the process
table

36

Multi-process Program Ex – Chrome Browser

• Early web browsers ran as single process
– If one web site causes trouble, entire browser can hang or

crash
• Google Chrome Browser is multiprocess with 3

different types of processes:
– Browser process manages user interface, disk and

network I/O
– Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
– Plug-in process for each type of plug-in

37

Multitasking

38

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be affected
by the execution of another process

• Advantages of process cooperation
– Information sharing
– Computation speed-up
– Modularity
– Convenience

39

Interprocess Communication
• Processes within a system may be independent or

cooperating
• Cooperating process can affect or be affected by other

processes, including sharing data
• Reasons for cooperating processes:

– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need interprocess communication
(IPC)

• Two models of IPC
– Shared memory
– Message passing

40

Producer-Consumer Problem

• Common paradigm for cooperating
processes, producer process produces
information that is consumed by a consumer
process
– unbounded-buffer places no practical limit on the

size of the buffer
– bounded-buffer assumes that there is a fixed

buffer size

Why do we need a buffer (shared memory region)?
- The producer and the consumer process operate at their own speeds. Items wait in the buffer when consumer is slow.
Where does the bounded buffer “start
- It is circular

41

Bounded-Buffer – Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 8
typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

• in points to the next free position in the buffer
• out points to the first full position in the buffer.
• Buffer is empty when in == out;
• Buffer is full when

((in + 1) % BUFFER SIZE) == out. (Circular buffer)
• This scheme can only use BUFFER_SIZE-1

elements

Out In

0 1 2 3 4 5 6 7

(2+1)%8 =3 but (7+1)%8 =0

42

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

Out In

0 1 2 3 4 5 6 7

43

Bounded Buffer – Consumer
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Out In

0 1 2 3 4 5 6 7

44

Interprocess Communication – Shared Memory

• Each process has its own private address
space.

• An area of memory shared among the
processes that wish to communicate

• The communication is under the control of
the user processes, not the operating system.

• Major issue is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.
– Synchronization is discussed in great details in a

later Chapter.
• Example soon.

Only one process
may access

shared memory
at a time

45

Interprocess Communication – Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:
– send(message)
– receive(message)

• The message size is either fixed or variable

46

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

47

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory
• Hardware bus
• Network

– Logical: Options (details next)
• Direct (process to process) or indirect (mail box)
• Synchronous (blocking) or asynchronous (non-blocking)
• Automatic or explicit buffering

