
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 Lecture 8
Scheduling

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ
• What exactly is a thread? A block of code?

– A function when called within a new thread, runs concurrently with other threads.

• Process vs thread
– A process is isolated from other processes. Processes can run

concurrently. Can have multiple threads.
– A thread is not isolated from other threads belonging to the same process.

Runs concurrently with other threads.
• What is a pthread? POSIX compliant implementation of threads.

• Java threads? Most JVMs implement threads with native, OS level threads,

• Examples of threads: Self exercise set 4

3

FAQ
• Why use threads:

– Parallelism if multiple cores/hyper-threading available.
– Concurrency: quicker responses to some of the things like refreshing output, checking

spelling as one types etc.

• Implicit threading: thread creating automated: compiler assisted higher
level programming

• Unix signals vs interrupts: Signals are a limited form of inter-process
communication. Interrupts are often initiated by hardware. In both cases, some specific routines
respond.

• Hyper-threading: Requires additional hardware. Widely used

• Signals example (assume pid = 162): kill -9 162 or kill –s sigkill 162

• Pthread example: pthread_kill(ThreadID, SIGKILL);

https://www.cyberciti.biz/faq/unix-kill-command-examples/
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/ptkill.htm

4

Implicit Threading: OpenMP
• Set of compiler directives and an

API for C, C++, FORTRAN
• Provides support for parallel

programming in shared-memory
environments

• Identifies parallel regions –
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

#pragma omp parallel for
for(i=0;i<N;i++) {
c[i] = a[i] + b[i];

}

Splits loop task in parallel threads

Compile using
gcc -fopenmp openmp.c

Self exercise 3, 4 available now.

5

Signal Handling
• Signals are used in UNIX systems to notify a

process that a particular event has occurred.
• A signal handler is used to process signals

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

• Every signal has default handler that kernel
runs when handling signal
– User-defined signal handler can override default
– For single-threaded, signal delivered to process

6

Thread Cancellation (Cont.)
! Invoking thread cancellation requests cancellation, but

actual cancellation depends on thread state

! A thread’s cancelation type (mode) and state can be set.
! If thread has cancellation disabled, cancellation remains

pending until thread enables it
! Default type is deferred

! Cancellation only occurs when thread reaches cancellation
point
4 I.e. pthread_testcancel()
4Then cleanup handler is invoked

! On Linux systems, thread cancellation is handled through
signals

7

Is complexity always good?

• Is something that is
– More advanced
– More complex
Generally better?

8

Hyper-threading

“Hyper-threading”: “simultaneous multithreading”:
– Hardware support for multiple threads in the same

core (CPU)

• Performance:
– performance improvements are very application-

dependent
– Higher energy consumption ARM 2006

– Not better than out-of-order execution Intel 2013

– Intel has dropped it in some chips Core i7-9700K 2018 8 cores, 8 threads

– May be enabled/disabled using firmware

9

Forms of Parallelism

– Pipelining: instruction flows though multiple levels
– Multiple issue: Instruction level Parallelism (ILP)

• Multiple instructions fetched at the same time
• Static: compiler scheduling of instructions
• Dynamic: hardware assisted scheduling of operations

– “Superscalar” processors
– CPU decides whether to issue 0, 1, 2, … instructions

each cycle

– Thread or task level parallelism (TLP)
• Multiple processes or threads running at the same time

10

Chapter 5: CPU Scheduling

• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Thread Scheduling
• Multiple-Processor Scheduling
• Real-Time CPU Scheduling
• Operating Systems Examples
• Algorithm Evaluation

11

Diagram of Process State

Ready to Running: scheduled by scheduler
Running to Ready: scheduler picks another process, back in ready queue
Running to Waiting (Blocked) : process blocks for input/output
Waiting to Ready: Input available

12

Basic Concepts

• Maximum CPU
utilization obtained
with multiprogramming

• CPU–I/O Burst Cycle –
Process execution
consists of a cycle of
CPU execution and I/O
wait

• CPU burst followed by
I/O burst

• CPU burst distribution
is of main concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

13

Histogram of CPU-burst Times

Typical distribution of CPU bursts. Most CPU bursts are just a few ms.

14

CPU Scheduler
! Short-term scheduler selects from among the processes

in ready queue, and allocates the CPU to one of them
! Queue may be ordered in various ways

! CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

! Scheduling under 1 and 4 is nonpreemptive
! All other scheduling is preemptive. These need to be

considered
! access to shared data by multiple processes
! preemption while in kernel mode
! interrupts occurring during crucial OS activities

Not
Controlled by
the process

15

Dispatcher

• Dispatcher module gives control of the
CPU to the process selected by the short-
term scheduler; this involves:
– switching context
– switching to user mode
– jumping to the proper location in the user

program to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

16

The Dispatcher (dentist’s office)

17

Scheduling Criteria

• CPU utilization – keep the CPU as busy as
possible: Maximize

• Throughput – # of processes that complete their
execution per time unit: Maximize

• Turnaround time –time to execute a process
from submission to completion: Minimize

• Waiting time – amount of time a process has
been waiting in the ready queue: Minimize

• Response time –time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing
environment): Minimize

18

Terms for a single process

UCLA

19

Scheduling Algorithms

We will now examine several major scheduling
approaches
• Decide which process in the ready queue is

allocated the CPU
• Could be preemptive or nonpreemptive
– preemptive: remove in middle of execution

(“forced”)

• Optimize measure of interest
– We will use Gantt charts to illustrate schedules
– Bar chart with start and finish times for processes

Involuntary
deboarding!

https://www.youtube.com/watch?v=VrDWY6C1178

20

Non-preemptive vs Preemptive sheduling

• Non-preemptive: Process keeps CPU until it
relinquishes it when
– It terminates
– It switches to the waiting state
– Used by initial versions of OSs like Windows 3.x

• Preemptive scheduling
– Pick a process and let it run for a maximum of some

fixed time
– If it is still running at the end of time interval?

• Suspend it and pick another process to run

• A clock interrupt at the end of the time interval
to give control back of CPU back to scheduler

21

Scheduling Algorithms

• First- Come, First-Served (FCFS)
• Shortest-Job-First (SJF)
– Shortest-remaining-time-first

• Priority Scheduling
• Round Robin (RR) with time quantum
• Multilevel Queue
– Multilevel Feedback Queue

• “Completely fair”
Comparing Performance
• Average waiting time etc.

22

First- Come, First-Served (FCFS) Scheduling

• Process requesting CPU first, gets it first
• Managed with a FIFO queue
– When process enters ready queue

• PCB is tacked to the tail of the queue

– When CPU is free
• It is allocated to process at the head of the queue

• Simple to write and understand

23

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3 but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 = ; P2 = ; P3 =
• Average waiting time: (+ +)/ =
• Throughput: / = per unit time

P P P1 2 3

0 24 3027

Henry Gantt,
1910s

Pause for students to do the computation

24

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3 but almost the same time.
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17
• Throughput: 3/ 30 = 0.1 per unit time

P P P1 2 3

0 24 3027

Henry Gantt,
1910s

25

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1
• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3

– Much better than previous case
• But note -Throughput: 3/30 = 0.1 per unit same
• Convoy effect - short processes behind a long process

– Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3

26

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next
CPU burst
– Use these lengths to schedule the process with the

shortest time
• Reduction in waiting time for short process

GREATER THAN Increase in waiting time for long
process

• SJF is optimal – gives minimum average waiting
time for a given set of processes
– The difficulty is knowing the length of the next CPU

request
– Estimate or could ask the user

27

Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart: Draw it here.

• Average waiting time for P1,P2,P3,P4 = (+ + +) / =

Pause for students to do the computation

28

Example of SJF
ProcessArriva l TimeBurst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

• All arrive at time 0.
• SJF scheduling chart

• Average waiting time for P1,P2,P3,P4 = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2

29

Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to
the recent bursts
– Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU
bursts, using exponential averaging

• Commonly, α set to ½

: Define4.
10 , 3.

burst CPUnext for the valuepredicted 2.
burst CPU of length actual 1.

1

££
=

=

+

aa
t n

th
n nt

() .1 1 nnn t taat -+=+

30

Prediction of the Length of the Next CPU Burst

Blue line: guess
Red line: actual

α = 0.5

Ex:
0.5x6 +0.5x10 = 8

31

Examples of Exponential Averaging

• a =0
– tn+1 = tn
– Recent history does not count

• a =1
– tn+1 = a tn
– Only the actual last CPU burst counts

•
• If we expand the formula, substituting for tn , we

get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)ja tn -j + …
+(1 - a)n +1 t0

• Since both a and (1 - a) are less than or equal to
1, each successive term has less weight than its
predecessor

Widely used for
predicting stock-

market etc

() .1 1 nnn t taat -+=+

32

Shortest-remaining-time-first (preemptive SJF)

• Now we add the concepts of varying arrival times and
preemption to the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4 (will preempt because 4<7)

P3 2 9 (will not preempt)

P4 3 5
• Preemptive SJF Gantt Chart

• Average waiting time for P1,P2,P3,P4
= [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

P4
0 1 26

P1 P2
10

P3P1
5 17

• Preemptive version called shortest-remaining-time-first

33

Priority Scheduling
• A priority number (integer) is associated with each

process
• The CPU is allocated to the process with the highest

priority (smallest integer º highest priority)
– Preemptive
– Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem º Starvation – low priority processes may
never execute
– Solution º Aging – as time progresses increase the priority of

the process

MIT had a low priority job waiting from 1967 to 1973 on IBM 7094! J

34

Ex Priority Scheduling non-preemptive

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1 (highest)

P3 2 4
P4 1 5
P5 5 2

• P1,P2, P3, P4,P5 all arrive at time 0.
• Priority scheduling Gantt Chart

• Average waiting time for P1, .. P5: (6+0+16+18+1)/5 = 8.2 msec

35

Round Robin (RR) with time quantum

• Each process gets a small unit of CPU time (time quantum
q), usually 10-100 milliseconds. After this, the process is
preempted, added to the end of the ready queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

– q large Þ FIFO
– q small Þ q must be large with respect to context switch,

otherwise overhead is too high (overhead typically in 0.5%
range)

36

Example of RR with Time Quantum = 4
Process Burst Time

P1 24
P2 3
P3 3

• Arrive a time 0 in order P1, P2, P3: The Gantt chart is:

• Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 µsec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

Response time: Arrival to beginning of execution
Turnaround time: Arrival to finish of execution

37

Time Quantum and Context Switch Time

Much smaller quantum compared to burst: many switches

38

Turnaround Time Varies With The Time Quantum

Rule of thumb: 80% of CPU bursts
should be shorter than q

Illustration
Consider q=7:
Turnaround times for P1,P2,P3,P4:
6,9,10,17 av = 10.5
Similarly for q =1, ..6 (verify yourself)

Students: Repeat for q = 1, ..6 at home to verify the plot.

39

Multilevel Queue
• Ready queue is partitioned into separate queues,

e.g.:
– foreground (interactive)
– background (batch)

• Process permanently in a given queue
• Each queue has its own scheduling algorithm, e.g.:

– foreground – RR
– background – FCFS

• Scheduling must be done between the queues:
– Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation. Or
– Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR, 20% to background in FCFS

40

Multilevel Queue Scheduling

Real-time processes may have the highest priority.

41

Multilevel Feedback Queue

• A process can move between the various queues;
aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a process
– method used to determine when to demote a process
– method used to determine which queue a process will

enter when that process needs service
– Details at ARPACI-DUSSEAU

Inventor FJ Corbató won the Touring award!

http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched-mlfq.pdf

42

Example of Multilevel Feedback Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS (no time quantum limit)

• Scheduling
– A new job enters queue Q0 which is served

FCFS
• When it gains CPU, job receives 8

milliseconds
• If it does not finish in 8 milliseconds,

job is moved to queue Q1

– At Q1 job is again served FCFS and receives
16 additional milliseconds
• If it still does not complete, it is

preempted and moved to queue Q2

Upgrading may be based on aging. Periodically processes may be moved to the top level.

Variations of the scheme were used in earlier versions of Linux.

43

Completely fair scheduler Linux 2.6.23

Goal: fairness in dividing processor time to tasks (Con Kolivas, Anaesthetist)
• Variable time-slice based on number and priority of the tasks in

the queue.
– Maximum execution time based on waiting processes (Q/n).
– Fewer processes waiting, they get more time each

• Queue ordered in terms of “virtual run time”
• execution time on CPU added to value

– smallest value picked for using CPU
– small values: tasks have received less time on CPU
– I/O bound tasks (shorter CPU bursts) will have smaller values

• Balanced (red-black) tree to implement a ready queue;
– Efficient. O(log n) insert or delete time

• Priorities (niceness) cause different decays of values: higher
priority processes get to run for longer time
– virtual run time is the weighted run-time

Scheduling schemes have continued to evolve with continuing research. A comparison.

https://web.archive.org/web/20070419102054/http:/kerneltrap.org/node/8059
https://www.cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

