CS370 Operating Systems

Colorado State University
Yashwant K Malaiya
Spring 2022 L11

Synchronization

Slides based on

* Text by Silberschatz, Galvin, Gagne
* Various sources

FAQ

e What are the shared “resources”? memory, shared

variables, ..

* Two processes do not share any resources, do
they need critical sections? no

* What does a process do in a critical section?

Access a shared resource.

* Itis unlikely that two processes will try to
access a resources at the same time. Do they
need a critical section? erobably not.

* | want to know more about queuing theory.

Videos and on-line books.

Colorado State University

FAQ

 Peterson’s solution

— Two processes, i and j, may want to enter their critical
sections around the same time.

— Why does Pi do this:
turn = 73;
— You can go ahead if you want to (if not, | will go ahead)
while (flagl[j] && turn == j); /*Wait*/
e Synchronization examples:

— remember multiple processes are interacting, even
though code for just one is usually given.

; Colorado State University

Synchronization: Hardware Support

* Most modern processors provide hardware
support (/SA) for implementing the critical
section code. raa

e All solutions below based on idea of locking
— Protecting critical regions via locks
* Modern machines provide special atomic
hardware instructions
e Atomic = non-interruptible
— test memory word and set value
— swap contents of two memory words
— others

Colorado State University

Solution 1: using test_and_set()

e Shared Boolean variable lock, initialized to FALSE

e Solution:

do {
while (test and set(&lock)) ; /* do nothing */
o o To break out:
Return value of
TestAndSet should be

FALSE

/* critical section */

lock = false;
/* remainder section */

} while (true); test_and_set(&lock) returns the lock
value and then sets it to True.

Lock TRUE: locked, Lock FALSE: not locked.
If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

Colorado State University

U Sl N g Swa p (concurrently executed by both)

do {
key = TRUE;
while (key == TRUE) {
Swap(&lock, &key)
}

critical section
lock = FALSE;

remainder section

} while (TRUE);

Lock is a SHARED variable.
Key is a variable local to the process.

Lock == false when no process is in
critical section.

Cannot enter critical section UNLESS
lock == FALSE by other process or initially

If two Swap() are executed
simultaneously, they will be executed

sequentially in some arbitrary order

Colorado State University

Swap()

Process O Lock Process 1
Key = TRUE
Swap () Lock = FALSE Key = TRUE
Key ==FALSE, enter Swap ()

A 4

 Key == TRUE, wait

Critical section

Locked by Process O | ock = TRUE Busy waiting

Lock = FALSE

A 4

- Swap (), Key==False

Locked by Process 1 Critical section

Lock = FALSE

Note: | created this to visualize the mechanism. It is not in the book. - Yashwant

Colorado State University

Bounded-waiting Mutual Exclusion with test_and_set

For process 1i:

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)
key = test _and set(&lock);
waiting[i] = false;
/* critical section */

j=(1+ 1) % n;

while ((j '= i) && 'waiting[j])
j=(+1) % n;

if (3 == i)
lock = false;

else
waiting[j] = false;

/* remainder section */
} while (true);

Shared Data structures initialized to FALSE
. boolean waiting[n]; Prnwantsto enter
L boolean lock;

The entry section for process i :

* First process to execute TestAndSet will find key ==
false ; ENTER critical section,

. EVERYONE else must wait

The exit section for process i:

Attempts to finding a suitable waiting process j (while
loop) and enable it,

or if there is no suitable process, make lock FALSE.

Colorado State University

Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements

Mutual Exclusion: The first process to execute TestAndSet(lock)
when lock is false, will set lock to true so no other process can
enter the CS.

Progress: When a process i exits the CS, it either sets lock to
false, or waiting[i] to false (allowing j to get in) , allowing the
next process to proceed.

Bounded Waiting: When a process exits the CS, it examines all
the other processes in the waiting array in a circular order. Any
process waiting for CS will have to wait at most n-1 turns

Colorado State University

B Previous solutions are complicated and generally
inaccessible to application programmers

B OS designers build software tools to solve critical
section problem

B Simplest is mutex lock

B Protect a critical section by first acquire () a lock
then release () the lock
@ Boolean variable indicating if lock is available or not
B Calls to acquire () and release () must be atomic
@® Usually implemented via hardware atomic instructions
B But this solution requires busy waiting
B This lock therefore called a spinlock

Colorado State University

10

acquire() and release()

acquire () { release () {
while ('available) available = true;
; /* busy wait */ }
*Usage
do_{

acquire lock

critical section

release lock

remainder section

} while (true);

Colorado State University

11

acquire() and release()

Process O Lock Process 1

Start acquire, get lock

»

Start acquire

>l
al

Critical section Locked by Process 0 Busy waiting

Release lock

A 4

- Gets lock

Locked by Process 1 Critical section

Release lock

<

Colorado State University

12

How are locks supported by hardware?

 Atomic read-modify-write

e Atomic instructions in x86

— LOCK instruction prefix, which applies to an instruction does a
read-modify-write on memory (INC, XCHG, CMPXCHG etc)

— Ex: lock cmpxchg <dest>, <source>
* In RISK processors? Instruction-pairs

— LL (Load Linked Word), SC (Store ConditionaIWord) instructions in MIPS
— LDREX, STREX in ARM
— Creates an atomic sequence

Colorado State University

14

15

Semaphores s it

Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

Semaphore S — integer variable
Can only be accessed via two indivisible (atomic) operations
— wait () andsignal ()
e Originally called P() andV()based on Dutch words

Definition of thewait () operation

wait (S) { Waits until

while (S <= 0) another process

; // busy wait makes S=1

S--;

} Binary semaphore:
Definition of the signal () operation Whens isOor 1, itis

signal (S) { a mutex lock

S++;
}

Colorado State University

WEIMNERERIEGEIRS)

Process O Semaphore S Process 1
Wait(S) >=1
> Wait (S)
|4
Critical section 5-0 i Busy waiting

Signal (S)
- Gets lock, S- -

A 4

S =0 |Locked by Process 1 Critical section

Signal (S)

Colorado State University

16

18

Semaphores

MR e
i SN),;c) 3

"

W e ,\ :
I was hoping the distance learning service
might use more up-to-date technology

Colorado State University

19

Semaphore Usage

Counting semaphore — integer value can range over an unrestricted
domain

Binary semaphore — integer value can range only between 0 and 1
— Practically same as a mutex lock

Can solve various synchronization problems

Ex: Consider P, and P, that requires event S, to happen before §,
Create a semaphore “synch” initialized to Oi.e not available

Pl: P2:
S:; wait (synch);
signal (synch) ; Sy

Can implement a counting semaphore S as a binary semaphore

Colorado State University

The counting semaphore

20

Controls access to a finite set of resources

Initialized to the number of resources

Usage:
— Wait (S): to use a resource

— Signal (S): to release a resource

When all resources are being used: S ==

— Block until S > 0 to use the resource

Colorado State University

21

Semaphore Implementation

Must guarantee that no two processes can execute
the wait () and signal() on the same semaphore
at the same time

Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section

— Could now have busy waiting in critical section
implementation

* But implementation code is short
* Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution

Alternative: block and wakeup (next slide)

Colorado State University

Semaphore Implementation with no Busy waiting

22

With each semaphore there is an associated waiting queue
Each entry in a waiting queue has two data items:

— value (of type integer)

— pointer to next record in the list
Two operations:

— block — place the process invoking the operation on the
appropriate waiting queue

— wakeup — remove one of processes in the waiting queue and
place it in the ready queue

typedef struct{

int value;

struct process *1list;
} semaphore;

Colorado State University

23

Implementation with no Busy waiting (Cont.)

wait (semaphore *S) { If value <0
S->value--: abs(value) is the number
if (S->value < 0) { of waiting processes
add this process to S->list;

block () ;
typedef struct{

int value;
struct process *list;

} semaphore;
signal (semaphore *S) {

S->value++;

if (S->value <= 0) {
remove a process P from S->list;
wakeup (P) ;

Colorado State University

Deadlock and Starvation

* Deadlock —two or more processes are waiting

indefinitely for an event that can be caused by only one
of the waiting processes

* Let sand ¢ be two semaphores initialized to 1

wait(S); wait(Q);
wait (Q) ; wait(S);
signal (S) ; signal (Q) ;
signal (Q) ; signal (S) ;

— PO executes wait(s), P1 executes wait(Q)
— PO must wait till P1 executes signal(Q)
— P21 must wait till PO executes signal(S) Deadlock!

Colorado State University

24

Priority Inversion

* Priority Inversion — Scheduling problem when
lower-priority process P, holds a lock needed by
higher-priority process P,,.

— The low priority task may be preempted by a medium
priority task P,, which does not use the lock, causing

P, to wait because of Py,. Mars pathfinder

Mission problem 1997

e Solved via priority-inheritance protocol

— Process accessing resource needed by higher priority process
Inherits higher priority till it finishes resource use

— Once done, process reverts to lower priority

Colorado State University

25

Classical Problems of Synchronization

* Classical problems used to test newly-proposed
synchronization schemes
— Bounded-Buffer Problem
— Readers and Writers Problem
— Dining-Philosophers Problem

e Monitors

Colorado State University

26

Bounded-Buffer Problem

- n buffers, each can hold one item

e Binary semaphore (mutex)

— Provides mutual exclusion for accesses to buffer

pool

T 3 semaphores needed,
— Initialized to 1 1 binary, 2 counting

* Counting semaphores

— empty: Number of empty slots available
* Initialized to n

— full: Number of filled slots available n
e |nitializedto 0

Colorado State University

27

Bounded-Buffer : Note

* Producer and consumer must be ready before they
attempt to enter critical section

* Producer readiness?

— When a slot is available to add produced item
* wait(empty)

e e . empty: Number of empty slots available
- empty is initialized to n wait(empty) wait until at least 1 empty

e Consumer readiness? full: Number of filled slots available

wait(full) wait until at least 1 full

— When a producer has added new item to the
* wait(full)
— fullinitialized to 0

Colorado State University

28

Bounded Buffer Problem (Cont.)

The structure of the producer process empty: initialized ton

full: initialized to O

do {
/* produce an item in next produced */
wait (empty) ; wait till slot available
wait (mutex) ; Allow producer OR consumer to (re)enter critical section

/* add next produced to the buffer */

signal (mutex) ; Allow producer OR consumer to (re)enter critical section

signal (full) ; signal consumer that a slot is available
} while (true);

Colorado State University

29

Bounded Buffer Problem (Cont.)

The structure of the consumer process empty: initialized ton

full: initialized to O

Do {

wait (£full) ; wait till slot available for consumption

wait (mutex) ; Only producer OR consumer can be In critical section

/* remove an item from buffer to next_consumed * /

signal (mutex) ; Allow producer OR consumer to (re)enter critical section
signal (empty) ; signal producer that a slot is available to add

/* consume the item in next consumed */

} while (true);

0 Colorado State University

Readers-Writers Problem

e A data setis shared among a number of
concurrent processes

— Readers —only read the data set; they do not perform
any updates

— Writers — can both read and write

e Problem

— allow multiple readers to read at the same time

— Only one single writer can access the shared data at the
same time. No readers permitted when writer is
accessing the data.

 Several variations of how readers and writers are
considered — all involve some form of priorities

Colorado State University

31

Readers-Writers Problem

e Shared Data

— Data set

— Semaphore rw_mutex initialized to 1 (mutual exclusion
for writer)

— Semaphore mutex initializedto1l (mutual exclusion for
read_count)

— Integer read count initialized to O (how many readers?)

Colorado State University

32

Readers-Writers Problem (Cont.)

* The structure of a writer process

do {
wait (rw_mutex);

/* writing is performed */

signal (rw_mutex) ;
} while (true);

s Colorado State University

Readers-Writers Problem (Cont.)

* The structure of a reader process
do {

wait (mutex) ;
read count++; mutex for mutual
if (;éad count == 1) exclusion to read_count

Cannot read wait (rw_mutex) ;

if writer is signal (mutex) ; When:
.y writer in critical section
writing

* e and if n readers waiting
/* reading is performed */ 1is queued on rw_mutex
(n-1) queued on mutex

wait (mutex) ;
read count--;
if (read count == 0)
signal (rw_mutex) ;
signal (mutex) ;
} while (true);

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader
Process just goes in.

Colorado State University

34

Readers-Writers Problem Variations

* First variation — no reader kept waiting
unless writer has already obtained
permission to use shared object

* Second variation — once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

* Both may have starvation leading to even
more variations

* Problem is solved on some systems by
kernel providing reader-writer locks

Colorado State University

35

Dining-Philosophers Problem

* Philosophers spend their lives alternating thinking and eating

 Don’tinteract with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

— Need both to eat,
— then release both when done
* Each chopstick is a semaphore
— Grab by executing wait ()
— Release by executing signal ()
* Shared data
* Bowl of rice (data set)

* Semaphore chopstick [5] initialized to 1

Colorado State University

36

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes

Colorado State University

37

Dining-Philosophers Problem Algorithm: Simple solution?

 The structure of Philosopher i:

do {
wait (chopstick[i]);
wait (chopStick[(1 + 1) % 5])

// eat

signal (chopstick[i])
signal (chopstick[(i + 1) % 5])

// think

} while (TRUE);
* Whatis the problem with this algorithm?

— If all of them pick up the the left chopstick first -
Deadlock

18 Colorado State University

Dining-Philosophers Problem Algorithm (Cont.)

39

* Deadlock handling

— Allow at most 4 philosophers to be sitting
simultaneously at the table (with the same 5 forks).

— Allow a philosopher to pick up the forks only if
both are available (picking must be done in a critical
section.

— Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick.

Colorado State University

Related classes

* Classes that follow CS370
— CS455 Distributed Systems Spring
— CS457 Networks Fall
— CS470 Computer Architecture Spring
— CS475 Parallel Programming Fall
— CS435: Introduction to Big Data Spring

Colorado State University

40

Problems with Semaphores

* Incorrect use of semaphore operations:

— Omitting of wait (mutex)
* Violation of mutual exclusion
— or signal (mutex)
* Deadlock!

e Solution: Monitors

Colorado State University

41

What does the Mars parachute say?

Colorado State University

Research: Search Databases

Specific sources: database indexes

* Google Scholar
— Forward links: Paper X Cited by
— Backward Links: Paper X cites
e Researcher sites
— Personal/Group Website
— DBLP
— Google Scholar: researcher

e CSU Library etc.

General (accessible through CSU Library)
 ACM Digital Library

* |EEEXplore Digital Library

* ScienceDirect etc

Fault Tolerant Computing COlOl‘adO State uni‘féleiqf

43 February 21, 2022 ©Y.K. Malaiya

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

Research: Source types

e Journals: published several times a year
— Rigorously reviewed, long publication delay

— Journal, Transactions, ...

* Conferences: held once a year, proceedings published
— Conference, Symposium, ...

e Research groups
— Industry, academic, consultants: web site

* News, Industry publications

— Magazines, blogs, white papers, product website

e Books: often well-known stuff

Fault Tolerant Computing COlOl‘adO State uni‘féfSiW

44 February 21, 2022 ©Y.K. Malaiya

Research: How to Read a Paper: remnecs:

* The first pass: Read
— the title, abstract, and introduction
— section and sub-section headings, but ignore everything else
— the conclusions

 The second pass: Read
— figures, diagrams and other illustrations
— mark relevant unread references for further reading
— Do you need to read it in detail?

* The third pass: Read critically
— identify and challenge assumption and views
— Loop up references needed

Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

Fault Tolerant Computing COlOl‘adO State uni‘féhSSiW

45 February 21, 2022 ©Y.K. Malaiya

Research: Avoid Prior Bias

LoOK, UBLF THE WORK 5 Doie!

ALLNoU NEED To Do & FILL IN THE
©P PART 40 WE CAN LEGALLY
SN TUE ReTToMN PART

r

Fault Tolerant Computing COlOl"adO State uni‘féFSit}7

46 February 21, 2022 ©Y.K. Malaiya

