
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 L11
Synchronization

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ

• What are the shared “resources”? Memory, shared
variables, ..

• Two processes do not share any resources, do
they need critical sections? No

• What does a process do in a critical section?
Access a shared resource.

• It is unlikely that two processes will try to
access a resources at the same time. Do they
need a critical section? Probably not.

• I want to know more about queuing theory.
Videos and on-line books.

3

FAQ

• Peterson’s solution
– Two processes, i and j, may want to enter their critical

sections around the same time.
– Why does Pi do this:

turn = j;

– You can go ahead if you want to (if not, I will go ahead)
while (flag[j] && turn == j); /*Wait*/

• Synchronization examples:
– remember multiple processes are interacting, even

though code for just one is usually given.

4

Synchronization: Hardware Support
• Most modern processors provide hardware

support (ISA) for implementing the critical
section code. FAQ

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Modern machines provide special atomic
hardware instructions

• Atomic = non-interruptible
– test memory word and set value
– swap contents of two memory words
– others

5

Solution 1: using test_and_set()

• Shared Boolean variable lock, initialized to FALSE
• Solution:

do {
while (test_and_set(&lock)) ; /* do nothing */

/* critical section */
…..

lock = false;
/* remainder section */

… ..

} while (true);

To break out:
Return value of
TestAndSet should be

FALSE

Lock TRUE: locked, Lock FALSE: not locked.
If two TestAndSet() are attempted simultaneously, they
will be executed sequentially in some arbitrary order

test_and_set(&lock) returns the lock
value and then sets it to True.

6

Using Swap (concurrently executed by both)

do {
key = TRUE;
while (key == TRUE) {

Swap(&lock, &key)
}

critical section

lock = FALSE;

remainder section
} while (TRUE);

Lock is a SHARED variable.
Key is a variable local to the process.

Lock == false when no process is in
critical section.

Cannot enter critical section UNLESS
lock == FALSE by other process or initially

If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

7

Swap()

Process 0 Process 1Lock
Key = TRUE
Swap ()
Key ==FALSE, enter

Critical section

Lock = FALSE

Key = TRUE
Swap ()
Key == TRUE, wait

Busy waiting

Swap (), Key ==False

Critical section

Lock = FALSE

Locked by Process 0

Locked by Process 1

Lock = FALSE

Lock = TRUE

Note: I created this to visualize the mechanism. It is not in the book. - Yashwant

8

Bounded-waiting Mutual Exclusion with test_and_set

For process i:

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);
waiting[i] = false;
/* critical section */

j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
/* remainder section */

} while (true);

Shared Data	structures	initialized	to	FALSE	
• boolean waiting[n]; Pr n wants to enter
• boolean lock;

The entry section for process i :
• First process to execute TestAndSet will find key ==

false ; ENTER critical section,
• EVERYONE else must wait

The exit section for process i:
Attempts to finding a suitable waiting process j (while
loop) and enable it,
or if there is no suitable process, make lock FALSE.

9

Bounded-waiting Mutual Exclusion with test_and_set

The previous algorithm satisfies the three requirements
• Mutual Exclusion: The first process to execute TestAndSet(lock)

when lock is false, will set lock to true so no other process can
enter the CS.

• Progress: When a process i exits the CS, it either sets lock to
false, or waiting[i] to false (allowing j to get in) , allowing the
next process to proceed.

• Bounded Waiting: When a process exits the CS, it examines all
the other processes in the waiting array in a circular order. Any
process waiting for CS will have to wait at most n-1 turns

10

Mutex Locks

! Previous solutions are complicated and generally
inaccessible to application programmers

! OS designers build software tools to solve critical
section problem

! Simplest is mutex lock
! Protect a critical section by first acquire() a lock

then release() the lock
! Boolean variable indicating if lock is available or not

! Calls to acquire() and release() must be atomic
! Usually implemented via hardware atomic instructions

! But this solution requires busy waiting
" This lock therefore called a spinlock

11

acquire() and release()

•Usage
do {

acquire lock
critical section

release lock
remainder section

} while (true);

acquire() {
while (!available)
; /* busy wait */

release() {
available = true;

}

12

acquire() and release()

Process 0 Process 1Lock

Start acquire, get lock

Critical section

Release lock

Start acquire

Busy waiting

Gets lock

Critical section

Release lock

Locked by Process 0

Locked by Process 1

14

How are locks supported by hardware?

• Atomic read-modify-write
• Atomic instructions in x86

– LOCK instruction prefix, which applies to an instruction does a
read-modify-write on memory (INC, XCHG, CMPXCHG etc)

– Ex: lock cmpxchg <dest>, <source>

• In RISK processors? Instruction-pairs
– LL (Load Linked Word), SC (Store Conditional Word) instructions in MIPS
– LDREX, STREX in ARM
– Creates an atomic sequence

15

Semaphores by Dijkstra

• Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()based on Dutch words

• Definition of the wait() operation
wait(S) {

while (S <= 0)
; // busy wait

S--;
}

• Definition of the signal() operation
signal(S) {

S++;
}

Binary semaphore:
When s is 0 or 1, it is
a mutex lock

Waits until
another process

makes S=1

16

Wait(S) and Signal (S)

Process 0 Process 1Semaphore S

Wait(S)

Critical section

Signal (S)

Wait (S)

Busy waiting

Gets lock, S- -

Critical section

Signal (S)

S =0

Locked by Process 1

S =1

S =0

S =1

S =1

18

Semaphores

19

Semaphore Usage
• Counting semaphore – integer value can range over an unrestricted

domain
• Binary semaphore – integer value can range only between 0 and 1

– Practically same as a mutex lock
• Can solve various synchronization problems
• Ex: Consider P1 and P2 that requires event S1 to happen before S2

Create a semaphore “synch” initialized to 0 i.e not available

• Can implement a counting semaphore S as a binary semaphore

P1:
S1;
signal(synch);

P2:
wait(synch);
S2;

20

The counting semaphore
• Controls access to a finite set of resources
• Initialized to the number of resources
• Usage:

– Wait (S): to use a resource
– Signal (S): to release a resource

• When all resources are being used: S == 0
– Block until S > 0 to use the resource

21

Semaphore Implementation
• Must guarantee that no two processes can execute

the wait() and signal() on the same semaphore
at the same time

• Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution

• Alternative: block and wakeup (next slide)

22

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue
• Each entry in a waiting queue has two data items:

– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue and

place it in the ready queue

• typedef struct{
int value;
struct process *list;
} semaphore;

23

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

typedef struct{
int value;
struct process *list;
} semaphore;

If value < 0
abs(value) is the number

of waiting processes

24

Deadlock and Starvation
• Deadlock – two or more processes are waiting

indefinitely for an event that can be caused by only one
of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);
... ...
signal(S); signal(Q);
signal(Q); signal(S);

– P0 executes wait(s), P1 executes wait(Q)
– P0 must wait till P1 executes signal(Q)
– P1 must wait till P0 executes signal(S) Deadlock!

25

Priority Inversion
• Priority Inversion – Scheduling problem when

lower-priority process PL holds a lock needed by
higher-priority process PH.
– The low priority task may be preempted by a medium

priority task PM which does not use the lock, causing
PH to wait because of PM.

• Solved via priority-inheritance protocol
– Process accessing resource needed by higher priority process

Inherits higher priority till it finishes resource use
– Once done, process reverts to lower priority

Mars pathfinder
Mission problem 1997

26

Classical Problems of Synchronization

• Classical problems used to test newly-proposed
synchronization schemes
– Bounded-Buffer Problem
– Readers and Writers Problem
– Dining-Philosophers Problem

• Monitors

27

Bounded-Buffer Problem

• n buffers, each can hold one item
• Binary semaphore (mutex)
– Provides mutual exclusion for accesses to buffer

pool
– Initialized to 1

• Counting semaphores
– empty: Number of empty slots available

• Initialized to n

– full: Number of filled slots available n
• Initialized to 0

3 semaphores needed,
1 binary, 2 counting

28

Bounded-Buffer : Note

• Producer and consumer must be ready before they
attempt to enter critical section

• Producer readiness?
– When a slot is available to add produced item

• wait(empty)
– empty is initialized to n

• Consumer readiness?
– When a producer has added new item to the buffer

• wait(full)
– full initialized to 0

empty: Number of empty slots available
wait(empty) wait until at least 1 empty

full: Number of filled slots available
wait(full) wait until at least 1 full

29

Bounded Buffer Problem (Cont.)

The structure of the producer process

do {
...
/* produce an item in next_produced */
...

wait(empty); wait till slot available
wait(mutex); Allow producer OR consumer to (re)enter critical section

...
/* add next produced to the buffer */
...

signal(mutex); Allow producer OR consumer to (re)enter critical section
signal(full); signal consumer that a slot is available

} while (true);

empty: initialized to n
full: initialized to 0

30

Bounded Buffer Problem (Cont.)
The structure of the consumer process

Do {
wait(full); wait till slot available for consumption
wait(mutex); Only producer OR consumer can be in critical section

...
/* remove an item from buffer to next_consumed */

...
signal(mutex); Allow producer OR consumer to (re)enter critical section
signal(empty); signal producer that a slot is available to add

...
/* consume the item in next consumed */

...
} while (true);

empty: initialized to n
full: initialized to 0

31

Readers-Writers Problem

• A data set is shared among a number of
concurrent processes
– Readers – only read the data set; they do not perform

any updates
– Writers – can both read and write

• Problem
– allow multiple readers to read at the same time
– Only one single writer can access the shared data at the

same time. No readers permitted when writer is
accessing the data.

• Several variations of how readers and writers are
considered – all involve some form of priorities

32

Readers-Writers Problem

• Shared Data
– Data set
– Semaphore rw_mutex initialized to 1 (mutual exclusion

for writer)

– Semaphore mutex initialized to 1 (mutual exclusion for
read_count)

– Integer read_count initialized to 0 (how many readers?)

33

Readers-Writers Problem (Cont.)

• The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...
signal(rw_mutex);

} while (true);

34

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait(mutex);

read_count++;
if (read_count == 1)

wait(rw_mutex);
signal(mutex);

...
/* reading is performed */
...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);
signal(mutex);

} while (true);

mutex for mutual
exclusion to read_count

When:
writer in critical section
and if n readers waiting

1 is queued on rw_mutex
(n-1) queued on mutex

Cannot read
if writer is

writing

First reader needs to wait for the writer to finish.
If other readers are already reading, a new reader
Process just goes in.

35

Readers-Writers Problem Variations

• First variation – no reader kept waiting
unless writer has already obtained
permission to use shared object

• Second variation – once writer is ready, it
performs the write ASAP, i.e. if a writer is
waiting, no new readers may start.

• Both may have starvation leading to even
more variations

• Problem is solved on some systems by
kernel providing reader-writer locks

36

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating
• Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
– Need both to eat,
– then release both when done

• Each chopstick is a semaphore
– Grab by executing wait ()
– Release by executing signal ()

• Shared data
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1

37

Dining-Philosophers Problem

Plato, Confucius, Socrates, Voltaire and Descartes

38

Dining-Philosophers Problem Algorithm: Simple solution?

• The structure of Philosopher i:
do {

wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

• What is the problem with this algorithm?
– If all of them pick up the the left chopstick first -

Deadlock

39

Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling
– Allow at most 4 philosophers to be sitting

simultaneously at the table (with the same 5 forks).
– Allow a philosopher to pick up the forks only if

both are available (picking must be done in a critical
section.

– Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and
then the right chopstick. Even-numbered
philosopher picks up first the right chopstick and
then the left chopstick.

40

Related classes

• Classes that follow CS370
– CS455 Distributed Systems Spring
– CS457 Networks Fall
– CS470 Computer Architecture Spring
– CS475 Parallel Programming Fall
– CS435: Introduction to Big Data Spring

41

Problems with Semaphores

• Incorrect use of semaphore operations:

– Omitting of wait (mutex)
• Violation of mutual exclusion

– or signal (mutex)
• Deadlock!

• Solution: Monitors

42

What does the Mars parachute say?

43 February 21, 2022
Fault Tolerant Computing

©Y.K. Malaiya

43

Research: Search Databases

Specific sources: database indexes
• Google Scholar

– Forward links: Paper X Cited by
– Backward Links: Paper X cites

• Researcher sites
– Personal/Group Website
– DBLP
– Google Scholar: researcher

• CSU Library etc.
General (accessible through CSU Library)
• ACM Digital Library
• IEEEXplore Digital Library
• ScienceDirect etc

https://scholar.google.com/scholar?cites=10798677200747824320&as_sdt=4005&sciodt=0,6&hl=en
https://ieeexplore.ieee.org/abstract/document/630850/citations
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=Omar+Alhazmi&btnG=

44 February 21, 2022
Fault Tolerant Computing

©Y.K. Malaiya

44

Research: Source types

• Journals: published several times a year
– Rigorously reviewed, long publication delay
– Journal, Transactions, …

• Conferences: held once a year, proceedings published
– Conference, Symposium, …

• Research groups
– Industry, academic, consultants: web site

• News, Industry publications
– Magazines, blogs, white papers, product website

• Books: often well-known stuff

45 February 21, 2022
Fault Tolerant Computing

©Y.K. Malaiya

45

Research: How to Read a Paper: THE THREE-PASS

APPROACH

• The first pass: Read
– the title, abstract, and introduction
– section and sub-section headings, but ignore everything else
– the conclusions

• The second pass: Read
– figures, diagrams and other illustrations
– mark relevant unread references for further reading
– Do you need to read it in detail?

• The third pass: Read critically
– identify and challenge assumption and views
– Loop up references needed

Keshav, S., How to Read a Paper, ACM SIGCOMM,
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

46 February 21, 2022
Fault Tolerant Computing

©Y.K. Malaiya

46

Research: Avoid Prior Bias

