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FAQ

• Producer-consumer with bounded buffer
– Should the production and consumption rates be a perfect 

match? 
– Why circular buffer? Can buffer be full?

• Readers-Writers Problem
– Allow multiple readers to read at the same time 
– Semaphores for mutual exclusion (mutex) and counting

• Why do synchronization among processes/threads?
– Machine instructions ⟹semaphores ⟹monitor

• Monitor: Implements 
• mutual exclusion: only one process may be active at a time
• Conditions with associated queues where processes wait

until notified
– Our Monitor discussion is generic. Self Exercise 5 for a Java example.
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Course Notes
• HW4 Due 3/10
– Plan: diagram/pseudocode
– Must have a working program 2-3 days earlier.

• Project D1: in
• Midterm: Tues March 8
– On-campus: in class Respondus lockdown browser on laptop
– Online: Local: with on-campus class, others: Honorlock

• D2 progress report: 4/7/22

https://tilt.colostate.edu/TestingCenter/FacultyResources/Proctoring
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Pthreads Synchronization

• Pthreads API is OS-independent
• It provides:
– mutex locks
– condition variable thus can be used to create a monitor

• Non-portable extensions include:
– read-write locks
– Spinlocks

• A simple example

https://www.geeksforgeeks.org/use-posix-semaphores-c/
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Chapter 8:  Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks
– Deadlock Prevention
– Deadlock Avoidance resource-allocation

– Deadlock Detection 
– Recovery from Deadlock 
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System Model

• System consists of resources
• Resource types R1, R2, . . ., Rm

Resource may be CPU cycles, memory space, I/O devices, 
critical sections

• Each resource type Ri has Wi instances.
• Each process utilizes a resource as follows:
– request 
– use 
– release
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Deadlock Characterization

• Mutual exclusion: only one process at a time can use 
a resource

• Hold and wait: a process holding at least one resource 
is waiting to acquire additional resources held by other 
processes

• No preemption: a resource can be released only 
voluntarily by the process holding it, after that process 
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of 
waiting processes such that P0 is waiting for a resource 
that is held by P1, P1 is waiting for a resource that is 
held by P2, …, Pn–1 is waiting for a resource that is held 
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.
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Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.
• See example 
– Dining Philosophers: each get the right chopstick first
– we saw this example earlier

Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);
... ...

signal(Q);  signal(S);                           
signal(S);        signal(Q);                           

P0 executes wait(s), P1 executes wait(Q)
P0 must wait till P1 executes signal(Q)
P1 must wait till P0 executes signal(S)      Deadlock!
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Resource-Allocation Graph

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all the 

processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all 
resource types in the system

• request edge – directed edge Pi ® Rj

• assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)
• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj
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Example of a Resource Allocation Graph

Observation: If the graph contains 
no cycles, then no process in the 
system is deadlocked. 
If the graph does contain a cycle, 
then a deadlock may exist. 

Does a deadlock exist here?P1 holds an instance of R2 
and is requesting R1 ..

P3 will eventually be done with 
R3, letting P2 use it.

Thus, P2 will be eventually done, 
releasing R1. …
Answer: No.
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Resource Allocation Graph With A Deadlock

At this point, two minimal cycles 
exist in the system: 

P1→ R1→ P2→ R3→ P3→ R2→ P1

P2→ R3→ P3→ R2→ P2 

Processes P1, P2, and P3 are 
deadlocked. 

Does a deadlock exist?
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Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of 
resource type R2 . That resource 
can then be allocated to P3 , 
breaking the cycle. Thus, there is 
no deadlock. 

If a resource-allocation graph does 
not have a cycle, then the system 
is not in a deadlocked state.
If there is a cycle, then the system 

may or may not be in a 
deadlocked state. 
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Basic Facts

• If graph contains no cycles Þ no 
deadlock

• If graph contains a cycle Þ
– if only one instance per resource type, 

then deadlock
– if several instances per resource type, 

possibility of deadlock
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Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock 
state:
– Deadlock prevention

• ensuring that at least one of the 4  conditions cannot hold
– Deadlock avoidance

• Dynamically examines the resource-allocation state to ensure that 
it will never enter an unsafe state, and thus there can never be a 
circular-wait condition

• Allow the system to enter a deadlock state 
– Detection: detect and then recover. Hope is that it happens 

rarely.

• Ignore the problem and pretend that deadlocks 
never occur in the system; used by most operating 
systems, including UNIX. However..
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Methods for Handling Deadlocks

• Deterministic: Ensure that the system will never
enter a deadlock state at any cost

• Probabilistic view: Hope it happens rarely. 
Handle if it happens: Allow the system to enter 
a deadlock state and then recover.
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Methods for Handling Deadlocks
Approach Resource

allocation policy
Scheme Notes

Prevention Conservative, 
undercommits
resources

Requesting all 
resources at once

Good for processes 
with a single burst of 
activity

Preemption Good when 
preemption cost is 
small

Resource ordering Compile time 
enforcement possible

Avoidance midway Find at least one 
safe path
(dynamic)

Future max 
requirement must be 
known

Detection Liberal Invoked periodically Preemption may be 
needed
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Ostrich algorithm

Ostrich algorithm: Stick your head in the sand; 
pretend there is no problem at all .

Advantages: 
– Cheaper, rarely needed anyway
– Prevention, avoidance, detection and recovery

• Need to run constantly 

Disadvantages:
– Resources held by processes that cannot run
– More and more processes enter deadlocked state

• When they request more resources
– Deterioration in system performance

• Requires restart 
To be fair to the ostriches, 
let me say that …
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Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions 
must hold. By ensuring that at least one of these conditions 
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion: only one process at a time can use a 
resource

• Hold and wait: a process holding at least one resource is 
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily 
by the process holding it, after that process has completed its 
task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting 
processes that are circularly waiting.
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Deadlock Prevention: Limit Mutual Exclusion

• Limit Mutual Exclusion –
– not required for sharable resources (e.g., 

read-only files)
– (Mutual Exclusion must hold for non-

sharable resources)

For a deadlock to occur, each of the four necessary conditions 
must hold. By ensuring that at least one of these conditions 
cannot hold, we can prevent the occurrence of a deadlock. 

Restrain the ways request can be made:
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Deadlock Prevention: Limit Hold and Wait 

• Limit Hold and Wait – must guarantee that whenever a 
process requests a resource, it does not hold any other 
resources
1. Require process to request and be allocated all its resources 
before it begins execution
2. Allow a process to request resources when it is holding none.
Ex: Copy data from DVD, sort file, and print
– First request DVD and disk file 
– Then request file and printer, 
– then start 

• Disadvantage: starvation possible
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Deadlock Prevention: Limit No Preemption 

• Limit No Preemption –
– If a process that is holding some resources, 

requests another resource that cannot be 
immediately allocated to it, then all resources 
currently being held are released

– Preempted resources are added to the list of 
resources for which the process is waiting

– Process will be restarted only when it can regain its 
old resources, as well as the new ones that it is 
requesting
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Deadlock Prevention: Limit Circular Wait 

• Limit Circular Wait – impose a total ordering 
of all resource types, and require that each 
process requests resources in an increasing 
order of enumeration

• Assign each resource a unique number
– Disk drive: 1
– Printer: 2  …
– Request resources in increasing order 

• Example soon
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Dining philosophers problem: Necessary conditions for deadlock 

• Mutual exclusion
– 2 philosophers cannot share the same chopstick

• Hold-and-wait
– A philosopher picks up one chopstick at a time
– Will not let go of the first while it waits for the second one 

• No preemption
– A philosopher does not snatch chopsticks held by some other 

philosopher 

• Circular wait 
– Could happen if each philosopher picks chopstick with the same hand 

first 

Relax conditions to 
avoid deadlock
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Deadlock Example: numbering
/* thread one runs in this function */ 

void *do_work_one(void *param)
{ 

pthread_mutex_lock(&first_mutex); 
pthread_mutex_lock(&second_mutex); 

/** * Do some work */
pthread_mutex_unlock(&second_mutex); 

pthread_mutex_unlock(&first_mutex); 
pthread_exit(0); 

} 

/* thread two runs in this function */ 
void *do_work_two(void *param)
{ 

pthread_mutex_lock(&second_mutex); 
pthread_mutex_lock(&first_mutex); 
/** * Do some work */
pthread_mutex_unlock(&first_mutex); 

pthread_mutex_unlock(&second_mutex); 

pthread_exit(0); 
} 

Assume that thread one is the 
first to acquire the locks and 
does so in the order (1) first 
mutex, (2) second mutex. 

Solution: Lock-order verifier
“Witness” records the 
relationship that first mutex
must be acquired before second 
mutex. If thread two later 
acquires the locks out of order, 
witness generates a warning 
message on the system console. 

Allows deadlock. Redesign to avoid.
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Deadlock may happen even with Lock Ordering

void transaction(Account from, Account to, double amount) 

{ 

mutex lock1, lock2; 
lock1 = get_lock(from); 
lock2 = get_lock(to); 

acquire(lock1); 
acquire(lock2); 

withdraw(from, amount); 

deposit(to, amount); 
release(lock2); 

release(lock1); 
} 

Ex: Transactions 1 and 2 execute concurrently.  

Transaction  1 transfers $25 from account A to account B, and 
Transaction 2 transfers $50 from account B to account A. 

Deadlock is possible, even with lock ordering.

Lock ordering:
First from lock, then to lock
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Deadlock Avoidance

Manage resource allocation to 
ensure the system never enters an 

unsafe state.
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Deadlock Avoidance

• Simplest and most useful model requires that 
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm 
dynamically examines the resource-allocation 
state to ensure that there can never be a 
circular-wait condition

• Resource-allocation state is defined by the 
number of available and allocated resources, 
and the maximum demands of the processes

Requires that the system has some additional a priori information 
available
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Deadlock Avoidance

• Require additional information about how resources 
are to be requested 

• Knowledge about sequence of requests and releases 
for processes 
– Allows us to decide if resource allocation could cause a 

future deadlock 
• Process P: Tape drive, then printer 
• Process Q: Printer, then tape drive
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Deadlock Avoidance: Handling resource requests

• For each resource request: 
– Decide whether or not process should wait 

• To avoid possible future deadlock 

• Predicated on: 
1. Currently available resources 
2. Currently allocated resources 
3. Future requests and releases of each process 
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Avoidance: amount and type of information needed 

• Resource allocation state 
– Number of available and allocated resources 
– Maximum demands of processes 

• Dynamically examine resource allocation state 
– Ensure circular-wait cannot exist  

• Simplest model: 
– Declare maximum number of resources for each type 
– Use information to avoid deadlock 
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Safe Sequence

System must decide if immediate allocation leaves the 
system in a safe state
System is in safe state if there exists a sequence <P1, 
P2, …, Pn> of ALL the  processes  such that 
• for each Pi, the resources that Pi can still request 

can be satisfied by 
– currently available resources + 
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources, 
and so on 

• If no such sequence exists: system state is unsafe
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Deadlock avoidance: Safe states 

• If the system can:  
– Allocate resources to each process in some order 

• Up to the maximum for the process 
– Still avoid deadlock 
– Then it is in a safe state

• A system is safe ONLY IF there is a safe 
sequence 

• A safe state is not a deadlocked state 
– Deadlocked state is an unsafe state 
– Not all unsafe states are deadlock
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Safe, Unsafe, Deadlock State 

Examples of safe and unsafe states in next 3 slides
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Example A: Assume 12 Units in the system 

• Is the system at time T0 in a safe state?
– Try sequence  <P1, P0 , P2> 
– P1 can be given 2 units
– When P1 releases its resources; there are now 5 available units
– P0 uses 5 and subsequently releases them (10 available now) 
– P2 can then proceed. 

• Thus <P1, P0 , P2> is a safe sequence, and at T0 
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available 

A unit could be a drive, 
a block of memory etc.

More detailed look
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Example A: Assume 12 Units in the system (timing) 

Max 
need

Current 
holding

+2 allo
to P1

P1 
releases 
all

.. .. ..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4  done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe?   Detailed look for instants T0, T1, T2, etc..

Time                         
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Example B: 12 Units initially available in the system 

• At time T1, P2 is allocated 1 more units. Is that a 
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.
• The state at T1 is not a safe state. Wasn’t a good decision.

Max 
need

T0 T1 
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available 

At T1:
2 units available 
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Avoidance Algorithms

• Dynamic
• Single instance of a resource type
– Use a resource-allocation graph scheme

• Multiple instances of a resource type
– Use the banker’s algorithm (Dijkstra)
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Resource-Allocation Graph Scheme

• Claim edge Pi® Rj indicated that process Pi
may request resource Rj; represented by a 
dashed line. This is new.

• Claim edge converts to request edge when a 
process requests a resource

• Request edge converted to an assignment edge 
when the  resource is allocated to the process

• When a resource is released by a process, 
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a 
priori in the system
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Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since 
this action will create a cycle getting system in an unsafe state. 
If P1 requests R2, and P2 requests R1, then a deadlock will 
occur. 

Unsafe
state

- - ->  Claim edges
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Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting 
the request edge to an assignment edge does 
not result in the formation of a cycle in the 
resource allocation graph
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Banker’s Algorithm: examining a request

• Multiple instances of resources.
• Each process must a priori claim maximum use
• When a process requests a resource,  

– it may have to wait until the resource becomes 
available (resource request algorithm)

– Request should not be granted if the resulting system 
state is unsafe  (safety algorithm)

• When a process gets all its resources it must 
return them in a finite amount of time

• Modeled after a banker in a small-town making 
loans. 
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Data Structures for the Banker’s Algorithm 

• Available: Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available

Processes vs resources: 

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj

• Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj

• Need:  n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 
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Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n, 
respectively.  Initialize:

Work = Initially Available resources
Finish [i] = initially false for i = 0, 1, …, n- 1    (processes done)

2. Find a process i such that both: 
(a) Finish [i] = false
(b) Needi £Work
If no such i exists, go to step 4

3.  Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe 
state

n = number of processes, 
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i
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Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.  
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti £ Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim

2. If Requesti £ Available, go to step 3.  Otherwise Pi must 
wait, since resources are not available

3. Is allocation safe?:   Pretend to allocate requested resources 
to Pi by modifying the state as follows:

Available = Available  – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;          

! If safe Þ the resources are allocated to Pi
! If unsafe Þ Pi must wait, and the old resource-allocation state is 

preserved.

Use safety  algorithm here
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Example 1A: Banker’s Algorithm
• 5 processes P0  through P4; 
• 3 resource types:   A (10 instances),  B (5 instances), and C

(7 instances)
• Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C
Currently 
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need 
matrix is 

redundant 


