
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 L13
Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ

• Producer-consumer with bounded buffer
– Should the production and consumption rates be a perfect

match?
– Why circular buffer? Can buffer be full?

• Readers-Writers Problem
– Allow multiple readers to read at the same time
– Semaphores for mutual exclusion (mutex) and counting

• Why do synchronization among processes/threads?
– Machine instructions ⟹semaphores ⟹monitor

• Monitor: Implements
• mutual exclusion: only one process may be active at a time
• Conditions with associated queues where processes wait

until notified
– Our Monitor discussion is generic. Self Exercise 5 for a Java example.

3

Course Notes
• HW4 Due 3/10
– Plan: diagram/pseudocode
– Must have a working program 2-3 days earlier.

• Project D1: in
• Midterm: Tues March 8
– On-campus: in class Respondus lockdown browser on laptop
– Online: Local: with on-campus class, others: Honorlock

• D2 progress report: 4/7/22

https://tilt.colostate.edu/TestingCenter/FacultyResources/Proctoring

4

Pthreads Synchronization

• Pthreads API is OS-independent
• It provides:
– mutex locks
– condition variable thus can be used to create a monitor

• Non-portable extensions include:
– read-write locks
– Spinlocks

• A simple example

https://www.geeksforgeeks.org/use-posix-semaphores-c/

5 5

Colorado State University
Yashwant K Malaiya

Deadlocks

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

6

Chapter 8: Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks
– Deadlock Prevention
– Deadlock Avoidance resource-allocation

– Deadlock Detection
– Recovery from Deadlock

7

System Model

• System consists of resources
• Resource types R1, R2, . . ., Rm

Resource may be CPU cycles, memory space, I/O devices,
critical sections

• Each resource type Ri has Wi instances.
• Each process utilizes a resource as follows:
– request
– use
– release

8

Deadlock Characterization

• Mutual exclusion: only one process at a time can use
a resource

• Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource that is held
by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

9

Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.
• See example
– Dining Philosophers: each get the right chopstick first
– we saw this example earlier

Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);
... ...

signal(Q); signal(S);
signal(S); signal(Q);

P0 executes wait(s), P1 executes wait(Q)
P0 must wait till P1 executes signal(Q)
P1 must wait till P0 executes signal(S) Deadlock!

10

Resource-Allocation Graph

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

• request edge – directed edge Pi ® Rj

• assignment edge – directed edge Rj ® Pi

A set of vertices V and a set of edges E.

11

Resource-Allocation Graph (Cont.)
• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

12

Example of a Resource Allocation Graph

Observation: If the graph contains
no cycles, then no process in the
system is deadlocked.
If the graph does contain a cycle,
then a deadlock may exist.

Does a deadlock exist here?P1 holds an instance of R2
and is requesting R1 ..

P3 will eventually be done with
R3, letting P2 use it.

Thus, P2 will be eventually done,
releasing R1. …
Answer: No.

13

Resource Allocation Graph With A Deadlock

At this point, two minimal cycles
exist in the system:

P1→ R1→ P2→ R3→ P3→ R2→ P1

P2→ R3→ P3→ R2→ P2

Processes P1, P2, and P3 are
deadlocked.

Does a deadlock exist?

14

Graph With A Cycle But No Deadlock

Is there a deadlock?

P4 will release its instance of
resource type R2 . That resource
can then be allocated to P3 ,
breaking the cycle. Thus, there is
no deadlock.

If a resource-allocation graph does
not have a cycle, then the system
is not in a deadlocked state.
If there is a cycle, then the system

may or may not be in a
deadlocked state.

15

Basic Facts

• If graph contains no cycles Þ no
deadlock

• If graph contains a cycle Þ
– if only one instance per resource type,

then deadlock
– if several instances per resource type,

possibility of deadlock

16

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock
state:
– Deadlock prevention

• ensuring that at least one of the 4 conditions cannot hold
– Deadlock avoidance

• Dynamically examines the resource-allocation state to ensure that
it will never enter an unsafe state, and thus there can never be a
circular-wait condition

• Allow the system to enter a deadlock state
– Detection: detect and then recover. Hope is that it happens

rarely.

• Ignore the problem and pretend that deadlocks
never occur in the system; used by most operating
systems, including UNIX. However..

17

Methods for Handling Deadlocks

• Deterministic: Ensure that the system will never
enter a deadlock state at any cost

• Probabilistic view: Hope it happens rarely.
Handle if it happens: Allow the system to enter
a deadlock state and then recover.

18

Methods for Handling Deadlocks
Approach Resource

allocation policy
Scheme Notes

Prevention Conservative,
undercommits
resources

Requesting all
resources at once

Good for processes
with a single burst of
activity

Preemption Good when
preemption cost is
small

Resource ordering Compile time
enforcement possible

Avoidance midway Find at least one
safe path
(dynamic)

Future max
requirement must be
known

Detection Liberal Invoked periodically Preemption may be
needed

19

Ostrich algorithm

Ostrich algorithm: Stick your head in the sand;
pretend there is no problem at all .

Advantages:
– Cheaper, rarely needed anyway
– Prevention, avoidance, detection and recovery

• Need to run constantly

Disadvantages:
– Resources held by processes that cannot run
– More and more processes enter deadlocked state

• When they request more resources
– Deterioration in system performance

• Requires restart
To be fair to the ostriches,
let me say that …

20

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes that are circularly waiting.

21

Deadlock Prevention: Limit Mutual Exclusion

• Limit Mutual Exclusion –
– not required for sharable resources (e.g.,

read-only files)
– (Mutual Exclusion must hold for non-

sharable resources)

For a deadlock to occur, each of the four necessary conditions
must hold. By ensuring that at least one of these conditions
cannot hold, we can prevent the occurrence of a deadlock.

Restrain the ways request can be made:

22

Deadlock Prevention: Limit Hold and Wait

• Limit Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources
1. Require process to request and be allocated all its resources
before it begins execution
2. Allow a process to request resources when it is holding none.
Ex: Copy data from DVD, sort file, and print
– First request DVD and disk file
– Then request file and printer,
– then start

• Disadvantage: starvation possible

23

Deadlock Prevention: Limit No Preemption

• Limit No Preemption –
– If a process that is holding some resources,

requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released

– Preempted resources are added to the list of
resources for which the process is waiting

– Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting

24

Deadlock Prevention: Limit Circular Wait

• Limit Circular Wait – impose a total ordering
of all resource types, and require that each
process requests resources in an increasing
order of enumeration

• Assign each resource a unique number
– Disk drive: 1
– Printer: 2 …
– Request resources in increasing order

• Example soon

25

Dining philosophers problem: Necessary conditions for deadlock

• Mutual exclusion
– 2 philosophers cannot share the same chopstick

• Hold-and-wait
– A philosopher picks up one chopstick at a time
– Will not let go of the first while it waits for the second one

• No preemption
– A philosopher does not snatch chopsticks held by some other

philosopher

• Circular wait
– Could happen if each philosopher picks chopstick with the same hand

first

Relax conditions to
avoid deadlock

26

Deadlock Example: numbering
/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);
pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);
pthread_exit(0);

}

/* thread two runs in this function */
void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);
pthread_mutex_lock(&first_mutex);
/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);
}

Assume that thread one is the
first to acquire the locks and
does so in the order (1) first
mutex, (2) second mutex.

Solution: Lock-order verifier
“Witness” records the
relationship that first mutex
must be acquired before second
mutex. If thread two later
acquires the locks out of order,
witness generates a warning
message on the system console.

Allows deadlock. Redesign to avoid.

27

Deadlock may happen even with Lock Ordering

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;
lock1 = get_lock(from);
lock2 = get_lock(to);

acquire(lock1);
acquire(lock2);

withdraw(from, amount);

deposit(to, amount);
release(lock2);

release(lock1);
}

Ex: Transactions 1 and 2 execute concurrently.

Transaction 1 transfers $25 from account A to account B, and
Transaction 2 transfers $50 from account B to account A.

Deadlock is possible, even with lock ordering.

Lock ordering:
First from lock, then to lock

28

Deadlock Avoidance

Manage resource allocation to
ensure the system never enters an

unsafe state.

29

Deadlock Avoidance

• Simplest and most useful model requires that
each process declare the maximum number
of resources of each type that it may need

• The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

Requires that the system has some additional a priori information
available

30

Deadlock Avoidance

• Require additional information about how resources
are to be requested

• Knowledge about sequence of requests and releases
for processes
– Allows us to decide if resource allocation could cause a

future deadlock
• Process P: Tape drive, then printer
• Process Q: Printer, then tape drive

31

Deadlock Avoidance: Handling resource requests

• For each resource request:
– Decide whether or not process should wait

• To avoid possible future deadlock

• Predicated on:
1. Currently available resources
2. Currently allocated resources
3. Future requests and releases of each process

32

Avoidance: amount and type of information needed

• Resource allocation state
– Number of available and allocated resources
– Maximum demands of processes

• Dynamically examine resource allocation state
– Ensure circular-wait cannot exist

• Simplest model:
– Declare maximum number of resources for each type
– Use information to avoid deadlock

33

Safe Sequence

System must decide if immediate allocation leaves the
system in a safe state
System is in safe state if there exists a sequence <P1,
P2, …, Pn> of ALL the processes such that
• for each Pi, the resources that Pi can still request

can be satisfied by
– currently available resources +
– resources held by all the Pj, with j < i
– That is

• If Pi resource needs are not immediately available, then Pi
can wait until all Pj have finished and released resources

• When Pi terminates, Pi +1 can obtain its needed resources,
and so on

• If no such sequence exists: system state is unsafe

34

Deadlock avoidance: Safe states

• If the system can:
– Allocate resources to each process in some order

• Up to the maximum for the process
– Still avoid deadlock
– Then it is in a safe state

• A system is safe ONLY IF there is a safe
sequence

• A safe state is not a deadlocked state
– Deadlocked state is an unsafe state
– Not all unsafe states are deadlock

35

Safe, Unsafe, Deadlock State

Examples of safe and unsafe states in next 3 slides

36

Example A: Assume 12 Units in the system

• Is the system at time T0 in a safe state?
– Try sequence <P1, P0 , P2>
– P1 can be given 2 units
– When P1 releases its resources; there are now 5 available units
– P0 uses 5 and subsequently releases them (10 available now)
– P2 can then proceed.

• Thus <P1, P0 , P2> is a safe sequence, and at T0
system was in a safe state

Max need Current holding

av 3

P0 10 5

P1 4 2

P2 9 2

At time T0 (shown):
9 units allocated
3 (12-9) units available

A unit could be a drive,
a block of memory etc.

More detailed look

37

Example A: Assume 12 Units in the system (timing)

Max
need

Current
holding

+2 allo
to P1

P1
releases
all

..

T0 T1 T2 T3 T4 T5

av 3 1 5 0 10 3

P0 10 5 5 5 10 done 0 0

P1 4 2 4 done 0 0 0 0

P2 9 2 2 2 2 2 9 done

Thus the state at T0 is safe.

Is the state at T0 safe? Detailed look for instants T0, T1, T2, etc..

Time

38

Example B: 12 Units initially available in the system

• At time T1, P2 is allocated 1 more units. Is that a
good decision?
– Now only P1 can proceed (already has 2, and given be given 2 more)

– When P1 releases its resources; there are 4 units
– P0 needs 5 more, P2 needs 6 more. Deadlock.

• Mistake in granting P2 the additional unit.
• The state at T1 is not a safe state. Wasn’t a good decision.

Max
need

T0 T1
safe?

Av 3 2

P0 10 5 5

P1 4 2 2

P2 9 2 3 Is that OK?

Before T1:
3 units available

At T1:
2 units available

39

Avoidance Algorithms

• Dynamic
• Single instance of a resource type
– Use a resource-allocation graph scheme

• Multiple instances of a resource type
– Use the banker’s algorithm (Dijkstra)

40

Resource-Allocation Graph Scheme

• Claim edge Pi® Rj indicated that process Pi
may request resource Rj; represented by a
dashed line. This is new.

• Claim edge converts to request edge when a
process requests a resource

• Request edge converted to an assignment edge
when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Requirement: Resources must be claimed a
priori in the system

41

Resource-Allocation Graph

Suppose P2 requests R2. Can R2 be allocated to P2?
Although R2 is currently free, we cannot allocate it to P2, since
this action will create a cycle getting system in an unsafe state.
If P1 requests R2, and P2 requests R1, then a deadlock will
occur.

Unsafe
state

- - -> Claim edges

42

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

43

Banker’s Algorithm: examining a request

• Multiple instances of resources.
• Each process must a priori claim maximum use
• When a process requests a resource,

– it may have to wait until the resource becomes
available (resource request algorithm)

– Request should not be granted if the resulting system
state is unsafe (safety algorithm)

• When a process gets all its resources it must
return them in a finite amount of time

• Modeled after a banker in a small-town making
loans.

44

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

Processes vs resources:

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

45

Safety Algorithm: Is this a safe state?

1. Let Work and Finish be vectors of length m and n,
respectively. Initialize:

Work = Initially Available resources
Finish [i] = initially false for i = 0, 1, …, n- 1 (processes done)

2. Find a process i such that both:
(a) Finish [i] = false
(b) Needi £Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe
state

n = number of processes,
m = number of resources types
Needi: additional res needed
Work: res currently free
Finishi: processes finished
Allocationi: allocated to i

46

Resource-Request Algorithm for Process Pi

Notation: Requesti = request vector for process Pi.
If Requesti [j] = k then process Pi wants k instances of resource type Rj

Algorithm: Should the allocation request be granted?

1. If Requesti £ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2. If Requesti £ Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3. Is allocation safe?: Pretend to allocate requested resources
to Pi by modifying the state as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

! If safe Þ the resources are allocated to Pi
! If unsafe Þ Pi must wait, and the old resource-allocation state is

preserved.

Use safety algorithm here

47

Example 1A: Banker’s Algorithm
• 5 processes P0 through P4;
• 3 resource types: A (10 instances), B (5 instances), and C

(7 instances)
• Is it a safe state?

Process Max Allocation Need

type A B C A B C A B C
Currently
available

3 3 2

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

The Need
matrix is

redundant

