CS370 Operating Systems
Midterm Review

Yashwant K Malaiya
Spring 2022

ColoradaState University

Review for Midterm

Closed book, closed notes, no cheat sheets. Calculator in
browser available.
 Sec 002 and local 801 students
— 12:30-1:45 PM Tuesday March 8 in Clark A 201 usual room
* Sec 801 (non-local):

— 1 hr 15 min. Tuesday March 8 12:30- Wed March 9 1:45 PM
window.

* SDC students: You should have made arrangements
with SDC already.

* Sec 002: Respondus lockdown browser, Sec 801
Honorlock

Colorado State University

Course Overview

Colorado State University

Computer System Structures

Computer System Operation

— Stack for calling functions (subroutines)
/O Structure: polling, interrupts, DMA
Storage Structure

— Storage Hierarchy

System Calls and System Programs

Command Interpreter

Colorado State University

The Concept of a Process

— Process - a program in execution
e process execution proceeds in a sequential fashion
— Multiprogramming: several programs apparently executing
“concurrently”.

— Process States
* e.g. new, running, ready, waiting, terminated.

admitted interrupt

I/O or event completion scheduwlerdlspatch I/O or event wait

Colorado Ytate University

CPU Switch From

process P,

executing Jl

executing 1'['¥

~

>idle

operating system

interrupt or system call

| save state into PCB, |

|reload state from PCB|

interrupt or system call

| save state into PCB; |

|re|oad state from PCBO|

process P,

idle

executing

¥

idle

i

NN

struct task_struct
process information

struct task_struct
process information

Process to Process

process state

process number

program counter

registers

memory limits

list of open files

C structure
task struct

~ 1

current

. h .
(currently executing proccess) aa vean i JIINCI‘SIt}f

struct task_struct
process information

L

Process Creation

Processes are created and deleted dynamically

Process which creates another process is called a
parent process; the created process is called a child
process.

Result is a tree of processes

* e.g. UNIX - processes have dependencies and form a
hierarchy.

Resources required when creating process
* CPU time, files, memory, I/O devices etc.

pdflush
pid = 200

parent resumes

> watt

cid = fork();
if (cid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed\n");
return 1;
}
else if (cid == 0) { /* child process */
execlp("/bin/ls","Is",NULL);
}
else { /* parent process, will wait for child to complete */
wait(NULL);

Colorado State University

Threads

A thread (or lightweight process)

* basic unit of CPU utilization; it consists of:
— program counter, register set and stack space

— A thread shares the following with peer threads:

— code section, data section and OS resources (open
files, signals)

— Collectively called a task.

Thread support in modern systems
— User threads vs. kernel threads, lightweight

I code || data H files |

| registers | | registers | | registers |

| stack || stack || stack |

e

processes | code H data || files I
— 1-1, many-1 and many-many mapping =3
Implicit Threading (e.g. OpenMP)
Hardware support in newer processors _’;

multithreaded process

Colorado State University

Producer-Consumer Problem

* Paradigm for cooperating processes;

— producer process produces information that is
consumed by a consumer process.

 We need buffer of items that can be filled by
producer and emptied by consumer.

I i — f d ed;
/ plOducean itelllinllextploduced /

— Bounded-buffer while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */
buffer[in] = next_produced,;

* Producer and Consumer must synchronize. in=in+1%eurrer sie;
}

6 7

Colorado State University

Interprocess Communication (IPC)

* Mechanism for processes to communicate and

synchronize their actions. o~
* Via shared memory create the pipe:
if (pipe(fd) ==-1) {
° Pipes fprintf(stderr,"Pipe failed");
return 1;
fork a child process:
* Sockets o1 = fork():

* Via Messaging system - processes parent process:

/* close the unused end of the pipe */

communicate without resorting to close(fd[READ_ENDI);

. /* write to the pipe */
S h d rEd varia b I es. write(fd[WRITE_END], write_msg, strlen(write_msg)+1);

/* close the write end of the pipe */
close(fd[WRITE_END]);

Colorado State University

10

CPU Scheduling

* CPU utilization — keep the CPU as e Y
busy as possible: Maximize]

* Throughput — # of processes that 2= e

complete their execution per time tme ics |,
. . . expire
unit: Maximize
. . hild fork s
e Turnaround time —time to execute a e chid [

process from submission to P —
completion: Minimize ocours interrupt

* Waiting time — amount of time a
process has been waiting in the
ready queue: Minimize

 Response time —time it takes from
when a request was submitted until
the first response is produced, not
output (for time-sharing
environment): Minimize

1Y

Colorado State University

11

Scheduling Policies

12

FCFS (First Come First Serve)
— Process that requests the CPU FIRST is allocated the CPU FIRST.

SJF (Shortest Job First)

— Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time.

Shortest-remaining-time-first (preemptive SJF)
— A process preempted by an arriving process with shorter remaining time
Priority

— A priority value (integer) is associated with each process. CPU allocated
to process with highest priority.

Round Robin
— Each process gets a small unit of CPU time
MultiLevel

— ready queue partitioned into separate queues

— Xariation: Multilevel Feedback queues: priority lower or raised based on
istory

Completely Fair

Colorado State University

Example of SJF

13

Process Burst Time
P 6
P, 8
P; 7
P, 3

e All arrive at time 0.
e SJF scheduling chart

P P P P

4 1 3 2

* Average waiting time for P;,P,,P;,P,=(3+16+9+0)/4=7

Colorado State University

Determining Length of Next CPU Burst

* Can be done by using the length of previous CPU bursts,

using exponential averaging
1. t,, =actual length of n""CPU burst

2. 7, =predicted value for the next CPU burst
3. a,0<a <1
4. Define: Ty =al, +(1_0‘)Tn-

e Commonly, & set to) 12t
T 10
8|
i 6
4k
ol
I I I i I I 1 I
time ——
CPU burst (t) 6 4 6 4 13 13 13
"guess” (t) 10 8 6 6 5 9 11 12

Colorado State University

14

Example of RR with Time Quantum = 4

Process Burst Time
P, 24

Arrive a time O in order P1, P2, P3: The Gantt chart is:

Waiting times: P1:10-4 =6, P2:4, P3:7, average 17/3 = 5.66
units

Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch overhead < 1%

Response time: Arrival to beginning of execution: P2:4

15

Turnaround time: Arrival to finish of execution: P2: 7 . .
wJlorado State University

Multiple-Processor Scheduling

* CPU scheduling more complex when multiple CPUs are
available.

 Assume Homogeneous processors within a
multiprocessor

* Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

* Symmetric multiprocessing (SMP) — each processor is
self-scheduling,
— all processes in common ready queue, or
— each has its own private queue of ready processes
e Currently, most common
* Processor affinity — process has affinity for processor on
which it is currently running because of info in cache
— soft affinity: try but no guarantee
— hard affinity can specify processor sets

Colorado State University

16

18

Consumer-producer problem

Producer Consumer
while (true) { while (true) {
/* produce an item*/ while (counter == 0);
while (counter == BUFFER SIZE) ; /* do nothing */
/* do nothing */ next consumed = buffer[out];
buffer[in] = next produced; out = (out + 1) % BUFFER SIZ
i].’l = (il’l + 1) % BUFFER_SIZE; counter——;

counter++; /* consume the item in

next consumed */

They run “concurrently” (or in parallel), and are subject to context switches
at unpredictable times.

Colorada$tate University

19

Race Condition

counter++ could be compiled as counter-- could be compiled as
registerl = counter register2 = counter
registerl = registerl + 1 register2 = register2 -1
counter = registerl counter = register2

They run concurrently, and are subject to context switches at unpredictable times.

Consider this execution interleaving with “count = 5” initially:

SO: producer execute registerl = counter {registerl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 ({register2 =4}
S4: producer execute counter = registerl {counter=6}
S5: consumer execute counter = register2 {counter = 4}

Overwrites!

The Critical Section Problem

— Requirements
— Mutual Exclusion
— Progress
— Bounded Waiting

— Solution to the critical section problem

do {
acquire lock
critical section
release lock
remainder section
} while (TRUE) ;

Colorado State University

20

Peterson’s Algorithm for Process P,

do

flag[i] =
turn = j;
while (flag[j] && turn = = j); /*Wait*/

critical section

flag[i] = false;

remainder section

} while (true);

e The variable turn indicates whose turn it is to enter the critical section
- flag[i] = true implies that process p; is ready!
* Proofs for Mutual Exclusion, Progress, Bounded Wait

Colorado State University

21

Solution using test and set()

B Shared Boolean variable lock, initialized to FALSE

B Solution:

do {
while (test and set(&lock)) ; /* do nothing */

/* critical section */

lock = false;
/* remainder section */

} while (true);

Colorado State University

22

Bounded-waiting Mutual Exclusion with test_and_set

For process 1i:
do {

waiting[i] = true;

key = true;

while (waiting[i] && key)

key = test and set(&lock); The entry section for process i :

waiting[i] = false; * First process to execute TestAndSet will find

key == false ; ENTER critical section,

. EVERYONE else must wait

Shared Data structures initialized to FALSE
. boolean waiting[n];

L boolean lock;

/* critical section */

j=(1+ 1) % n;

while ((j '= i) && 'waiting[j])
., o] The exit section for process i:
=0 +1) %n; o . o .
. .. Part I: Finding a suitable waiting process j and
if (j == 1)) .
enable it to get through the while loop,
lock = false; i))
or if thre is no suitable process, make lock FALSE.
else
waiting[j] = false;

/* remainder section */
} while (true);

Colorado State University

23

Mutex Locks

B Protect a critical section by first acquire ()
a lock then release () the lock *‘Usage

@® Boolean indicating if lock is available or not do {

B Calls to acquire () and release () must be acquire lock
critical section

atomic
@ Usually implemented via hardware atomic release lock
instructions remainder section

B But this solution requires busy waiting } while (true);

B This lock therefore called a spinlock

acquire () { release () {
while ('available) available = true;
; /* busy wait */ }
Colorado State University

24

25

Semaphore

Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

Semaphore S — integer variable
Can only be accessed via two indivisible (atomic) operations

— wait () andsignal ()
* Originally called P () and V ()
Definition of thewait () operation
wait (S) {
while (S <= 0)
; // busy wait
S--;
}
Definition of the signal () operation
signal (S) ¢

S++;

Colorado State University

WEIMNERERIEGEIRS)

Process O Semaphore S Process 1
Wait(S) >=1
> Wait (S)
|4
Critical section 5-0 i Busy waiting

Signal (S)
- Gets lock, S- -

A 4

S =0 |Locked by Process 1 Critical section

Signal (S)

Colorado State University

26

Readers-Writers Problem (Cont.)

* The structure of a reader process
do {

wait (mutex) ;
read count++; mutex for mutual
if (read count == 1) exclusion to readcount

wait (rw_mutex) ;

signal (mutex) ; When:
writer in critical section

* e and if n readers waiting
/* reading is performed */ 1is queued on rw_mutex
(n-1) queued on mutex

wait (mutex) ;

read count-- ; The structure of a writer process
if (read count == 0) do {
signal (rw_mutex) ; wait (rw_mutex) ;
signal (mutex) ; /* writing is performed */

]' while (true); signai.(l.':w_mutex);

} while (true);

Colorado State University

27

Implementation with no Busy waiting (Counting Sema)

wait (semaphore *S) ({
S->value--;

if (S->value < 0) {
add this process to S->list;

block () ;
typedef struct{

int value;
struct process *list;

} semaphore;
signal (semaphore *S) ({

S->value++;

if (S->value <= 0) {
remove a process P from S->list;
wakeup (P) ;

Colorado State University

28

Monitors and Condition Variables

entry queue

monitor monitor-name

shared data

// shared variable declarations
queues associated with
Procedure P1 () { oo0 © } X, y conditions

y Bl

procedure Pn (..) {...}

Initialization code (..) { .. }

) —

operations

}

initialization
code

The condition construct
* condition x, y;

* Two operations are allowed on a condition variable:
— x.wait () — aprocess that invokes the operation is suspended
until x. signal ()

— x.signal() —resumes one of processes (if any) that invoked
x.wait ()
* Ifnox.wait () onthe variable, then it has no effect on the

variable. Signal is lost.
Colorado State University

29

The pickup() and putdown() operations

monitor DiningPhilosophers

{
enum { THINKING, HUNGRY, EATING} state [5] -
condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test (1) ; //on next slide

if (state[i] != EATING) self[i].wait;
}

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test((1i + 4) % 5);
test((i + 1) % 5);

} void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;
self[i].signal () ;
}
}
initialization code () {
for (int 1 = 0; 1 < 5; 1i++)
state[i] = THINKING;

}

10 Colorado Ytate University

Deadlocks

e System Model

* Resource allocation graph, claim
graph (for avoidance)

e Deadlock Characterization

— Conditions for deadlock - mutual
exclusion, hold and wait, no
preemption, circular wait.

 Methods for handling
deadlocks
* Deadlock Prevention
* Deadlock Avoidance
* Deadlock Detection
* Recovery from Deadlock

— Combined Approach to Deadlock
Handling

31

° °

o

R, °
R,

At this point, two minimal cycles exist in
the system:

P1-> R1-> P2-> R3-> P3-> R2-> P1

P2-> R3-> P3-> R2-> P2

Processes P1, P2, and P3 are
deadlocked.

Colorado State University

Deadlock Prevention

— If any one of the conditions for deadlock (with reusable
resources) is denied, deadlock is impossible.

— Restrain ways in which requests can be made
Mutual Exclusion - cannot deny (important)

Hold and Wait - guarantee that when a process requests a resource, it
does not hold other resources.

No Preemption

— If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, the process
releases the resources currently being held.

Circular Wait
— Impose a total ordering of all resource types.

Colorado State University

32

Deadlock avoidance: Safe states

* If the system can:

— Allocate resources to each process in some order
* Up to the maximum for the process

— Still avoid deadlock
— Then it is in a safe state

* Asystem is safe ONLY IF there is a safe
sequence

e A safe state is not a deadlocked state

— Deadlocked state is an unsafe state
— Not all unsafe states are deadlock

Colorado State University

33

Questions

34

Various types of questions:

* Easy, hard, middle

Question types (may be similar to quiz questions):

Problem solving/analyzing: Gantt charts, tables, e.g., scheduling

True/False, Multiple choice
Match things

Identifying things in diagrams or complete them

Concepts: define/explain/fill in blanks

Code fragments: fill missing code, values of variables

How will you achieve something?
Others

Colorado State University

How to prepare for the Midterm

 What you have been doing already

— Listen to the lectures carefully, connecting terms, concepts
and approaches

— Think while answering quizzes, reviewing material as needed

— Understanding, designing, coding and testing of programs

* Review course materials
— Slides
— HWs
— Quizzes. There will be one this weekend.
— Textbook

Colorado State University

35

That’s it for today.

. Colorado State University

