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Hierarchy
Main memory and registers are only 
storage CPU can access directly 
access

Register access in one CPU clock (or 
less).
Main memory can take many cycles, 
causing a stall.

Cache sits between main memory 
and CPU registers making main 
memory appear much faster 

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch 
10

Ch 9

Ch 11, 13,14,15: Disk, file system      Cache Memory: CS470   



3

FAQ
• Why partition the address space/Why have multiple 

separate address spaces
– Multiprogramming
– Each process needs separate memory

• Why do processes/kernel need protection (separation)
– Users can be careless/malicious.

• Why have logical (virtual) and physical addresses?
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Logical vs. Physical Address Space

• The concept of a logical address space that 
is bound to a separate physical address 
space is central to proper memory 
management
– Logical address – generated by the CPU; also 

referred to as virtual address
– Physical address – address seen by the 

memory unit
• Logical address space is the set of all 

logical addresses generated by a program
• Physical address space is the set of all 

physical addresses
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Memory Allocation Approaches
• Contiguous allocation: entire memory for 

a program in a single contiguous memory 
block. Find where a program will “fit”. earliest 
approach

• Segmentation: program divided into 
logically divided “segments” such as main 
program, function, stack etc. 
– Need table to track segments.

• Paging: program divided into fixed size 
“pages”, each placed in a fixed size 
“frame”. 
– Need table to track pages.
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Fragmentation
• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory
interspersed among allocated regions

• Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule
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Paging vs Segmentations

Segmentation: program divided into logically divided 
“segments” such as main program, function, stack etc. 
• Need table to track segments.
• Term “segmentation fault occurs”: improper 

attempt to access a memory location

Paging: program divided into fixed size “pages”, each 
placed in a fixed size “frame”. 
• Need table to track pages.
• No external fragmentation
• Increasingly more common
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Pages: Outlines

• Pages and frames
– Addresses: page number, offset

• Page tables: mapping from page # to frame #
– TLB: page table caching

• Memory protection and sharing
• Multilevel page tables

Page refers to a block of information, frame 
refers to a physical memory block. Frame is 
sometimes called a page frame or just a page.
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Paging
• Divide physical memory into fixed-sized 

blocks called frames (or page frames)
– Size is power of 2, between 512 bytes and 16 

Mbytes
• Divide logical memory into blocks of same 

size called pages
– To run a program of size N pages, need to find N

free frames and load program
– Still have Internal fragmentation

• Physical  address space of a process can be 
noncontiguous; process is allocated physical 
memory whenever the latter is available
– Avoids external fragmentation
– Avoids problem of varying sized memory chunks
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Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page 
table which contains base address of each page in 
physical memory

– Page offset (d) – combined with base address to 
define the physical memory address that is sent to 
the memory unit

– For given logical address space 2m and page size
2n

page number page offset

p d

m -n n
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Paging Hardware

Page number  p  mapped  frame number f.
The offset d needs no mapping.
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Paging Example

8 frames 
Frame number 0-to-7

Page 0 maps 
to frame 5

Example: 
Logical add:   00 10 (2)
Phyical Add: 101 10 (22)

Ex: m=4   and  n=2 

• Logical add. space = 24 bytes, 
• 22=4-byte pages

• 32-byte physics memory with 8 frames
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Paging (Cont.)
• Internal fragmentation

– Ex: Page size = 2,048 bytes, Process size = 72,766 bytes  
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes wasted

– Worst case fragmentation = 1 frame – 1 byte
– On average fragmentation = 1 / 2 frame size
– So small frame sizes desirable?

• But each page table entry takes memory to track
– Page size

• X86-64: 4 KB (common), 2 MB (“huge” for servers), 1GB (“large”)

• Process view and physical memory now very 
different

• By implementation, a process can only access its 
own memory unless ..
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Free Frame allocation

Before allocation After allocation
A new process arrives 
That needs four pages
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Implementation of Page Table
Page table is kept in main memory
• Page-table base register (PTBR) points to 

the page table
• Page-table length register (PTLR)

indicates size of the page table
• In this scheme every data/instruction 

access requires two memory accesses
– One for the page table and one for the data / 

instruction
The two memory access problem can be 
solved by the use of a special fast-lookup 
hardware cache called associative memory 
or translation look-aside buffers (TLBs)

One page-table
For each process

TLB: cache for Page Table
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Caching: The General Concept
• Widely used concept: 

– keep small subset of information likely to 
needed in near future in a fast accessible place

– Hopefully the “Hit Rate” is high
Challenges: 

– 1. Is the information in cache? 2. Where?
– Hit rate vs cache size

Examples: 
– Cache Memory (“Cache”): 

Cache for Main memory  Default meaning for this class
– Browser cache: for browser
– Disk cache
– Cache for Page Table: TLB
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Implementation of Page Table (Cont.)
• Some TLBs store address-space identifiers 

(ASIDs) in each TLB entry – uniquely identifies 
each process to provide address-space 
protection for that process
– Otherwise need to flush TLB at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded into the TLB for 

faster access next time
– Replacement policies must be considered
– Some entries can be wired down for permanent fast 

access TLB: cache for 
page Table
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Associative Memory

• Associative memory –parallel search using hardware
– “Content addressable memory”: Electronics is very expensive

• Address translation (p, d)
– If p is in associative register, get frame # out  (“Hit”)
– Otherwise get frame # from page table in memory  (“Miss”)

Page # Frame #
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Paging Hardware With TLB

TLB Miss: page table access may be 
done using hardware / software
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Effective Access Time
On average how long does a memory access take?
• Associative Lookup = e time units

– Can be < 10% of memory access time  (mat)
• Hit ratio = a

– Hit ratio – percentage of times that a page number is 
found in the associative registers; ratio related to 
number of associative registers

• Effective Access Time (EAT): probability weighted
EAT = a (e+mat) + (1 – a)(e+2.mat) 

• Ex:
Consider a = 90%, e = negligible for TLB search, 100ns for 
memory access time
– EAT = 0.90 x 100 + 0.10 x 200 = 110ns

• Consider more realistic hit ratio ->  a = 99%, 
– EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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FAQ
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Memory Protection
• Memory protection implemented by associating 

protection bit with each frame to indicate if 
read-only or read-write access is allowed
– Can also add more bits to indicate page execute-

only, and so on
• Valid-invalid bit attached to each entry in the 

page table:
– “valid” indicates that the associated page is in the 

process’ logical address space, and is thus a legal 
page

– “invalid” indicates that the page is not in the 
process’ logical address space

• Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not 
in the process’s 
address space. 
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Shared Pages among Processes
• Shared code

– One copy of read-only (reentrant non-self modifying) 
code shared among processes (i.e., text editors, 
compilers, window systems)

– Similar to multiple threads sharing the same 
process space

– Also useful for interprocess communication if 
sharing of read-write pages is allowed

• Private code and data
– Each process keeps a separate copy of the 

code and data
– The pages for the private code and data can 

appear anywhere in the logical address space
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Shared Pages Example

ed1, ed2, ed3
(frames 3, 4, 6) shared
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Overheads in paging:   Page table and internal fragmentation 

Optimal Page Size: 
page table size vs internal  fragmentation tradeoff

• Average process size = s
• Page size = p
• Size of each entry in page table = e 
– Pages per process = s/p 
– se/p: Total page table space for average process
– Total Overhead = Page table overhead + Internal 

fragmentation loss 
= se/p + p/2 
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Optimal Page size: Page table and internal fragmentation 

• Total Overhead = se/p + p/2 
• Optimal: Obtain derivative of overhead with 

respect to p, equate to 0 
-se/p2 +1⁄2 = 0 

• i.e.     p2 =2se    or p = (2se)0.5

Assume   s = 128KB and e=8 bytes per entry 
• Optimal page size = 1448 bytes
– In practice we will never use 1448 bytes 
– Instead, either 1K or 2K would be used 

• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier 
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Page Table Size
Memory structures for paging can get huge using 
straight-forward methods
• Consider a 32-bit logical address space as on 

recent processors 64-bit on 64-bit processors

– Assume page size of 4 KB (212) entries
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address 

space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024  or 1 kibibyte

220 1M mebibyte

230 1G      gigibyte

240 1T       tebibyte
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Issues with large page tables 

• Cannot allocate page table contiguously in 
memory   

• Solution: 
– Divide the page table into smaller pieces 
– Page the page-table 

• Hierarchical Paging
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Hierarchical Page Tables

• Break up the logical address 
space into multiple page tables

• A simple technique is a two-level 
page table

• We then page the page table

P1: indexes the outer page table
P2:  page table: maps to frame
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Two-Level Page-Table Scheme

xxxx xxxx xxxx xxxx xxxx xx xx xxxx xxxx
Outer Page table          page table             offset within page
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Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page 

size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit page number 
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2is the displacement within the page of the inner page 
table

• Known as forward-mapped page table
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Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212
entry: page of the page table 

• Often only some of all possible 212 Page 
tables needed (each of size 210)
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Page Offset

Q1. Consider a logical address with a page size of 4 KB. 
How many bits must be used to represent the page 
offset in the logical address?

A. 16
B. 10
C. 8
D. 12
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Each hex digit represents 4 bits

Page number

Q2. Given the logical address 0xAEF9 (in hexadecimal) 
with a page size of 256 bytes, what is the page number?

A. 0xF9
B. x00F9
C. xA
D. 0xAE	
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External fragmentation

Q3. In paging-based memory allocations, the physical 
memory is subject to external fragmentation.

A. True

B.	False



39

Answers
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Page Offset

Q1. Consider a logical address with a page size of 4 KB. 
How many bits must be used to represent the page 
offset in the logical address?

A. 16
B. 10
C. 8
D. 12 since 212 =	4K
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Page number

Q2. Given the logical address 0xAEF9 (in hexadecimal) 
with a page size of 256 bytes, what is the page number?

A. 0xF9
B. x00F9
C. xA
D. 0xAE					28 =	256.	Thus	8	LSBs	or	2	hex	digits	are	used	for	

page	offset
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External fragmentation

Q3. In paging based memory allocations, the physical 
memory is subject to external fragmentation.

A. True

B.	False				Only	internal	fragmentation	in	page-based	



43 43

Colorado State University
Yashwant K Malaiya

Back from ICQ

CS370 Operating Systems



44

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average 
access time will be close to slightly more than one memory 
access time.
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64-bit Logical Address Space
! Even two-level paging scheme not sufficient
! If page size is 4 KB (212)

! Then page table has 252 entries
! If two level scheme, inner page tables could be 210 4-byte 

entries
! Address would look like

! Outer page table has 242 entries or 244 bytes
! One solution is to add a 2nd outer page table

!But in the following example the 2nd outer page table is still 234 bytes 
in size

4And possibly 4 memory access to get to one physical memory 
location!

Full 64-bit physical memories not common yet
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Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!
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Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the 
same location

• Each element contains (1) the virtual page number (2) 
the value of the mapped page frame (3) a pointer to the 
next element

• Virtual page numbers are compared in this chain 
searching for a match
– If a match is found, the corresponding physical frame is 

extracted
• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such 
as 16) rather than 1

– Especially useful for sparse address spaces (where memory 
references are non-contiguous and scattered) 
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Hashed Page Table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped   page frame  
(3) a pointer to the next element
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Inverted Page Table
• Rather than each process having 

a page table and keeping track of 
all possible logical pages, track 
all physical pages
– One entry for each real page of 

memory (“frame”)
– Entry consists of the virtual 

address of the page stored in 
that real memory location, with 
information about the process 
that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory 
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Inverted Page Table

• Decreases memory needed to store each 
page table, but increases time needed to 
search the table when a page reference 
occurs

• But how to implement shared memory?
– One mapping of a virtual address to the 

shared physical address. Not possible.

Used in IA-64 ..
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Segmentation Approach
Memory-management scheme that supports 
user view of memory 
• A program is a collection of segments

– A segment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)
– Segment-table length register (STLR)

• segments vary in length, can very dynamically
• Segments may be paged
• Used for x86-32 bit
• Origin of term “segmentation fault”


