
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022 L17
Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

Hierarchy
Main memory and registers are only
storage CPU can access directly
access

Register access in one CPU clock (or
less).
Main memory can take many cycles,
causing a stall.

Cache sits between main memory
and CPU registers making main
memory appear much faster

Removable
/Backup

Registers

Cache

Main Memory

Secondary Memory (Disk)
Ch
10

Ch 9

Ch 11, 13,14,15: Disk, file system Cache Memory: CS470

3

FAQ
• Why partition the address space/Why have multiple

separate address spaces
– Multiprogramming
– Each process needs separate memory

• Why do processes/kernel need protection (separation)
– Users can be careless/malicious.

• Why have logical (virtual) and physical addresses?

4

Logical vs. Physical Address Space

• The concept of a logical address space that
is bound to a separate physical address
space is central to proper memory
management
– Logical address – generated by the CPU; also

referred to as virtual address
– Physical address – address seen by the

memory unit
• Logical address space is the set of all

logical addresses generated by a program
• Physical address space is the set of all

physical addresses

5

Memory Allocation Approaches
• Contiguous allocation: entire memory for

a program in a single contiguous memory
block. Find where a program will “fit”. earliest
approach

• Segmentation: program divided into
logically divided “segments” such as main
program, function, stack etc.
– Need table to track segments.

• Paging: program divided into fixed size
“pages”, each placed in a fixed size
“frame”.
– Need table to track pages.

6

Fragmentation
• External Fragmentation – External fragmentation:

memory wasted due to small chunks of free memory
interspersed among allocated regions

• Internal Fragmentation – allocated memory may be
slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used

• Simulation analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule

7

Paging vs Segmentations

Segmentation: program divided into logically divided
“segments” such as main program, function, stack etc.
• Need table to track segments.
• Term “segmentation fault occurs”: improper

attempt to access a memory location

Paging: program divided into fixed size “pages”, each
placed in a fixed size “frame”.
• Need table to track pages.
• No external fragmentation
• Increasingly more common

8

Pages: Outlines

• Pages and frames
– Addresses: page number, offset

• Page tables: mapping from page # to frame #
– TLB: page table caching

• Memory protection and sharing
• Multilevel page tables

Page refers to a block of information, frame
refers to a physical memory block. Frame is
sometimes called a page frame or just a page.

9

Paging
• Divide physical memory into fixed-sized

blocks called frames (or page frames)
– Size is power of 2, between 512 bytes and 16

Mbytes
• Divide logical memory into blocks of same

size called pages
– To run a program of size N pages, need to find N

free frames and load program
– Still have Internal fragmentation

• Physical address space of a process can be
noncontiguous; process is allocated physical
memory whenever the latter is available
– Avoids external fragmentation
– Avoids problem of varying sized memory chunks

10

Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page
table which contains base address of each page in
physical memory

– Page offset (d) – combined with base address to
define the physical memory address that is sent to
the memory unit

– For given logical address space 2m and page size
2n

page number page offset

p d

m -n n

11

Paging Hardware

Page number p mapped frame number f.
The offset d needs no mapping.

12

Paging Example

8 frames
Frame number 0-to-7

Page 0 maps
to frame 5

Example:
Logical add: 00 10 (2)
Phyical Add: 101 10 (22)

Ex: m=4 and n=2

• Logical add. space = 24 bytes,
• 22=4-byte pages

• 32-byte physics memory with 8 frames

13

Paging (Cont.)
• Internal fragmentation

– Ex: Page size = 2,048 bytes, Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes wasted

– Worst case fragmentation = 1 frame – 1 byte
– On average fragmentation = 1 / 2 frame size
– So small frame sizes desirable?

• But each page table entry takes memory to track
– Page size

• X86-64: 4 KB (common), 2 MB (“huge” for servers), 1GB (“large”)

• Process view and physical memory now very
different

• By implementation, a process can only access its
own memory unless ..

14

Free Frame allocation

Before allocation After allocation
A new process arrives
That needs four pages

15

Implementation of Page Table
Page table is kept in main memory
• Page-table base register (PTBR) points to

the page table
• Page-table length register (PTLR)

indicates size of the page table
• In this scheme every data/instruction

access requires two memory accesses
– One for the page table and one for the data /

instruction
The two memory access problem can be
solved by the use of a special fast-lookup
hardware cache called associative memory
or translation look-aside buffers (TLBs)

One page-table
For each process

TLB: cache for Page Table

16

Caching: The General Concept
• Widely used concept:

– keep small subset of information likely to
needed in near future in a fast accessible place

– Hopefully the “Hit Rate” is high
Challenges:

– 1. Is the information in cache? 2. Where?
– Hit rate vs cache size

Examples:
– Cache Memory (“Cache”):

Cache for Main memory Default meaning for this class
– Browser cache: for browser
– Disk cache
– Cache for Page Table: TLB

17

Implementation of Page Table (Cont.)
• Some TLBs store address-space identifiers

(ASIDs) in each TLB entry – uniquely identifies
each process to provide address-space
protection for that process
– Otherwise need to flush TLB at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded into the TLB for

faster access next time
– Replacement policies must be considered
– Some entries can be wired down for permanent fast

access TLB: cache for
page Table

18

Associative Memory

• Associative memory –parallel search using hardware
– “Content addressable memory”: Electronics is very expensive

• Address translation (p, d)
– If p is in associative register, get frame # out (“Hit”)
– Otherwise get frame # from page table in memory (“Miss”)

Page # Frame #

19

Paging Hardware With TLB

TLB Miss: page table access may be
done using hardware / software

20

Effective Access Time
On average how long does a memory access take?
• Associative Lookup = e time units

– Can be < 10% of memory access time (mat)
• Hit ratio = a

– Hit ratio – percentage of times that a page number is
found in the associative registers; ratio related to
number of associative registers

• Effective Access Time (EAT): probability weighted
EAT = a (e+mat) + (1 – a)(e+2.mat)

• Ex:
Consider a = 90%, e = negligible for TLB search, 100ns for
memory access time
– EAT = 0.90 x 100 + 0.10 x 200 = 110ns

• Consider more realistic hit ratio -> a = 99%,
– EAT = 0.99 x 100 + 0.01 x 200 = 101ns

21

FAQ

22

Memory Protection
• Memory protection implemented by associating

protection bit with each frame to indicate if
read-only or read-write access is allowed
– Can also add more bits to indicate page execute-

only, and so on
• Valid-invalid bit attached to each entry in the

page table:
– “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page

– “invalid” indicates that the page is not in the
process’ logical address space

• Any violations result in a trap to the kernel

23

Valid (v) or Invalid (i) Bit In A Page Table

“invalid” : page is not
in the process’s
address space.

24

Shared Pages among Processes
• Shared code

– One copy of read-only (reentrant non-self modifying)
code shared among processes (i.e., text editors,
compilers, window systems)

– Similar to multiple threads sharing the same
process space

– Also useful for interprocess communication if
sharing of read-write pages is allowed

• Private code and data
– Each process keeps a separate copy of the

code and data
– The pages for the private code and data can

appear anywhere in the logical address space

25

Shared Pages Example

ed1, ed2, ed3
(frames 3, 4, 6) shared

26

Overheads in paging: Page table and internal fragmentation

Optimal Page Size:
page table size vs internal fragmentation tradeoff

• Average process size = s
• Page size = p
• Size of each entry in page table = e
– Pages per process = s/p
– se/p: Total page table space for average process
– Total Overhead = Page table overhead + Internal

fragmentation loss
= se/p + p/2

27

Optimal Page size: Page table and internal fragmentation

• Total Overhead = se/p + p/2
• Optimal: Obtain derivative of overhead with

respect to p, equate to 0
-se/p2 +1⁄2 = 0

• i.e. p2 =2se or p = (2se)0.5

Assume s = 128KB and e=8 bytes per entry
• Optimal page size = 1448 bytes
– In practice we will never use 1448 bytes
– Instead, either 1K or 2K would be used

• Why? Pages sizes are in powers of 2 i.e. 2X

• Deriving offsets and page numbers is also easier

28

Page Table Size
Memory structures for paging can get huge using
straight-forward methods
• Consider a 32-bit logical address space as on

recent processors 64-bit on 64-bit processors

– Assume page size of 4 KB (212) entries
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address

space / memory for page table alone
• Don’t want to allocate that contiguously in main memory

210 1024 or 1 kibibyte

220 1M mebibyte

230 1G gigibyte

240 1T tebibyte

29

Issues with large page tables

• Cannot allocate page table contiguously in
memory

• Solution:
– Divide the page table into smaller pieces
– Page the page-table

• Hierarchical Paging

30

Hierarchical Page Tables

• Break up the logical address
space into multiple page tables

• A simple technique is a two-level
page table

• We then page the page table

P1: indexes the outer page table
P2: page table: maps to frame

31

Two-Level Page-Table Scheme

xxxx xxxx xxxx xxxx xxxx xx xx xxxx xxxx
Outer Page table page table offset within page

32

Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page

size) is divided into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is
further divided into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2is the displacement within the page of the inner page
table

• Known as forward-mapped page table

33

Two-Level Paging Example

• A logical address is as follows:

• One Outer page table: size 212
entry: page of the page table

• Often only some of all possible 212 Page
tables needed (each of size 210)

34 34

Colorado State University
Yashwant K Malaiya

ICQ

CS370 Operating Systems

35 35

Page Offset

Q1. Consider a logical address with a page size of 4 KB.
How many bits must be used to represent the page
offset in the logical address?

A. 16
B. 10
C. 8
D. 12

36 36

Each hex digit represents 4 bits

Page number

Q2. Given the logical address 0xAEF9 (in hexadecimal)
with a page size of 256 bytes, what is the page number?

A. 0xF9
B. x00F9
C. xA
D. 0xAE	

37 37

External fragmentation

Q3. In paging-based memory allocations, the physical
memory is subject to external fragmentation.

A. True

B.	False

39

Answers

40 40

Page Offset

Q1. Consider a logical address with a page size of 4 KB.
How many bits must be used to represent the page
offset in the logical address?

A. 16
B. 10
C. 8
D. 12 since 212 =	4K

41 41

Page number

Q2. Given the logical address 0xAEF9 (in hexadecimal)
with a page size of 256 bytes, what is the page number?

A. 0xF9
B. x00F9
C. xA
D. 0xAE					28 =	256.	Thus	8	LSBs	or	2	hex	digits	are	used	for	

page	offset

42 42

External fragmentation

Q3. In paging based memory allocations, the physical
memory is subject to external fragmentation.

A. True

B.	False				Only	internal	fragmentation	in	page-based	

43 43

Colorado State University
Yashwant K Malaiya

Back from ICQ

CS370 Operating Systems

44

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

45

64-bit Logical Address Space
! Even two-level paging scheme not sufficient
! If page size is 4 KB (212)

! Then page table has 252 entries
! If two level scheme, inner page tables could be 210 4-byte

entries
! Address would look like

! Outer page table has 242 entries or 244 bytes
! One solution is to add a 2nd outer page table

!But in the following example the 2nd outer page table is still 234 bytes
in size

4And possibly 4 memory access to get to one physical memory
location!

Full 64-bit physical memories not common yet

46

Three-level Paging Scheme

• Outer page table has 242 entries!
• Divide the outer page table into 2 levels

• 4 memory accesses!

47

Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the
same location

• Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element

• Virtual page numbers are compared in this chain
searching for a match
– If a match is found, the corresponding physical frame is

extracted
• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such
as 16) rather than 1

– Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

48

Hashed Page Table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped page frame
(3) a pointer to the next element

49

Inverted Page Table
• Rather than each process having

a page table and keeping track of
all possible logical pages, track
all physical pages
– One entry for each real page of

memory (“frame”)
– Entry consists of the virtual

address of the page stored in
that real memory location, with
information about the process
that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory

50

Inverted Page Table

• Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference
occurs

• But how to implement shared memory?
– One mapping of a virtual address to the

shared physical address. Not possible.

Used in IA-64 ..

52

Segmentation Approach
Memory-management scheme that supports
user view of memory
• A program is a collection of segments

– A segment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)
– Segment-table length register (STLR)

• segments vary in length, can very dynamically
• Segments may be paged
• Used for x86-32 bit
• Origin of term “segmentation fault”

