
1 1

Colorado State University
Yashwant K Malaiya

Fall 22 L18
Main Memory

CS370 Operating Systems

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

2

FAQ

• Is there is specific formula for calculating the physical
address from the logical address? Page number to frame number lookup

• Each process has its own page table? Can there be a
conflict in sharing physical memory? No, unless..

• Can the page table dynamically change?
• Where is the page table? Memory, with a part cached in TLB

• How to find the page table in memory? Page table base
register

• Where is the TLB ? On the same chip as CPU.

• Why use associative memory for TLBs? To see if the
mapping for a specific page is there.

4

Paging Hardware With TLB

TLB: uses content addressable memory.

TLB Miss: page table access may be
done using hardware or software

Page number p to frame number f

5

Effective Access Time
General approach: expected access time
Effective access time

= Pr{access type A}. Access-timeA +
Pr{access type B}. Access-timeB

Ex: effective access time with TLB/page table:
• Associative Lookup = e time units
• Hit ratio = a
• Effective Access Time (EAT): probability weighted

EAT = (100 + e) a + (200+e)(1 – a)
• Ex:

Consider a = 80%, e = negligible for TLB search,
100ns for memory access
– EAT = 100x0.80 + 200x0.20 = 120ns

6

Shared Pages Example: 3 Processes

How are “pages” shared?
Include in address space
of both processes.

ed1, ed2, ed3
(3, 4, 6) shared

7

Overheads in paging: Page table and internal fragmentation

Optimal Page Size:
page table size vs internal fragmentation tradeoff
– Average process size = s
– Page size = p
– Size of each entry in page table = e

• Total Overhead = Page table overhead +
Internal fragmentation loss
= se/p + p/2

• Optimal page size p = (2se)0.5

8

Issues with large page tables

• Cannot allocate a large page table
contiguously in memory

• Solution:
– Divide the page table into smaller pieces
– Page the page-table

• Hierarchical Paging

9

Two-Level Page-Table Scheme

P1: indexes the outer page table
P2: page table: maps to frame

212 entries

212 pages,
each with 210 entries

10

Hierarchical Paging

If there is a hit in the TLB (say 95% of the time), then average
access time will be close to slightly more than one memory
access time.

11

64-bit add. Space: Three-level Paging Scheme

• Problem: Outer page table has 242 entries!
• Approach: Divide the outer page table into 2 levels

• 4 memory accesses!

12

Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the
same location

• Each element contains (1) the virtual page number (2)
the value of the mapped page frame (3) a pointer to the
next element

• Virtual page numbers are compared in this chain
searching for a match
– If a match is found, the corresponding physical frame is

extracted
• Variation for 64-bit addresses is clustered page tables

– Similar to hashed but each entry refers to several pages (such
as 16) rather than 1

– Especially useful for sparse address spaces (where memory
references are non-contiguous and scattered)

13

Hashed Page Table

This page table contains a chain of elements hashing to the same location.
Each element contains (1) the virtual page number (2) the value of the mapped page frame
(3) a pointer to the next element

14

Inverted Page Table
• Rather than each process having

a page table and keeping track of
all possible logical pages, track
all physical pages
– One entry for each real page of

memory (“frame”)
– Entry consists of the virtual

address of the page stored in
that real memory location, with
information about the process
that owns that page

Search for pid, p, offset i is the physical frame address
Note: multiple processes in memory

15

Inverted Page Table

• Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference
occurs

• But how to implement shared memory?
– One mapping of a virtual address to the

shared physical address. Not possible.

Used in IA-64 ..

16

Segmentation Approach
Memory-management scheme that supports
user view of memory
• A program is a collection of segments

– A segment is a logical unit such as:
main program
procedure, function, method
object
local variables, global variables
common block
stack, arrays, symbol table

• Segment table
– Segment-table base register (STBR)
– Segment-table length register (STLR)

• segments vary in length, can very dynamically
• Segments may be paged
• Used for x86-32 bit
• Origin of term “segmentation fault”

17

Examples

• Intel IA-32 (x386-Pentium)
• x86-64 (AMD, Intel)
• ARM (Acorn > ARM Ltd > Softbank > Nvidea)

18

Logical to Physical Address Translation in IA-32

19

Intel IA-32 Paging Architecture

20

Intel IA-32 Page Address Extensions

31 30 29 21 20 12 11 0

page table offsetpage directory

4-KB
page

page
table

page directory
pointer table

CR3
register page

directory

! 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space
! Paging went to a 3-level scheme
! Top two bits refer to a page directory pointer table
! Page-directory and page-table entries moved to 64-bits in size
! Net effect is increasing address space by increasing frame address bits.

21

Intel x86-64
! Intel x86 architecture based on AMD 64 bit architecture
! 64 bits is ginormous (> 16 exabytes)
! In practice only implement 48 bit addressing or perhaps 52

" Page sizes of 4 KB, 2 MB, 1 GB
" Four levels of paging hierarchy

! Can also use PageAddressExtensions so virtual addresses are 48
bits and physical addresses are 52 bits

unused
page map

level 4
page directory
pointer table

page
directory

page
table offset

6363 4748 39 38 30 29 21 20 12 11 0

Exabyte: 10246 bytes

22

Example: ARM Architecture
" Dominant mobile platform chip

(Apple iOS and Google Android
devices for example)

" Modern, energy efficient, 32-bit
CPU

" 4 KB and 16 KB pages
" 1 MB and 16 MB pages (termed

sections)
" One-level paging for sections, two-

level for smaller pages
" Two levels of TLBs

! Outer level has two micro
TLBs (one data, one
instruction)

! Inner is single main TLB
! First inner is checked, on

miss outers are checked,
and on miss page table
walk performed by CPU

outer page inner page offset

4-KB
or

16-KB
page

1-MB
or

16-MB
section

32 bits

23 23

Colorado State University
Yashwant K Malaiya

Spring 2022

CS370 Operating Systems

Virtual Memory

Slides based on
• Text by Silberschatz, Galvin, Gagne
• Various sources

24 24

What we expect in future

iClicker Exit	Poll	question

What	major	tech	achievements	are	you	guys	looking	
forward	to	in	the	next	decade?	

27 27

Virtual Memory: Objectives
! A virtual memory system
! Demand paging, page-

replacement algorithms,
allocation of page frames to
processes

! Threshing, the working-set model
! Memory-mapped files and shared

memory and
! Kernel memory allocation

28

Fritz-Rudolf Güntsch: Virtual Memory

Fritz-Rudolf Güntsch (1925-2012) at the
Technische Universität Berlin in 1956 in
his doctoral thesis, Logical Design of a
Digital Computer with Multiple
Asynchronous Rotating Drums and
Automatic High Speed Memory
Operation.

First used in Atlas, Manchester, 1962

PCs: Windows 95

When was Win 95
introduced?

29

Background

• Code needs to be in memory to execute, but entire
program rarely used
– Error code, unusual routines, large data structures

• Entire program code not needed at the same time
• Consider ability to execute partially-loaded

program
– Program no longer constrained by limits of physical

memory
– Each program uses less memory while running -> more

programs run at the same time
• Increased CPU utilization and throughput with no increase in

response time or turnaround time
– Less I/O needed to load or swap programs into memory

-> each user program runs faster

30

Background (Cont.)

• Virtual memory – separation of user logical
memory from physical memory

• Virtual address space – logical view of how
process views memory
– Usually start at address 0, contiguous addresses until end of

space
– Meanwhile, physical memory organized in page frames
– MMU must map logical to physical

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation That is the

new idea

31

Virtual Memory That is Larger Than Physical Memory

32

Virtual-address Space: advantages
! Usually design logical address space for

stack to start at Max logical address and
grow “down” while heap grows “up”
! Maximizes address space use
! Unused address space between the

two is hole
4 No physical memory needed until heap

or stack grows to a given new page
! Enables sparse address spaces with holes

left for growth, dynamically linked libraries,
etc.

! System libraries shared via mapping into
virtual address space

! Shared memory by mapping pages read-
write into virtual address space

! Pages can be shared during fork(),
speeding process creation

33

Shared Library Using Virtual Memory

34

Demand Paging
• Could bring entire process into memory at load time
• Or bring a page into memory only when it is needed: Demand paging

– Less I/O needed, no unnecessary I/O
– Less memory needed
– Faster response
– More users

• Similar to paging system with swapping
• Page is needed Þ reference to it

– invalid reference Þ abort
– not-in-memory Þ bring to memory

• “Lazy swapper” – never swaps a page into memory unless page will be needed
– Swapper that deals with pages is a pager

35

Demand paging: Basic Concepts
• Demand paging: pager brings in only those pages

into memory what are needed
• How to determine that set of pages?

– Need new MMU functionality to implement demand
paging

• If pages needed are already memory resident
– No difference from non-demand-paging

• If page needed and not memory resident
– Need to detect and load the page into memory from

storage
• Without changing program behavior
• Without programmer needing to change code

36

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v Þ in-memory – memory resident, i Þ not-in-memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

•

• During MMU address translation, if valid–invalid bit in page table
entry is i Þ page fault

37

Page Table When Some Pages Are Not in Main Memory

Page 0 in Frame 4 (and disk)
Page 1 in Disk

38

Page Fault

• If there is a reference to a page, first reference to
that page will trap to operating system: Page fault

Page fault
1. Operating system looks at a table to decide:

– Invalid reference Þ abort
– Just not in memory, but in backing storage, ->2

2. Find free frame
3. Get page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

Page fault: context switch because disk access is needed

39

Technical Perspective: Multiprogramming

Solving a problem gives rise to a new class of problem:
• Contiguous allocation. Problem: external fragmentation
• Non-contiguous, but entire process in memory: Problem:

Memory occupied by stuff needed only occasionally. Low
degree of Multiprogramming.

• Demand Paging: Problem: page faults
• How to minimize page faults?

40

Steps in Handling a Page Fault

41

Stages in Demand Paging (worse case)

1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

42

Performance of Demand Paging (Cont.)
• Three major activities

– Service the interrupt – careful coding means just several hundred
instructions needed

– Read the page – relatively long time
– Restart the process – again just a small amount of time

• Page Fault Rate 0 £ p £ 1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access time

+ p (page fault overhead
+ swap page out + swap page in)

Hopefully p <<1

Page swap time = seek time + latency time

43

Demand Paging Simple Numerical Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 ns + p (8 milliseconds)

= (1 – p) x 200 + p x 8,000,000 nanosec.
= 200 + p x 7,999,800 ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent, p = ?

– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

– p < .0000025
– < one page fault in every 400,000 memory accesses

Linear with page
fault rate

We make some simplifying assumptions here.

44

Issues: Allocation of physical memory to I/O and programs

• Memory used for holding program pages
• I/O buffers also consume a big chunk of memory
• Choices:

– Fixed percentage set aside for I/O buffers or

– Processes and the I/O subsystem compete

45

Demand paging and the limits of logical memory

• Without demand paging
– All pages of process must be in physical memory
– Logical memory limited to size of physical memory

• With demand paging
– All pages of process need not be in physical memory
– Size of logical address space is no longer constrained by

physical memory

• Example
– 40 pages of physical memory
– 6 processes each of which is 10 pages in size

• But each process only needs 5 pages as of now

– Run 6 processes with 10 pages to spare

Higher degree of
multiprogramming

