
1 1

Colorado State University
Yashwant K Malaiya

Spring 2022  L28
Final Review

CS370 Operating Systems

Slides based on 
• Text by Silberschatz, Galvin, Gagne
• Various sources



2

Needed
• Project Slides/Videos: available on teams
– Thank you all for sharing.

• You need to review
– Two research & two development projects

• Access to two project reports (“Peer review”)

– Members of your team
– Identify one best research and one best development 

project. 

• Review form due May 7, 2022.
• Please finish course survey  (Available in Canvas) by 

ASAP, if not already done.



3
3

Final

• Final: Comprehensive   but mostly from the second 
half.  2 Hours.

• Mix:  Problem solving, Diagram explanation, 
True/False, Multiple choice, blanks etc.

• Sec 001, 801 local:  Wed 5/11, 6:20-8:20 PM
– may not sit next to usual neighbors or fellow team 

members.  May not leave the room without permission.

• Sec 801 non-local: 24 hour time window: Wed 6:20-
Th 8:20 PM



4

Grading
• Project D1, D2, D3, D4, D5 (raw/adjusted)
• Participation (raw/adjusted)
• Final (raw/adjusted)
• Letter Grades 
– Default: Course website
– may cut lower



5
5

Study/Resources

• Terms, concepts, implementations, algorithms, 
problems

• Lecture slides
– Also see Midterm Review Slides on website 
– Possible questions not limited to Review Slides

• Quizzes, assignments
• Textbook



6

HW7 



7
7

Deadlock Prevention
– If any one of the conditions for deadlock (with reusable 

resources) is denied, deadlock is impossible.
– Restrain ways in which requests can be made

• Mutual Exclusion  - cannot deny (important)
• Hold and Wait - guarantee that when a process requests a resource, it 

does not hold other resources.
• No Preemption 

– If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, the process 
releases the resources currently being held.

• Circular Wait
– Impose a total ordering of all resource types. 



8
8

Deadlock Avoidance
– Requires that the system has some additional apriori

information available.
– Simplest and most useful model requires that each process 

declare the maximum number of resources of each type that it 
may need.  

– Computation of Safe State
– When a process requests an available resource, system must 

decide if immediate allocation leaves the system in a safe state.  
Sequence <P1, P2, …Pn> is safe, if for each Pi, the resources that 
Pi can still request can be satisfied by currently available 
resources + resources held by Pj with j<i.

– Safe state - no deadlocks, unsafe state - possibility of deadlocks
– Avoidance  - system will never reach unsafe state.



9

Example: 12 Tape drives available in the system 

• At time T0 the system is in a safe state because
– P1 can be given 2 tape drives
– When P1 releases its resources; there are 5 drives
– P0 uses 5 and subsequently releases them (# 10 now) 
– P2 can then proceed. 

Max need Current need

P0 10 5

P1 4 2

P2 9 2

At T0:
3 drives available 

Safe sequence 
<P1, P0 , P2> 



10
10

Algorithms for Deadlock Avoidance
• Resource allocation graph algorithm

• only one instance of  each resource type

• Banker’s algorithm
• Used for multiple instances of each 

resource type.
• Data structures required

– Available, Max, Allocation, Need
• Safety algorithm
• resource request algorithm for a 

process.

Unsafe
state

Suppose P2 requests R2. Although R2 is currently 
free, we cannot allocate it to P2, since this action 
will create a cycle getting system is in an unsafe 
state. If P1 requests R2, and P2 requests R1, then 
a deadlock will occur. 



11
11

Deadlock Detection
• Allow system to enter deadlock 

state
• Detection Algorithm

– Single instance of each resource type
– use wait-for graph

– Multiple instances of each resource 
type

– variation of banker’s algorithm

• Recovery Scheme
• Process Termination
• Resource Preemption

Has cycles. Deadlock.

Resource-Allocation Graph
Corresponding wait-for graph



12
12

Binding of instructions and data to memory
– Address binding of instructions and data to memory 

addresses can happen at three different stages.
– Compile time, Load time, Execution time

– Other techniques for better memory utilization
– Dynamic Loading - Routine is not loaded until it is called.
– Dynamic Linking - Linking postponed until execution time
– Swapping - A process can be swapped temporarily out of 

memory to a backing store and then brought back into memory 
for continued execution

– MMU - Memory Management Unit
– Hardware device that maps virtual to physical address.



13
13

Dynamic Storage Allocation Problem
– How to satisfy a request of size n from a list of free holes.

– First-fit
– Best-fit
– Worst-fit

– Fragmentation 
• External fragmentation

– total memory space exists to satisfy a request, but it is not 
contiguous.

• Internal fragmentation
– allocated memory may be slightly larger than requested 

memory; this size difference is memory internal to a partition, 
but not being used.

• Reduce external fragmentation by compaction



14
14

Page Table Implementation
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table.
• Page-table length register (PTLR) indicates the size of page table.

– Every data/instruction access requires 2 memory accesses.
• One for page table, one for data/instruction
• Two-memory access problem solved by use of special fast-lookup hardware 

cache  (i.e. cache page table in registers)
– associative registers or translation look-aside buffers (TLBs)



15

Effective Access Time
Effective Access Time (EAT)
• Item in faster unit or in slower unit 
• How often it is found in the faster unit?

– Access time less if in the faster medium
– Access time higher if in the slower medium

• Simplification: only two layers considered
• Approximation: some overhead may be ignored

Case 1: Need: page number  to frame number 
mapping
• Faster unit: TLB
• Slower unit: full Page table in memory

Should you understand the process or memorize the 
formula?



16

Effective Access Time
• Hit ratio = a

– Hit ratio – percentage of times that a page 
number is found in the TLB

• Associative Lookup = e time unit  
• Memory access time = 100 ns

• Effective Access Time (EAT)
EAT = (100 + e) a + (200 + e)(1 – a)

Consider a = 80%, e = 20ns for TLB search, 100ns 
for memory access
– EAT = 120 x 0.80 + 220 x 0.20 = 140ns

• Consider higher hit ratio ->  a = 99%, e = 20ns for 
TLB search, 100ns for memory access
– EAT = 120 x 0.99 + 220 x 0.01 = 121ns



17
17

Paging Methods
– Multilevel Paging

– Each level is a separate table in memory
– converting a logical address to a physical 

one may take 4 or more memory 
accesses.

– Caching can help performance remain 
reasonable.

– Hashed page table
– Inverted Page Tables

– One entry for each real page of memory.  
Entry consists of virtual address of page 
in real memory with information about 
process that owns page.



18
18

Virtual Memory
• Virtual Memory 

• Separation of user logical memory 
from physical memory.

• Only PART of the program needs to be 
in memory for execution.

• Logical address space can therefore 
be much larger than physical address 
space.

• Need to allow pages to be swapped in 
and out.

• Virtual Memory can be 
implemented via
– Paging
– Segmentation



19
19

Demand Paging
• Bring a page into memory only when it is needed.

– Less I/O needed
– Less Memory needed
– Faster response
– More users

• The first reference to a page will trap to OS with a 
page fault.

• OS looks at another table to decide
– Invalid reference - abort
– Just not in memory.

Page fault:
1. Find free frame
2. Get page into frame via scheduled disk 

operation
3. Reset tables to indicate page now in memory

Set validation bit = v
4. Restart the instruction that caused the page 

fault



20
20

Page Replacement Strategies
• The Principle of Optimality

– Replace the page that will not be used again the farthest time 
into the future.

• FIFO - First in First Out
– Replace the page that has been in memory the longest.

• LRU - Least Recently Used
– Replace the page that has not been used for the longest time.
– LRU Approximation Algorithms - reference bit, second-chance 

etc.
• Working Set

– Keep in memory those pages that the process is actively using



21

Least Recently Used (LRU) Algorithm
• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• Approximate Implementations:

– Counter implementation time of use field
– Stack implementation
– Reference bit
– Second chance



22
22

Allocation of Frames
– Single user case is simple 

– User is allocated any free frame
– Problem: Demand paging + multiprogramming

• Each process needs minimum number of pages based on instruction 
set architecture.

• Two major allocation schemes:
– Fixed allocation - (1) equal allocation (2) Proportional allocation.
– Priority allocation - May want to give high priority process more 

memory than low priority process.
• Global vs local allocation



23

Working-Set Model
• D º working-set window º a fixed number of page references 

Example:  10,000 instructions

• WSSi (working set of Process Pi) =
total number of pages referenced in the most recent D (varies in time)
– if D too small will not encompass entire locality
– if D too large will encompass several localities
– if D = ¥Þ will encompass entire program

• D = SWSSi º total demand frames 
– Approximation of locality

• if D > mÞ Thrashing

• Policy if D > m, then suspend or swap out one of the processes 

Δ = 10



24
24

File-System Implementation
– File System Structure

• File System resides on secondary storage (disks).
• To improve I/O efficiency, I/O transfers between memory and disk are 

performed in blocks.  Read/Write/Modify/Access each block on disk.
• File System Mounting - File System must be mounted before it can be 

available to process on the system.  The OS is given the name of the 
device and the mount point. 

– Allocation Methods
– Free-Space Management
– Directory Implementation
– Efficiency and Performance, Recovery



25

File Systems
• Many file systems, sometimes several 

within an operating system
– Each with its own format 

• Windows has FAT (1977), FAT32 (1996), NTFS (1993)
• Linux has more than 40 types, with extended file 

system (1992) ext2 (1993), ext3 (2001), ext4 (2008); 
• plus distributed file systems
• floppy, CD, DVD Blu-ray 

– New ones still arriving –GoogleFS, xFAT, HDFS



26

On-disk File-System Structures
1. Boot control block contains info needed by system to boot OS 

from that volume
– Needed if volume contains OS, usually first block of volume

2. Volume control block (superblock UFS or master file 
tableNTFS) contains volume details
– Total # of blocks, # of free blocks, block size, free block 

pointers or array
3. Directory structure organizes the files

– File Names and inode numbers UFS, master file table NTFS
4. Per-file File Control Block (FCB or “inode”) contains 

many details about the file
– Indexed using inode number; permissions, size, dates UFS
– master file table  using relational DB structures NTFS

Volume: logical disk 
drive, perhaps a 
partition



27

File-System Implementation (Cont.)

4. Per-file File Control Block (FCB or “inode”)
contains many details about the file
– Indexed using inode number; permissions, size, 

dates UFS



28

In-Memory File System Structures

• An in-memory mount table contains information about 
each mounted volume. 

• An in-memory directory-structure cache holds the 
directory information of recently accessed directories. 

• The system-wide open-file table contains a copy of the 
FCB of each open file, as well as other information. 

• The per-process open file table contains a pointer to the 
appropriate entry in the system-wide open-file table

• Plus buffers hold data blocks from secondary storage
Open returns a file handle (file descriptor) for subsequent 
use
• Data from read eventually copied to specified user 

process memory address



29
29

Allocation of Disk Space
• Low level access methods depend upon the disk allocation 

scheme used to store file data
– Contiguous Allocation

• Each file occupies a set of contiguous 
blocks on the disk.  Dynamic storage 
allocation problem.  Files cannot grow.

– Linked List Allocation
• Each file is a linked list of disk blocks.  Blocks may 

be scattered anywhere on the disk.  Not suited 
for random access.

• Variation - FILE ALLOCATION TABLE (FAT) 
mechanisms

– Indexed Allocation 
• Brings all pointers together into the index block.  

Need index table.  Can link blocks of indexes to 
form multilevel indexes.



30

Combined Scheme:  UNIX UFS 

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Inode (file 
control block)

Volume block:
Table with file 
names
Points to this

Common: 12+3
Indirect block could 
contain 1024 pointers.
Max file size: k.k.k.4k+



31

Free-Space Management
• File system maintains free-space list to track available blocks/clusters

– (Using term “block” for simplicity)
• Approaches: i. Bit vector  ii. Linked list iii. Grouping iv. Counting
• Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =

!
"
# 1 Þ block[i] free

0 Þ block[i] occupied

Block number calculation

(number of bits per word) *(number of 0-value 
words) +  offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

00000000
00000000
00111110
..



32

Hard Disk Performance
• Average I/O time = average access time + 

(amount to transfer / transfer rate) + controller 
overhead

• Average access time = average seek time + 
average latency

• Example: to transfer a 4KB block on a 7200 RPM 
disk with a 5ms average seek time, 1Gb/sec 
transfer rate with a .1ms controller overhead.
§ average latency = 0.5 x 1/(7200/60) = 0.00417 sec
§ Transfer time = 4KB / 1Gb/s = 4x8K/G = 0.031 ms
§ Average I/O time for 4KB block 

= 5ms + 4.17ms + transfer time + 0.1ms 
= 9.27ms + .031ms = 9.301ms



33

Disk Scheduling
• Several algorithms to schedule the servicing of disk I/O requests

– The analysis is true for one or many platters
– SCAN, C-SCAN, C-LOOK, 

• We illustrate scheduling algorithms with a request queue 
(cylinders 0-199)     98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53 (head is at cylinder 53)

Scan



34

RAID Techniques
• Striping uses multiple disks in parallel by 

splitting data: higher performance, no 
redundancy (ex. RAID 0)

• Mirroring  keeps duplicate of each disk:  higher 
reliability (ex. RAID 1)

• Block parity: One Disk hold parity block for 
other disks. A failed disk can be rebuilt using 
parity. Wear leveling if interleaved (RAID 5, 
double parity RAID 6).

• Ideas that did not work: Bit or byte level level 
striping (RAID 2, 3) Bit level Coding theory (RAID 
2), dedicated parity disk (RAID 4). 

• Nested Combinations:
– RAID 01: Mirror RAID 0
– RAID 10: Multiple RAID 1, striping
– RAID 50: Multiple RAID 5, striping
– others

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Parity: allows rebuilding of a disk

Not common:    RAID 2, 3,4
Most common:     RAID 5



35

Parity

• Parity block:  Block1 xor block2 xor block3 …

10001101 block1
01101100 block2
11000110 block3
--------------
00100111 parity block (ensures even number of 1s)

• Can reconstruct any bad  block using all others



36

Read Errors and RAID recovery
• Example: RAID 5
– 10 one-TB disks, and 1 fails
– Read remaining disks to reconstruct missing data

• Probability of an error in reading 9 TB disks = 
10-15*(9 disks * 8 bits * 1012 bytes/disk)
= 7.2% Thus recovery probability = 92.8%

• Even better: 
– RAID-6: two redundant disk blocks
– Can work even in presence of one bad disk
– Scrubbing: read disk sectors in background to find and fix 

latent errors



37

Hadoop: Core components

• Hadoop (originally): MapReduce + HDFS
• For Big Data applications.
• MapReduce: A programming framework for 

processing parallelizable problems across huge 
datasets using a large number of commodity 
machines.

• HDFS: A distributed file system designed to 
efficiently allocate data across multiple 
machines, and provide self-healing functions 
when some of them go down



38

HDFS Architecture

http://a4academics.com/images/hadoop/Hadoop-Architecture-Read-Write.jpg

Name Node: metadata, where blocks are physically located
Data Nodes: hold blocks of files (files are distributed)

HDFS Block size: 64-128 MB  
ext4: 4KB
HDFS is on top of a local file 
system.



39

HDFS Fault-tolerance

• Individual node/rack may fail.
– Disks use error detecting codes to detect corruption.

• Data Nodes (on slave nodes): 
– data is replicated. Default is 3 times. Keep a copy far away.
– Send periodic heartbeat (I’m OK) to Name Nodes. Perhaps once 

every 10 minutes.
– Name node creates another copy if no heartbeat.

• Name Node (on master node) Protection: 
– Transaction log for file deletes/adds, etc (only metadata recorded).
– Creation of more replica blocks when necessary after a DataNode

failure
• Standby name node: namespace backup

– In the event of a failover, the Standby will ensure that it has read all 
of the edits from the Journal Nodes and then promotes itself to the 
Active state



40

Implementation of VMMs
– Type 1 hypervisors - Operating-system-like software built to provide virtualization. 

Runs on ‘bare metal”.
• Including VMware ESX, Joyent SmartOS, and Citrix XenServer

– Also includes general-purpose operating systems that provide standard functions as 
well as VMM functions
• Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

– Type 2 hypervisors - Applications that run on standard operating systems but provide 
VMM features to guest operating systems
• Includiing VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox



41

Memory Management

Memory mapping:
• On a bare metal machine: 

– VPN -> PPN
• VMM: Real physical memory (machine memory) is shared by the OSs. 

Need to map PPN of each VM to MPN (Shadow page table)
PPN ->MPN

• Where is this done?
– In Full virtualization?



42

Live Migration

• Migration from source VMM to target VMM
– Source establishes a connection with the target 
– Target creates a new guest 
– Source sends all read-only memory pages to target
– Source starts sending all read-write pages 
– Source VMM freezes guest, sends final stuff, 
– Once target acknowledge

Guest Target running

5 – Send Dirty Pages (repeatedly)

4 – Send R/W Pages

3 – Send R/O Pages

1 – Establish0 – Running
Guest Source

V
M

M
 S

ou
rc

e

7 – Terminate
Guest Source

V
M

M
 T

ar
ge

t

2 – Create
Guest Target

6 – Running
Guest Target



43

Linux Containers and Docker  

• Linux containers (LXC) are “lightweight” VMs
• Comparison between LXC/docker and VM

• Containers provide “OS-level Virtualization” vs “hardware level”.
• Containers can be deployed in seconds.
• Very little overhead  during execution, just like Type 1.



44

Microservices Characteristics

• Many smaller (fine grained), clearly 
scoped services
– Single Responsibility Principle
– Independently Managed

• Clear ownership for each service
– Typically need/adopt the “DevOps” model

• 100s of MicroServices
– Need a Service Metadata Registry 

(Discovery Service)
• May be replicated as needed
• A microservice can be updated without 

interruption 



45

Cloud Capacity provisioning

User has a variable need for capacity. User can choose among
Fixed resources: Private data center
• Under-provisioning when demand is too high, or 
• Provisioning for peak 

Variable resources:
• Use more or less depending on demand
• Public Cloud has elastic capacity (i.e. way more than what the user 

needs) 
• User can get exactly the capacity from the Cloud that is actually needed

Why does this work for the provider?
– Varying demand is statistically smoothed out over many users, 

their  peaks may occur at different times
– Prices set low for low overall demand periods



46

Cloud Instance types/Service/Management models

Instance types
• On-Demand instances 
• Spot Instances
• Reserved Instances
• Dedicated Hosts
Service models
• IaaS: Infrastructure as a Service
• PaaS: Platform as a Service
• SaaS: Software as a Service
Cloud Management models
• Public clouds
• Private clouds 
• Hybrid clouds: 



47

Internet architecture

https://www.yaldex.com/tcp_ip/FILES/06fig07.gif

https://www.yaldex.com/tcp_ip/FILES/06fig07.gif


48

Assets, Risk, Threat, Vulnerability
System Resource (Asset): what needs protection by the defenders.

Risk: A measure of the adverse impacts and the likelihood of occurrence.

Threat: potential attempts by an adversary.

Vulnerability: Weakness in an information system that may be exploited.

Note of caution: In pre-cyber-security days, classical risk literature used the term 
vulnerability with a different meaning.

RFC 2828, Internet Security Glossary 



49

Cyber attack types



50

Example: Access Control Matrix

Access Control List (ACL): Every object has an ACL that identifies what operations 
subjects can perform.  Each access to object is checked against object’s ACL. 

May be kept in a relational database. Access recorded in file metadata (inode).



51

Authentication Methods
Three existing and two new.
– Something a user knows 

• Password, answers to questions

– Something a user has
• Ex. Id card, Phone

– Something a user is
• Biometric (face, iris, fingerprint)

– Somewhere you are geographically  

– Something you do based on recognizable patterns of behavior

• Can be multifactor to reduce false positives
• After-access confirmation



52

See you in the final.


