
CS370 – Homework 3
Pipes and Shared Memory



Program Description

• Starter receives the filename through the command line argument.

• Starter then creates a pipe and checks for successful creation.

• Pass the pipe reference to Reader for maintaining a running sum of  the 
inputs.

• Reader writes the sum to the pipe using the provided reference. (only the 
write end is required)
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Program Description

• The control is passed back to the Starter file where we reads contents of  the 
pipe into a char array.

• Starter finds the maximum prime number from an integer value of  the char 
array. 

• Starter creates three shared memory segments, for Lucas, 
HarmonicSeries, and HexagonalSeries. 

• Further, we print the name and the file descriptor of  the shared memory.
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Program Description

• Fork the Lucas, HarmonicSeries, and HexagonalSeries programs, and 
pass the name of  the corresponding shared memory segment.

• The Lucas, HarmonicSeries, and HexagonalSeries write the last value 
calculated to the shared memory segment.

• The three child processes must run concurrently and not sequentially.

• Starter waits for all the child processes to complete and then prints the 
return value from the shared memory.

• Finally, unlink the shared memory.
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Run Processes Concurrently

• In Assignment 2, the wait condition for the child was written before the 
parent process forked the next child.

• This leads to linear/sequential execution. However, for this Assignment, we 
need to execute the programs concurrently. 

• Hence, the Starter must fork all the child processes and then use the wait() 
command for each of  them.
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Function Description

• pipe()

• shm_open()

• ftruncate()

• mmap()

• shm_unlink()

• sprintf()
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pipe()
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Syntax: int pipe(int pipefd[2]);

Arguments: pipefd[2] is the array to represent two ends of  the pipe. Each 
end is a file descriptor (FD).

Example: int pipefds[2];

int result_pipe = pipe(pipefds);
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shm_open()
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Syntax: int shm_open(const char *name, int oflag, mode_t mode);

Arguments: name: name of  the memory segment
oflag: can take the following values: O_RDONLY, O_RDWR, 
O_CREAT, O_EXCL, O_TRUNC
mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;
int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR, 
0666);



ftruncate()
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Syntax: int ftruncate(int fd, off_t length);

Arguments: fd: is the file descriptor 

length: is the desired size of  the memory segment. (Will be 
initialized to 0)

Example: int result = ftruncate(fd, 1234);
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mmap()
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Syntax: void *mmap(void *addr, size_t length, int prot, int flags, 
int fd, off_t offset);

Arguments: addr: beginning address of  the memory object

length: length of  the memory object in bytes

prot: protection of  the pages (PROT_EXEC, PROT_READ, 
PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes 
mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)
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mmap()
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Arguments: fd: returned by shm_open
offset: is 0 in here

Example: mmap(0, size, PROT_READ, MAP_SHARED, shm_fd, 0);
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shm_unlink()
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Syntax: int shm_unlink(const char *name);

Arguments: name: is the memory object name to be unlinked

Example: int error = shm_unlink(shm_Name);
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sprintf()
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Syntax: int sprintf(char * buffer, const char * string, ...);

Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);
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Makefile

• Following change is needed in your Makefile from Assignment 2
• Add –lrt during compilation to call shm_open() and shm_unlink()

(see point 4 from Notes in last page of  Assignment 3)
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Other Requirements

• Code should compile and run on CS Department computers.

• Submit all .c, along with Makefile and README.txt
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Resources

• Read & Write with Pipe

• POSIX Shared Memory
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https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://linuxhint.com/posix-shared-memory-c-programming/


Demo of  Concurrent Program
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The order 
of print 

statements 
can be 
varied



Thank You
Questions?
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