
CS370 – Homework 3
Pipes and Shared Memory

Program Description

• Starter receives the filename through the command line argument.

• Starter then creates a pipe and checks for successful creation.

• Pass the pipe reference to Reader for maintaining a running sum of the
inputs.

• Reader writes the sum to the pipe using the provided reference. (only the
write end is required)

2CS 370 - Operating Systems – Spring 2022

Program Description

• The control is passed back to the Starter file where we reads contents of the
pipe into a char array.

• Starter finds the maximum prime number from an integer value of the char
array.

• Starter creates three shared memory segments, for Lucas,
HarmonicSeries, and HexagonalSeries.

• Further, we print the name and the file descriptor of the shared memory.

3CS 370 - Operating Systems – Spring 2022

Program Description

• Fork the Lucas, HarmonicSeries, and HexagonalSeries programs, and
pass the name of the corresponding shared memory segment.

• The Lucas, HarmonicSeries, and HexagonalSeries write the last value
calculated to the shared memory segment.

• The three child processes must run concurrently and not sequentially.

• Starter waits for all the child processes to complete and then prints the
return value from the shared memory.

• Finally, unlink the shared memory.
4CS 370 - Operating Systems – Spring 2022

Run Processes Concurrently

• In Assignment 2, the wait condition for the child was written before the
parent process forked the next child.

• This leads to linear/sequential execution. However, for this Assignment, we
need to execute the programs concurrently.

• Hence, the Starter must fork all the child processes and then use the wait()
command for each of them.

5CS 370 - Operating Systems – Spring 2022

Function Description

• pipe()

• shm_open()

• ftruncate()

• mmap()

• shm_unlink()

• sprintf()

6CS 370 - Operating Systems – Spring 2022

pipe()

7

Syntax: int pipe(int pipefd[2]);

Arguments: pipefd[2] is the array to represent two ends of the pipe. Each
end is a file descriptor (FD).

Example: int pipefds[2];

int result_pipe = pipe(pipefds);

CS 370 - Operating Systems – Spring 2022

shm_open()

8CS 370 - Operating Systems – Spring 2022

Syntax: int shm_open(const char *name, int oflag, mode_t mode);

Arguments: name: name of the memory segment
oflag: can take the following values: O_RDONLY, O_RDWR,
O_CREAT, O_EXCL, O_TRUNC
mode: permissions in the form 0666

Example: char shm_Name[15] = “Shared_Mem0”;
int shm_fd = shm_open(shm_Name, O_CREAT | O_RDWR,
0666);

ftruncate()

9

Syntax: int ftruncate(int fd, off_t length);

Arguments: fd: is the file descriptor

length: is the desired size of the memory segment. (Will be
initialized to 0)

Example: int result = ftruncate(fd, 1234);

CS 370 - Operating Systems – Spring 2022

mmap()

10

Syntax: void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

Arguments: addr: beginning address of the memory object

length: length of the memory object in bytes

prot: protection of the pages (PROT_EXEC, PROT_READ,
PROT_WRITE, PROT_NONE)

flags: Updates to the mapping should be visible to other processes
mapping the same region. (MAP_SHARED, MAP_PRIVATE etc.)

CS 370 - Operating Systems – Spring 2022

mmap()

11

Arguments: fd: returned by shm_open
offset: is 0 in here

Example: mmap(0, size, PROT_READ, MAP_SHARED, shm_fd, 0);

CS 370 - Operating Systems – Spring 2022

shm_unlink()

12

Syntax: int shm_unlink(const char *name);

Arguments: name: is the memory object name to be unlinked

Example: int error = shm_unlink(shm_Name);

CS 370 - Operating Systems – Spring 2022

sprintf()

13

Syntax: int sprintf(char * buffer, const char * string, ...);

Arguments: string is stored in buffer

Example: sprintf(buffer, "Sum = %d", sum);

CS 370 - Operating Systems – Spring 2022

Makefile

• Following change is needed in your Makefile from Assignment 2
• Add –lrt during compilation to call shm_open() and shm_unlink()

(see point 4 from Notes in last page of Assignment 3)

14CS 370 - Operating Systems – Spring 2022

Other Requirements

• Code should compile and run on CS Department computers.

• Submit all .c, along with Makefile and README.txt

15CS 370 - Operating Systems – Spring 2022

Resources

• Read & Write with Pipe

• POSIX Shared Memory

16CS 370 - Operating Systems – Spring 2022

https://www.geeksforgeeks.org/c-program-demonstrate-fork-and-pipe/
https://linuxhint.com/posix-shared-memory-c-programming/

Demo of Concurrent Program

17CS 370 - Operating Systems – Spring 2022

The order
of print

statements
can be
varied

Thank You
Questions?

Acknowledgements

• These slides are based on contributions of current and past CS370
instructors and TAs, including J. Applin, L. Mendis, M. Warushavithana, S. R.
Chowdhury, A. Yeluri, K. Bruhwiler, Y. K. Malaiya and S. Pallickara.

21CS 370 - Operating Systems – Spring 2022

