
CS 370

Generator and Consumer, Synchronization

Assignment Review

• You are supposed to implement a solution to the Generator and Consumer problem, using a
circular FIFO buffer.

• There will be at least two Consumers and at least two Generators.

• Generators: are supposed to generate a certain number of prime numbers. The prime
number must be chosen randomly between 3-th prime and 31-th prime (both inclusive = [3,
31]). It also keeps track of the sum of all the prime numbers produced.

• Consumers: are supposed to consume the elements, produced by the Generators. Each
consumer will keep the sum of the elements which have consumed.

• Both, Generators and all Consumers, are supposed to report the prime
numbers generated/consumed along with the index and timestamp with nanosecond
resolution.

2CS 370 - Operating Systems - Spring 2022

Which files are required?

• Coordinator.java

• Generator.java

• Consumer.java

• Buffer.java

• Makefile

• README.txt

3CS 370 - Operating Systems - Spring 2022

Coordinator.java

• Set the buffer size, total number of items, number of generators, and number of
consumers randomly (The ranges are specified in the HW5 description).

• It creates one instance of the buffer, creates required number of threads of
generators, creates required number of threads of consumers, and then waits for all
of them to finish.

• Once all threads terminate, we get the sum of prime numbers by each of the
Generators and the prime numbers generated by each of the consumers.

• Essentially, all the generated elements must be consumed. However, they may be out
of order.

4CS 370 - Operating Systems - Spring 2022

Generator.java

• The Generators will produce the total number of elements which is chosen randomly by the second
argument (= Seed).

• The buffer which is created by Coordinator is passed as the first argument.

• The number of items assigned to each generator is passed as the second argument and is the same as the
total number of item / number of generators if it is divisible. If it isn’t perfectly divisible, then the last
generator will take the remains.

• An identification is passed as the third argument (begin with 1 and increment) to identify each Generator.

• A seed ‘PrimeSeed’ is used to the fourth argument and is for generating a random prime number (details in
the next slide).

• Insert the random prime number into the buffer.

• A generator cannot insert an element into the buffer when the buffer is full.

• If the number is inserted successfully, it is added a member variable.
5CS 370 - Operating Systems - Spring 2022

https://www.tutorialspoint.com/Member-variables-in-Java#:~:text=Member%20variables%20are%20known%20as,instance%20variable%20value%20is%20created.

Generator.java

1. Import ‘java.util.Random’ at the beginning of this file.

2. Get the fourth argument which is a prime seed and make an instance of the
Random class using the seed.

3. Save the instance into a member variable.

4. When each generator need to produce an item, generate a random number N
between 3 and 31 (both inclusive).

5. Use the N to find N-th prime number.

6. Insert the N-th prime number into the buffer.

6CS 370 - Operating Systems - Spring 2022

https://www.educative.io/edpresso/how-to-generate-random-numbers-in-java
https://www.geeksforgeeks.org/program-to-find-the-nth-prime-number/

Consumer.java

• A consumer consumes an element from the buffer.

• Each consumer will consume a ratio of the total elements (number of

elements / number of consumers) if it is evenly divisible.

• If not, the last consumer will take the remains.

• A consumer cannot consume an element when the buffer is empty.

• Once the consumer consumes an element from the buffer successfully, it is

added into a member variable of the consumer.

7CS 370 - Operating Systems - Spring 2022

Buffer.java

• Buffer.java contains the circular FIFO buffer that will be used among all

the producers and the consumers

• It also has the required functions that is used to insert or remove an element,

and it returns the appropriate values.

• It may additionally have other functions such as isFull(), isEmpty(), etc.

depending on your implementation.

8CS 370 - Operating Systems - Spring 2022

• Java has inbuilt monitors

• Allows threads to have mutual
exclusion

• Allows threads the ability to wait
(block) for a condition to become true

• Signaling is done using

• wait()

• notify() or notifyAll()

Synchronization in Java

• Built in thread class can be
extended and used

• Instantiate and use myThread.start()

• @Override run() to change what a
thread does

9CS 370 - Operating Systems – Spring 2022

Threads

public class PhilosopherThread
extends Thread
{

@Override
public void run()
{

// Thread entry point
}

}

10CS 370 - Operating Systems - Spring 2022

Creating and Starting threads

public class PhilosopherThread extends Thread {

@Override

public void run() {

// Thread entry point

}

}

PhilosopherThread Socrates = new PhilosopherThread(table, seat);

Socrates.start(); //begins Socrates thread invokes the run() method

11CS 370 - Operating Systems - Spring 2022

Synchronized methods

• A piece of logic marked with synchronized becomes a synchronized block,

allowing only one thread to execute at any given time.

public synchronized void pickup(int i) throws InterruptedException

{

//Synchronized code goes in here

}

12CS 370 - Operating Systems - Spring 2022

wait(), notify() and notifyAll()

• wait()

• Causes current thread to wait until another thread invokes the notify() or notifyAll() method

• notify()

• notify() wakes up one thread waiting for the lock

• notifyAll()

• The notifyAll() method wakes up all the threads waiting for the lock; the JVM selects one of

the threads from the list of threads waiting for the lock and wakes that thread up

13CS 370 - Operating Systems - Spring 2022

https://www.baeldung.com/java-wait-notify

Demo

14CS 370 - Operating Systems - Spring 2022

• Demo of DiningPhilosophers from self-expercise in Teams.

CS 370

Raspberry Pi

Topics

• Intro to Raspberry Pi

• Setting up a Raspberry Pi

• Term Project Requirements

• Term Project Expectations

• Helpful Links

CS 370 - Operating Systems - Spring 2022 16

Why Raspberry Pi’s

• Small and Portable

• Cheap

• Well-Documented

• Versatile

• Support for many peripherals (thanks to Linux)

Third Best Selling Computer Brand in the World
CS 370 - Operating Systems - Spring 2022 17

Raspberry Pi Models

Raspberry Pi 4 Model B+

● 1.5GHz 64-bit quad-core processor

● dual-band wireless LAN

● Bluetooth 5.0/BLE

● Gigabit Ethernet

● Power-over-Ethernet support (with

separate PoE HAT)

● 2 x micro-HDMI ports (up to

4kp60 supported)
CS 370 - Operating Systems - Spring 2022 18

Raspberry Pi Setup

Can connect to monitor, keyboard,

mouse

Usable as a normal desktop

Optionally use ssh instead of a monitor

CS 370 - Operating Systems – Spring 2022 19

Raspberry Pi Operating Systems

Expect most groups to use Raspbian

(officially supported OS)

Other options are available - some

OS’s for specific use cases

CS 370 - Operating Systems - Spring 2022 20

Programming Languages

Basically any language will work (Python, C, Java, C++,
Javascript, Ruby, Lisp, Rust, R, etc…)

Most projects done in Python or C

CS 370 - Operating Systems - Spring 2022 21

GPIO Libraries

Python/C
● RPi.GPIO (Python)

○ RPi.GPIO code samples

● RPIO.GPIO (Python)

● wiringPi (Python/C)

● pigpio (Python/C/Javascript)

● gpiozero (Python)

● bcm2835 (C)

CS 370 - Operating Systems - Spring 2022 22

https://pypi.org/project/RPi.GPIO/
https://elinux.org/RPi_GPIO_Code_Samples#Python
https://pythonhosted.org/RPIO/
https://github.com/WiringPi/WiringPi-Python
http://abyz.me.uk/rpi/pigpio/python.html
https://gpiozero.readthedocs.io/en/stable/
https://www.airspayce.com/mikem/bcm2835/

Term Project Requirements

Project must involve:
● A single board computer (Raspberry Pi)

○ With WiFi capability + operating system

● Communication with at least one other computer

○ Another board, desktop, assistant, etc.

● At least one sensing or interacting device

○ Heat sensor, motion detector, camera, motor, controller, etc...

CS 370 - Operating Systems - Spring 2022 23

Term Project TODO

● Team Composition and Proposal (done – 5%)

● Progress Report (due on 04/07/2022 - 15%)

● Final Report and Demo

○ Report: 1500 - 2500 words

○ Code

○ 10 - 15 Minute Demo

● Presentation

● Peer Review (5%)
CS 370 - Operating Systems - Spring 2022 24

https://www.cs.colostate.edu/~cs370/Spring22/assignments/TermPaperS22.pdf

Term Project Expectations

● Originality

○ Several groups with similar projects (temperature sensors, plant waterers, etc...)

○ Come up with a unique selling point

■ Find similar projects online, then do something different

● Thoroughness

○ Think about the evaluations you’re performing - design careful experiments and
control for variables

○ Try to learn something you couldn’t have guessed

CS 370 - Operating Systems - Spring 2022 25

Helpful Links

CS 370 - Operating Systems - Spring 2022 26

• Help Guides

○ Setup instructions

○ SSH with Raspberry Pi’s

○ Help videos

○ FAQ’s

○ Embedded Linux wiki

• Forums and Tutorials

○ Raspberry Pi forums / projects

○ Hackaday Projects

○ Adafruit Learning Guides

○ Raspberry Pi subreddit

https://www.raspberrypi.org/help/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/help/videos/
https://www.raspberrypi.org/documentation/faqs/
https://elinux.org/RPi_Hub
https://www.raspberrypi.org/forums/
https://projects.raspberrypi.org/en/
https://hackaday.io/projects?tag=raspberry%20pi
https://learn.adafruit.com/category/raspberry-pi
https://www.reddit.com/r/raspberry_pi/

Thank You

Questions?

