
Introduction to Docker

CS370

Agenda
Section 1:

What is Docker

What is Not Docker

Basic Docker Commands
Dockerfiles

Section 2:

Anatomy of a Docker image

Docker volumes

Section 3:

Networking

Section 4:

Docker compose / stacks

Demo

Section 1: What is
Docker
Basic Docker Commands
Dockerfiles

• Lightweight, open, secure platform
Simpl i fy bui lding, shipping, running
apps

• Runs natively on L inux or Windows
Server

• Runs on Windows or Mac
Development machines (with a
virtual machine)

• Rel ies on " images" and "containers"

W hat Is Docker?

•Standardized packaging for
software and dependencies
•Isolate apps from each other
•Share the same OS kernel
•Works for all major Linux
distributions
•Containers native to Windows
Server 2016

What is a container?

D oc ke r I m a ge

Example : Ubuntu with Node. js and
Appl icat ion C o d e

D o c ke r C o nta i n e r

Created b y us ing an image. Runs
your application.

The Role of Images and Containers

Docker containers are NOT VMs

7

• Easily misconceptualised
• Fundamentally different architectures

Docker Containers Versus Virtual Machines

A p p 1 A p p 2

Bins/Libs Bins/Libs

Guest O S Guest O S

Hypervisor

Host Operating System

A p p 1

Bins/Libs

A p p 2

Bins/Libs

Docker Engine

Host Operating System

Virtual Machines D oc ke r Containers

Using Docker: Build, Ship, Run Workflow
Developers IT Operations

BUILD
Development Environments

SHIP
Create & Store Images

RUN
Deploy, Manage, Scale

9

Some Docker vocabulary
Docker Image
The basis of a Docker container. Represents a full application

Docker Container
The standard unit in which the application service resides and executes

Docker Engine
Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub(Public) or Docker Trusted
Registry(Private))
Cloud or server based storage and distribution service for your images

10

Basic Docker Commands
$ docker image pull node:latest

$ docker image ls

$ docker container run –d –p 5000:5000 –-name node node:latest

$ docker container ps

$ docker container stop node(or <container id>)

$ docker container rm node (or <container id>)

$ docker image rmi (or <image id>)

$ docker build –t node:2.0 .

$ docker image push node:2.0

$ docker --help

Docker Build Cache Gotcha
• Sometimes you will change your Dockerfile and do a build and yet your

container image will not change.
• This is because of the docker cache – when you do a docker build it trys to

intelligently cache the layers such that it only rebuilds the minimum number
of layers.

• You can override this behavior by doing:
• docker build –t <image-name> . --no-cache

• You can also avoid this by deleting the container image and then rebuilding
it, but it is likely more convenient for you to use the no-cache option in
docker build shown above.

• Sometimes you may also need to delete the image and completely regenerate.
• You can remove all unused images with docker image prune -a

Docker Build Args Gotcha
• You can pass build

14

Dockerfile – Linux Example

• Instructions on how to build
a Docker image

• Looks very similar to
“native” commands

• Important to optimize
your Dockerfile

•Dockerizing a Node.js web app

https://nodejs.org/en/docs/guides/nodejs-docker-webapp/

Section 2:
Anatomy of a Docker

Let’s Go Back to Our Dockerfile

16

Each Dockerfile Command Creates a Layer

Kernel

FROM

17

RUN

WORKDIR

COPY

EXPOSE

…

Docker Image Pull: Pulls Layers

18

Section 3:
Networking

What is Docker Bridge Networking

Docker host

bridgenet1

Cntnr 1 Cntnr 2 Cntnr 3

Docker host

bridgenet2

Cntnr 4 Cntnr 5 Cntnr 6

bridgenet3

Cntnr 7

docker network create -d bridge --name bridgenet1

20

Docker Bridge Networking and Port Mapping

Docker host 1

Bridge

Cntnr1

10.0.0.8

L2/L3 physical network

:80

:8080172.14.3.55

$ docker container run -p 8080:80 ...

Host port

21

Container port

Section 4:
Docker Compose

Docker Compose: Multi Container Applications

49

• Build and run one container at a time
• Manually connect containers together
• Must be careful with dependencies and start

up order

• Define multi container app in compose.yml file
• Single command to deploy entire app
• Handles container dependencies
• Works with Docker Swarm, Networking,

Volumes, Universal Control Plane

version: '2' # specify docker-compose version

Define the services/containers to be run
services:
angular: # name of the first service
build: client # specify the directory of the Dockerfile
ports:
- "4200:4200" # specify port forwarding

express: #name of the second service
build: api # specify the directory of the Dockerfile
ports:
- "3977:3977" #specify ports forwarding

database: # name of the third service
image: mongo # specify image to build container from
ports:
- "27017:27017" # specify port forwarding

Docker Compose: Multi Container Applications

Docker Compose Networking

25

• By default, docker compose will put all of the services specified in your
compose.yml file will be put on a docker network together.

• This allows you to access the other containers in the network via their name in
the compose.yml file.

• If you have one service named server and another service named database
• Suppose database exposes port 5001 to access the database
• In the server container you can use database:5001 to access it across the

network
• Helpful Tip: The server container may take some time to

Docker Compose Networking

26

• By default, docker compose will put all of the services specified in your
compose.yml file will be put on a docker network together.

• This allows you to access the other containers in the network via their name in
the compose.yml file.

• If you have one service named server and another service named database
• Suppose database exposes port 5001 to access the database
• In the server container you can use database:5001 to access it across the

network

Docker Compose: Scale Container
Applications

Python Server
Section 1:

What is Docker

What is Not Docker

Basic Docker Commands
Dockerfiles

Section 2:

Anatomy of a Docker image

Docker volumes

Section 3:

Networking

Section 4:

Docker compose / stacks

Demo

To run Python server-side code, you'll need to use a Python web framework.
Flask is a good lightweight web framework.

To run this you'll need to install Python/PIP, then install Flask using pip3 install
flask. (This should be done using the Requirements.txt and docker file)

At this point you should be able to run the Python Flask examples using for
example python3 python-example.py, then navigating to localhost:5000 in
your browser.

Python Flask Server Example
Section 1:

What is Docker

What is Not Docker

Basic Docker Commands
Dockerfiles

Section 2:

Anatomy of a Docker image

Docker volumes

Section 3:

Networking

Section 4:

Docker compose / stacks

Demo

To run Python server-side code, you'll need to use a Python web framework.
Flask is a good lightweight web framework.

To run this you'll need to install Python/PIP, then install Flask using pip3 install
flask. (This should be done using the Requirements.txt and docker file)

At this point you should be able to run the Python Flask examples using for
example python3 python-example.py, then navigating to localhost:5000 in
your browser.

Python Client
Section 1:

What is Docker

What is Not Docker

Basic Docker Commands
Dockerfiles

Section 2:

Anatomy of a Docker image

Docker volumes

Section 3:

Networking

Section 4:

Docker compose / stacks

Demo

To run Python Client-side code, you'll need to use requests framework.
This is included by importing the urllib.req

Then you need to listen the port you have exposed from the server

Read the content from the port, print the values and close the connection.

