
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[INTRODUCTION]

Computer Science
Colorado State University

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.2

Topics covered in this lecture

¨ Brief course Overview
¨ Introduction and reminders about computers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.3

Course Overview

¨ All course materials will be accessible via the public-facing webpage
https://www.cs.colostate.edu/~cs370
¤ Schedule (Lecture slide sets for each lecture)
¤ Assignments
¤ Syllabus
¤ Grading policy

¨ Grades will be posted on Canvas; assignment submissions will be via
Canvas

¨ The course website, MS Teams Channel, and Canvas will all be updated
before the 2nd lecture, Monday January 22 2024.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.4

Pedagogical Objectives

Upon successful completion of this course students will be able to:
1. Explain basic operating system terminology
2. Explain processes and thread management
3. Distill core concepts in scheduling algorithms and develop tools to assess their

performance
4. Synthesize diverse concepts in memory management.
5. Contrast mechanisms for interprocess communications
6. Distill and build upon core concepts in process and task synchronization
7. Design resource management schemes that mitigate deadlocks
8. Explain file systems and storage architecture
9. Contrast virtualization and containers alongside identifying when one approach

outperforms the other

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.5

Topics Covered in CS370

¨ Processes and Threads
¨ Process Synchronization (plus Atomic Transactions)
¨ CPU Scheduling
¨ Deadlocks
¨ UNIX I/O
¨ Memory Management
¨ File System interface and management. Unix file system. NTFS.
¨ Storage Management including SSDs and Flash Memory
¨ Virtualization and Containers, and modern safety mechanisms in OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.6

Course Textbook

Operating Systems Concepts, 9th/10th edition
Avi Silberschatz, Peter Galvin, and Greg Gagne Publisher - John
Wiley & Sons, Inc.
ISBN-13: 978-1118063330.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.7

Grading Policy

¨ Letter grades will be based on the following standard breakpoints:
¤ >= 90 is an A, >= 88 is an A-, >=86 is a B+, >=80 is a B, >=78 is a B-, >=76 is a

C+, >=70 is a C, >=60 is a D, and <60 is an F.
¤ No cut higher than this, but may be cut lower (i.e., higher letter grade than displayed

above)

Course Element Weight
Assignments 45% [5, 5, 5, 10, 10, 10]
Quizzes 10%
Mid Term 20%
Final Exam 25%

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.8

A Word About Me

¨ Louis-Noel Pouchet, Associate Professor in Computer Science, joint appointment in
Electrical and Computer Engineering
¤ Joined CSU in 2016
¤ Just back from a 1-year sabbatical focusing on research!
¤ Specialty: compilers, high-performance computing, hardware/software co-design, distributed systems

¨ To reach me for any direct communication (not seen by TAs, just me): email directly
pouchet@colostate.edu with subject line ”[CS370] …your subject…”

¨ In case of emergency my cellphone is +1 614 859 5115
¨ For all communications related to this class, but which may be addressed by our TA

team or I, we will use compsci_cs370@colostate.edu. This email is read by the
entire teaching team.

¨ Note CS370 in Spring 2024 is nearly exactly the class from Pr. Shrideep Pallicakara,
I am only the instructor. He is carefully thanked for sharing all his material! J

mailto:pouchet@colostate.edu
mailto:compsci_cs370@colostate.edu

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

OPERATING SYSTEMS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.10

A modern computer is a complex system

¨ Multiple processors

¨ Main memory and Disks

¨ Keyboard, Mouse and Displays

¨ Network interfaces

¨ I/O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.11

Why do we need Operating Systems?

¨ If every programmer had to understand how all these components
work?
¤ Software development would be arduous

¨ Managing all components and using them optimally is a challenge

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.12

Computers are equipped with a layer of software

¨ Called the Operating System

¨ Functionality:
¤ Provide user programs with a better, simpler, cleaner model of the

computer
¤ Manage resources efficiently

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.13

A common misconception about the OS

¨ Is it the program that users interact with?
¤ Text based: Shell
¤ Graphical User Interfaces (GUI) that have icons etc.

n The look-and-feel if you will

¨ This is not actually part of the OS
¤ But it does use the OS to get its work done

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.14

Where the operating system fits in

User interface Program

Operating System

Bare Hardware

Web browser E-mail reader Music Player

Software

User mode

Kernel mode

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.15

Where the operating system fits in

¨ The OS runs on bare hardware in kernel mode
¤ Complete access to all hardware
¤ Can execute any instruction that the machine is capable of executing

¨ Provides the base for all software
¤ Rest of the software runs in user-mode

n Only a subset of machine instructions is available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.16

The OS controls hardware and coordinates
its use among various programs

User 1 User NUser 3User 2

Compiler Assembler Text editor Database System

System and Application Programs

Operating System

Computer
Hardware

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.17

Kernel and user modes

¨ Everything running in kernel mode is part of the OS

¨ But some programs running outside it are part of it or at least closely
associated with it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.18

Operating systems tend to be huge, complex and
long-lived

¨ Source code of an OS like Linux or Windows?
¤ Order of 5 million lines of code (for kernel)

n 50 lines page, 1000 pages/volume = 100 volumes

¨ Application programs such as GUI, libraries and application software?
¤ 10-20 times that

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.19

Why do operating systems live for a long time?

¨ Hard to write and folks are loath to throw it out

¨ Typically evolve over long periods of time
¤ Windows 95/98/Me is one OS
¤ Windows NT/2000/XP/Vista/7/8 is another
¤ System V, Solaris, BSD derived from original UNIX

¤ Linux is a fresh code base
n Closely modeled on UNIX and highly compatible with it

¤ Apple OS X based on XNU (X is not Unix) which is based on the Mach
microkernel and BSD’s POSIX API

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.20

An operating system performs two unrelated
functions

¨ Providing application programmers a clean abstract set of resources
¤ Instead of messy hardware ones

¨ Managing hardware resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.21

The OS as an extended machine

¨ The architecture of a computer includes
¤ Instruction set, memory organization, I/O, and bus structure

¨ The architecture of most computers at the machine language level
¤ Primitive and awkward to program especially for I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.22

Lets look at an example of floppy disk I/O done
using NEC PD765

¨ The PD765 has 16 commands
¤ For reading and write data, moving the disk arm, formatting tracks, etc.
¤ Specified by loading 1-9 bytes into the device register

¨ Most basic commands are for read and write
¤ 13 parameters packed into 9 bytes

n Address of disk block, number of sectors/track, inter-sector gap spacing etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.23

But that’s not the end of it …

¨ When the operation is completed
¤ Controller returns 23 status and error fields packed into 7 bytes

¨ You must also check the status of the motor
¤ If it is off? Turn it on before reading or writing
¤ Don’t leave the motor on for too long

n Floppy disk will wear out

¤ TRADEOFF: Long start-up delay Vs wearing out disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.24

Of course the average programmer does not want
to have any of this

¨ What they would like is a simple, high-level abstraction to deal with

¨ For a disk this would mean a collection of named files
¤ Operations include open, read, write, close, etc.
¤ BUT NOT

n Whether the recording should use frequency modulation
n The state of the motor

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.25

Why do processors, disks, etc. present difficult, awkward,
idiosyncratic interfaces ?

¨ Backward compatibility with older hardware
¨ Desire to save money
¨ Sometimes hardware designers don’t realize (or care) how much

trouble they cause!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.26

Why abstractions are important

¨ Abstraction is the key to managing complexity

¨ Good abstractions turn a nearly impossible task into two manageable
ones
① Defining and implementing abstractions
② Using abstractions to solve problem

¨ Example
¤ File

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.27

Operating systems turn ugly hardware into beautiful
interfaces

Operating System

Hardware

Application Programs

Beautiful interface

Ugly interface

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.28

Two views of the operating system

¨ Top-down view
¤ Providing abstractions to the application programs

¨ Bottom-up view
¤ Manage all pieces of a complex system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.29

The operating system as a resource manager

¨ Provide orderly and controlled allocation of resources to programs
competing for them
¤ Processors, memories, and I/O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.30

Operating System Roles:
User View

¨ PC Users: Ease of use

¨ Mainframe: Maximize resource utilization

¨ Workstations: Compromise between usability and resource utilization.

¨ Handheld devices: Ease of use + performance per unit of battery life

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.31

The System view of the OS is that of a Resource
Allocator

¨ An OS may receive numerous & conflicting requests for resources
¤ Prevent errors and improper use

¨ Resources are scarce and expensive

¨ The OS allocates resources to specific programs and users
¤ The allocation must be efficient and fair
¤ Must increase overall system throughput

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.32

Defining Operating Systems

¨ Solves the problem of creating a usable computing system
¤ Makes solving problems easier

¨ Control, allocate and mediate access to resources

¨ It is the one program that is running all the time: kernel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

A (VERY) BRIEF HISTORY OF OPERATING
SYSTEMS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.34

The first mechanical computer was designed by Charles
Babbage (1792-1871)

¨ Spent most of his life and fortune trying to build the analytical engine

¨ Never got it working properly
¤ Purely mechanical
¤ Technology of the day could not produce wheels, cogs, gears to the required

precision

¨ Did not have an operating system ;-)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.35

Babbage realized he would need software for his
analytical engine

¨ Hired Ada Lovelace as the worlds first programmer
¤ Daughter of British poet Lord Byron

¨ The programming language Ada® is named after her

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.36

History… from CS453 on Compiler Construction

17

A bit of (modern) history…

◆ It all started with punch cards

◆ As early as 19th century

◆ Picture: IBM machine, 1936

◆ At start: storage, basic processing

◆ Programming was hard!

◆ A good quote (IBM Manual, 1925):
All parts should go together without forcing. You must remember that
the parts you are reassembling were disassembled by you. Therefore,
if you can’t get them together again, there must be a reason. By all
means, do not use a hammer.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.37

The First Generation (1945-55) Vacuum Tubes

¨ First fully functioning digital computer built at Iowa State University
¤ Prof. John Atanasoff and grad student Clifford Berry

¨ All programming in absolute machine language
¤ Also by wiring up electrical circuits

n Connect 1000s of cables to plugboards to control machine’s basic functions

¤ Operating Systems were unheard of

¨ Straightforward numerical calculations
¤ Produce tables of sines, cosines, logarithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.38

The Second Generation (1955-1965):
Transistors and Batch Systems

¨ Separation between designers, builders, operators, programmers, and
maintenance

¨ Machines were called mainframes

¨ Write a program on paper, then punch it on cards
¤ Give card deck to operator and go drink coffee
¤ Operator gives output to programmer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.39

The Third Generation (1965-1980)
ICs and Multiprogramming

¨ Managing different product lines was expensive for manufacturers
¤ Customers would start with a small machine, and then outgrow it

¨ IBM introduced the Systems/360
¤ Series of software-compatible machines
¤ All machines had the same instruction set

n Programs written for one machine could run on all machines

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.40

The Fourth Generation (1980-Present)
Personal Computers

¨ Large Scale Integration circuits (LSI)
¤ Thousands of transistors on a square centimeter of silicon

¨ 1974: Intel came out with the 8080
¤ General purpose 8-bit CPU

¨ Early 1980s IBM designed the IBM PC
¤ Looked for an OS to run on the PC
¤ Microsoft purchased Disk Operating System and went back to IBM with MS-

DOS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

COMPONENTS OF A COMPUTER

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.42

Components of a simple personal computer

CPU
Graphics
Adapter

Disk
Controller

USB
Controller

Memory

{Disk 1, Disk 2}
{Mouse, Keyboard,
Printer} {Monitor}

Bus

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.43

Processors

¨ Brain of the computer

¨ Each CPU has a specific set of instructions that it can execute
¤ Pentium cannot execute SPARC and vice versa

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.44

Rationale for registers inside the CPU

¨ Accessing memory to get instruction or data
¤ Often much longer than executing the instruction

¨ Registers hold any data processed by the CPU:
¤ Key variables
¤ Temporary results

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.45

What the instruction set looks like

¨ Load a word from memory into register
¤ And, from register into memory

¨ Combine two operands from register, memory, or both into a result
¤ E.g. add two words and store result in a register or in memory

L6:
 vmovss (%rax), %xmm1
 addq $4, %rax
 vfmadd231ss (%rdx), %xmm1, %xmm0
 addq %rbx, %rdx
 cmpq %rax, %rsi
 jne L6
 vmovss %xmm0, (%rdi,%r9,4)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.46

Besides the registers to hold variable and temporary results there
are special registers

¨ Program Counter
¤ Contains the memory address of the program instructions

¨ Stack pointer
¤ Points to the top of the current stack in memory, to help manage local

memory

¨ Program Status Word
¤ Stores condition code bits and other control code bits
¤ Plays an important role in system calls and I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.48

Memory

¨ Ideally the memory should be
¤ Extremely fast: Faster than executing an instruction

n CPU should not be held up by the memory

¤ Abundantly large
¤ Dirt cheap

¨ No current technology satisfies all these goals: they are contradictory!
¤ It is all a matter of trade-off and calibration based on typical expected use

of the CPU/memory/machine

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.49

Storage system hierarchy

Registers

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tapes

Co
st/

bi
t i

nc
re

as
es

Access times increase

Volatile

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.50

Memory Hierarchy: Registers internal to the CPU

¨ Made of same material as the CPU
¤ Just as fast as the CPU

¨ Storage capacity is typically very small: a handful / a few tens of
virtual registers
¤ May have more physical registers

¨ Programs explicitly address registers in software
¤ Compilers map the (possibly infinite) set of variables in a program to a

finite set of physical memory locations (registers), and deal with
backup/restore code as needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.51

Memory hierarchy: Cache memory

¨ Mostly controlled by hardware

¤ But can be controlled by software

¨ Trade off: slower speed than registers, but more
capacity
¤ Think about a temporary storage for “more” registers but

at a “higher” cost of access (restoring a value from cache to
its register)

¨ Typically pre-populated with the next memory location
to be accessed: data pre-fetching (hardware or soft.)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.52

When a program needs to read a memory word

¨ Start at L1: cache hardware checks if the needed line is in the cache

¨ If it is, that’s a cache hit
¤ Request satisfied from cache in about 1-10 clock cycles
¤ No memory access needed

¨ If needed line is not present in cache
¤ Cache miss in L1, which translates into a read in L2. Repeat
¤ If no cache holds the data, read to memory: VERY long latency, 1000 of cycles

possible
n Do not believe the sequential bandwidth numbers advertised as true in practical scenarios!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.53

Caching is a powerful concept used elsewhere too.
Let’s see when …

① Large resource can be divided into pieces

② Some pieces used more heavily than others

¨ OS caching examples:
¤ Pieces of heavily used files in main memory

n Reduce disk accesses

¤ Conversion of file names to disk addresses
¤ Addresses of Web pages (URLs) as hosts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.55

Main Memory

¨ Usually called RAM (Random Access Memory)

¨ Cache misses go to the main memory

¨ Volatile
¤ Contents lost when power is turned off

¨ Memory size is of the order of several GB in most modern desktops

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.56

Loading and storing of memory
addresses is the precursor to processing

¨ load() moves word from main memory to an internal register

¨ store() moves content from register to main memory

¨ CPU automatically loads instructions from main memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.57

The instruction execution cycle

¨ Instruction fetched from memory and stored in instruction register

¨ Instruction is decoded, and operands fetched from memory and stored
in some register

¨ Instruction on operands is executed next

¨ Result stored back in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.58

Computers run most of their programs from
(rewriteable) main memory

¨ Typically implemented in a technology called DRAM (dynamic random
access memory)

¨ Ideal Scenario: Programs and data reside permanently in main
memory. BUT …
¤ Space is limited
¤ Main memory is volatile storage

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L1.59

The contents of this slide-set are based on the
following references
¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.

Prentice Hall. ISBN: 013359162X/ 978-0133591620

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 1]

¨ Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall
ISBN-13: 978-0-13-042411-2. [Chapter 1]

