CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in the lecture

Synchronization hardware
Using TestAndSet to satisfy critical section requirements
Semaphores

Classical process synchronization problems
Midterm

CS370: Operating Systems L10.2
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION HARDWARE

Solving the critical section problem using locks
N

do {

acquire lock
critical section
release lock

remainder section

} while (TRUE) ;

CS370: Operating Systems L10.4
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem

(1/2)

Uniprocessor environment

Prevent interrupts from occurring when shared variable is being modified

No unexpected modifications!

Multiprocessor environment

Disabling interrupts is time consuming

Message passed to ALL processors

CS370: Operating Systems L10.5
Dept. Of Computer Science, Colorado State University

Possible assists for solving critical section problem
(2/2)
-~ 1
o Special atomic hardware instructions
o Swap content of two words

o Modify word

CS370: Operating Systems L10.6
Dept. Of Computer Science, Colorado State University

Swap ()

void Swap (boolean *a, boolean *b) {

boolean temp = *a;
* a = *b ;
*b = temp;
}
CS370: Operating Systems L10.7

Dept. Of Computer Science, Colorado State University

Swap: Shared variable LOCK is initialized to false

do |
key = TRUE;
while (key == TRUE) { Cannot enter critical section
Swap (&lock, &key) UNLESS lock == FALSE

}

critical section

lock is a SHARED variable

lock = FALSE;
key is a LOCAL variable

remainder section
Note: If two Swap () are executed

simultaneously, they will be executed
} while (TRUE) ; . . .
sequentially in some arbitrary order

CS370: Operating Systems L10.8
Dept. Of Computer Science, Colorado State University

TestAndSet ()
T

boolean TestAndSet (boolean *target) {
boolean rv = *target;

*target = TRUE;
return rv;

CS370: Operating Systems L10.9
Dept. Of Computer Science, Colorado State University

TestAndSet: Shared boolean variable 1ock
initialized to false

do |

while (TestAndSet (&lock)) {;}

critical section \ To break out:
Return value of TestAndSet

hould be FALSE
lock = FALSE; Snovie be

remainder section

If two TestAndSet () are executed

simultaneously, they will be executed

} while (TRUE); sequentially in some arbitrary order

CS370: Operating Systems L10.10
Dept. Of Computer Science, Colorado State University

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter region:
TSL REGISTER, LOCK
CMP REGISTER, #0

JNE enter region
RET

leave region:
MOVE LOCK, #0
RET

enter region:
MOVE REGISTER, #1
XCHNG REGISTER, LOCK
CMP REGISTER, #0
JNE enter region
RET

leave region:
MOVE LOCK, #0
RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems L10.11

Dept. Of Computer Science, Colorado State University

USING TEST-AND-SET TO SATISFY
CRITICAL SECTION REQUIREMENTS

Using TestAndSet to satisfy all critical section

requirements
—

1 N processes

1 Data structures initialized to FALSE

boolean waiting[n];

boolean lock;

These data structures are maintained in
shared memory.

CS370: Operating Systems L10.13
Dept. Of Computer Science, Colorado State University

The entry section for process i

waiting[1] = TRUE;
key = TRUE;

while (waiting[i] && key) {
key = TestAndSet (&lock);

waiting[1] = FALSE;

First process to execute TestAndSet will find key == false;
ENTER critical section
EVERYONE else must wait

CS370: Operating Systems L10.14
Dept. Of Computer Science, Colorado State University

The exit section: Part |

Finding a suitable waiting process

If a process is not waiting
move to the next one

i = (i + 1)%n;

while ((7 != i) && !waiting[j]) {
J = (jJ+1)%n

}

If a process is
waiting:
break out of loop

Will break out at j==1 if
there are no waiting
processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.15

The exit section: Part |

Finding a suitable waiting process

Could NOT find a suitable
waiting process

if (J==1)

lock = FALSE;
} else {

waiting[]J] = FALSE;
}

Found a suitable waiting
process

CS370: Operating Systems L10.16
Dept. Of Computer Science, Colorado State University

Mutual exclusion

The variable waiting[i] can become false ONLY
if another process leaves its critical section

Only one waiting[i] is setto FALSE

CS370: Operating Systems L10.17
Dept. Of Computer Science, Colorado State University

Progress

A process exiting the critical section

(1) Sets lock to FALSE
OR

(2) waiting[j] to FALSE

Allows a process that is waiting to proceed

CS370: Operating Systems L10.18
Dept. Of Computer Science, Colorado State University

Bounded waiting requirement

J = (1 + 1)3n;

while ((] i) && !waiting[3j]) |

| =
J = (J+1)%3n

}
Scans waiting[] in the cyclic ordering

(1+1, i+2, .n, 0, .., 1-1)

ANY waiting process trying to enter critical section will
do so in (n—1) turns

CS370: Operating Systems L10.19
Dept. Of Computer Science, Colorado State University

SEMAPHORES

Semaphores

Semaphore S is an integer variable

Once initialized, accessed through atomic operations
walt ()

signal ()

CS370: Operating Systems L10.21
Dept. Of Computer Science, Colorado State University

Modifications to the integer value of semaphore

execute indivisibl
R —

wait (S) { signal (S) {
while (S<=0) { S++;
; //no operation }
}
S—==;
}

CS370: Operating Systems L10.22
Dept. Of Computer Science, Colorado State University

Types of semaphores

Binary semaphores
The value of Scanbe @ or 1

Also known as mutex locks

Counting semaphores

Value of S can range over an unrestricted domain

CS370: Operating Systems L10.23
Dept. Of Computer Science, Colorado State University

Using the Binary semaphore to deal with the critical

section problem
—

mutex is initialized to 1
do {

walt (mutex) ;

critical section

signal (mutex) ;

remainder section

} while (TRUE) ;

CS370: Operating Systems L10.24
Dept. Of Computer Science, Colorado State University

Suppose we require S2 to execute only after S1
has executed

Semaphore synch is initialized to O
Wait for synch to be >0
\\> wait (synch) ;
S1; S2;

signal (synch) ;

\

Set synch to 1

PROCESS P1 PROCESS P2

CS370: Operating Systems L10.25
Dept. Of Computer Science, Colorado State University

The counting semaphore

Controls access to a finite set of resource instances

INITIALIZED to the number of resources available

Resource Usage
walt () : To use a resource

signal () : To release a resource

When all resources are being used: S==

Block until S > 0 to use the resource

CS370: Operating Systems L10.26
Dept. Of Computer Science, Colorado State University

Problems with the basic semaphore implementation

{C1} If there is a process in the critical section

{C2} If another process tries to enter its critical section

Must loop continuously in eftry code

Busy waiting!
Some other process could have used this more productively!

Sometimes these locks are called spinlocks

One advantage: No context switch needed when process must wait on a lock

CS370: Operating Systems L10.27
Dept. Of Computer Science, Colorado State University

Overcoming the need to busy wait

During wait if S==
Instead of busy waiting, the process blocks itself
Place process in waiting queue for S
Process state switched to waiting

CPU scheduler picks another process to execute

Restart process when another process does si1gnal
Restarted using wakeup ()

Changes process state from waiting to ready

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.28

Defining the semaphore
—

typedef struct {

int value;

struct process *list;
} semaphore;

list of processes

CS370: Operating Systems L10.29
Dept. Of Computer Science, Colorado State University

The wait () operation to eliminate busy waiting

If value<O
wait (semaphore *8) { abs(value) is the number
S—>value——;/ of waiting processes

1f (S->value <0) {

add process to S->sleeping list;
block () ;

J

} block () suspends the
process that invokes it

CS370: Operating Systems L10.30
Dept. Of Computer Science, Colorado State University

The signal () operation to eliminate busy waiting

signal (semaphore *S) {
S—->value++;

1f (S->value <= 0) {
remove a process P from S->sleeping list;
wakeup (P) ;

} wakeup (P) resumes the
execution of process P

CS370: Operating Systems L10.31
Dept. Of Computer Science, Colorado State University

Deadlocks and Starvation: Implementation of semaphore

with a waiting queue

PROCESS PO

PROCESS P1
walit (S) ; walt (Q) ;
walt (Q) ; wait (S) ;

signal (S) ;

signal (Q) ;
signal (Q) ;

signal (S) ;

Say: PO executes wait (S) and then P1 executes wait (Q)

Cannot be

PO must wait till P1 executes signal (Q) (/- executed
P1 must wait till PO executes signal (S) so deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.32

Semaphores and atomic operations

Once a semaphore action has started

No other process can access the semaphore UNTIL

Operation has completed or process has blocked

Atomic operations
Group of related operations

Performed without interruptions
Or not at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.33

PRIORITY INVERSION

Priority inversion

Processes L, M, H (priority of L < M < H)

Process H requires
Resource R being accessed by process L

Typically, H will wait for L to finish resource use

M becomes runnable and preempts L

Process (M) with lower priority affects how long process H has to wait for L
to release R

CS370: Operating Systems L10.35
Dept. Of Computer Science, Colorado State University

Priority inheritance protocol

Process accessing resource needed by higher priority process
Inherits higher priority till it finishes resource use

Once done, process reverts to lower priority

CS370: Operating Systems L10.36
Dept. Of Computer Science, Colorado State University

The contents of this slide set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

CS370: Operating Systems L10.37
Dept. Of Computer Science, Colorado State University

