
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science
Colorado State University

L10.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.2

Topics covered in the lecture

¨ Synchronization hardware
¨ Using TestAndSet to satisfy critical section requirements
¨ Semaphores
¨ Classical process synchronization problems
¨ Midterm

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION HARDWARE
L10.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.4

Solving the critical section problem using locks

do {

 critical section

 remainder section

} while (TRUE);

acquire lock

release lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.5

Possible assists for solving critical section problem
(1/2)

¨ Uniprocessor environment
¤ Prevent interrupts from occurring when shared variable is being modified

n No unexpected modifications!

¨ Multiprocessor environment
¤ Disabling interrupts is time consuming

n Message passed to ALL processors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.6

Possible assists for solving critical section problem
(2/2)

¨ Special atomic hardware instructions
¤ Swap content of two words
¤ Modify word

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.7

Swap()

void Swap(boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp;
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.8

Swap: Shared variable LOCK is initialized to false

do {

 critical section

 remainder section

} while (TRUE);

key = TRUE;
while (key == TRUE) {
 Swap(&lock, &key)
}

lock = FALSE; lock is a SHARED variable
key is a LOCAL variable

Cannot enter critical section
UNLESS lock == FALSE

Note: If two Swap() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.9

TestAndSet()

boolean TestAndSet(boolean *target) {

 boolean rv = *target;
 *target = TRUE;
 return rv;
}

Sets target to true and returns old value of target

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.10

TestAndSet: Shared boolean variable lock
initialized to false

do {

 critical section

 remainder section

} while (TRUE);

while (TestAndSet(&lock)) {;}

lock = FALSE;

If two TestAndSet() are executed
simultaneously, they will be executed
sequentially in some arbitrary order

To break out:
Return value of TestAndSet
should be FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.11

Entering and leaving critical regions using
TestAndSet and Swap (Exchange)

enter_region:
 TSL REGISTER, LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

enter_region:
 MOVE REGISTER, #1
 XCHNG REGISTER,LOCK
 CMP REGISTER, #0
 JNE enter_region
 RET

leave_region:
 MOVE LOCK, #0
 RET

All Intel x86 CPUs have the XCHG instruction for low-level synchronization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

USING TEST-AND-SET TO SATISFY
CRITICAL SECTION REQUIREMENTS

L12.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.13

Using TestAndSet to satisfy all critical section
requirements

¨ N processes

¨ Data structures initialized to FALSE
§ boolean waiting[n];
§ boolean lock;

These data structures are maintained in
shared memory.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.14

The entry section for process i

waiting[i] = TRUE;
key = TRUE;

while (waiting[i] && key) {
 key = TestAndSet(&lock);
}

waiting[i] = FALSE;

First process to execute TestAndSet will find key == false ;
 ENTER critical section
 EVERYONE else must wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.15

The exit section: Part I
Finding a suitable waiting process

j = (i + 1)%n;

while ((j != i) && !waiting[j]) {
 j = (j+1)%n
}

If a process is not waiting
move to the next one

Will break out at j==i if
there are no waiting
processes

If a process is
waiting:
 break out of loop

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.16

The exit section: Part II
Finding a suitable waiting process

if (j==i) {
 lock = FALSE;
} else {
 waiting[j] = FALSE;
}

Could NOT find a suitable
waiting process

Found a suitable waiting
process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.17

Mutual exclusion

¨ The variable waiting[i] can become false ONLY
if another process leaves its critical section
¤ Only one waiting[i] is set to FALSE

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.18

Progress

¨ A process exiting the critical section
① Sets lock to FALSE

OR
② waiting[j] to FALSE

¨ Allows a process that is waiting to proceed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.19

Bounded waiting requirement

¨ Scans waiting[] in the cyclic ordering
(i+1, i+2, …n, 0, …, i-1)

¨ ANY waiting process trying to enter critical section will
do so in (n-1) turns

j = (i + 1)%n;

while ((j != i) && !waiting[j]) {
 j = (j+1)%n
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SEMAPHORES
L12.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.21

Semaphores

¨ Semaphore S is an integer variable

¨ Once initialized, accessed through atomic operations
§ wait()

§ signal()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.22

Modifications to the integer value of semaphore
execute indivisibly

wait(S) {
 while (S<=0) {
 ; //no operation
 }
 S--;
}

signal(S) {
 S++;
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.23

Types of semaphores

¨ Binary semaphores
¤ The value of S can be 0 or 1

n Also known as mutex locks

¨ Counting semaphores
¤ Value of S can range over an unrestricted domain

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.24

Using the Binary semaphore to deal with the critical
section problem

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

signal(mutex);

mutex is initialized to 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.25

Suppose we require S2 to execute only after S1
has executed

S1; S2;

PROCESS P1 PROCESS P2

Semaphore synch is initialized to 0

signal(synch);

wait(synch);

Wait for synch to be > 0

Set synch to 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.26

The counting semaphore

¨ Controls access to a finite set of resource instances

¨ INITIALIZED to the number of resources available

¨ Resource Usage
§ wait(): To use a resource
§ signal(): To release a resource

¨ When all resources are being used: S==0
§ Block until S > 0 to use the resource

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.27

Problems with the basic semaphore implementation

¨ {C1} If there is a process in the critical section
¨ {C2} If another process tries to enter its critical section

¤ Must loop continuously in entry code
¤ Busy waiting!

n Some other process could have used this more productively!

¤ Sometimes these locks are called spinlocks
n One advantage: No context switch needed when process must wait on a lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.28

Overcoming the need to busy wait

¨ During wait if S==0
¤ Instead of busy waiting, the process blocks itself
¤ Place process in waiting queue for S

¤ Process state switched to waiting
¤ CPU scheduler picks another process to execute

¨ Restart process when another process does signal
¤ Restarted using wakeup()
¤ Changes process state from waiting to ready

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.29

Defining the semaphore

typedef struct {
 int value;
 struct process *list;
} semaphore;

list of processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.30

The wait() operation to eliminate busy waiting

wait(semaphore *S){
 S->value--;

 if (S->value <0) {
 add process to S->sleeping_list;
 block();
 }

} block() suspends the
 process that invokes it

If value < 0
abs(value) is the number
of waiting processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.31

The signal() operation to eliminate busy waiting

signal(semaphore *S) {
 S->value++;

 if (S->value <= 0) {
 remove a process P from S->sleeping_list;
 wakeup(P);
 }

} wakeup(P)resumes the
execution of process P

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.32

Deadlocks and Starvation: Implementation of semaphore
with a waiting queue

wait(S);
wait(Q);

signal(S);
signal(Q);

PROCESS P0

wait(Q);
wait(S);

signal(Q);
signal(S);

PROCESS P1

Say: P0 executes wait(S) and then P1 executes wait(Q)

P0 must wait till P1 executes signal(Q)
Cannot be
executed
so deadlockP1 must wait till P0 executes signal(S)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.33

Semaphores and atomic operations

¨ Once a semaphore action has started
¤ No other process can access the semaphore UNTIL

n Operation has completed or process has blocked

¨ Atomic operations
¤ Group of related operations
¤ Performed without interruptions

n Or not at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PRIORITY INVERSION
L12.34

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.35

Priority inversion

¨ Processes L, M, H (priority of L < M < H)

¨ Process H requires
¤ Resource R being accessed by process L
¤ Typically, H will wait for L to finish resource use

¨ M becomes runnable and preempts L
¤ Process (M) with lower priority affects how long process H has to wait for L

to release R

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.36

Priority inheritance protocol

¨ Process accessing resource needed by higher priority process
¤ Inherits higher priority till it finishes resource use
¤ Once done, process reverts to lower priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L10.37

The contents of this slide set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

