CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in the lecture

Classical process synchronization problems
Bounded Buffer — Producer/Consumer problem
Readers Writers

Dining philosopher’s problem

CS370: Operating Systems L11.2
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

CLASSIC PROBLEMS OF SYNCHRONIZATION

The bounded buffer problem

Binary semaphore (mutex)
Provides mutual exclusion for accesses to buffer pool

Initialized to 1

Counting semaphores
empty: Number of empty slots available to produce
Initialized to 1

full: Number of filled slots available to consume

Initialized to O

CS370: Operating Systems L11.4
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Some other things to bear in mind

Producer and consumer must be ready before they attempt to enter

critical section

Producer readiness?¢

When a slot is available to add produced item

walt (empty): empty is initialized to I

Consumer readiness?
When a producer has added new item to the buffer

wait (full) : full initialized to ()

CS370: Operating Systems L11.5
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The Producer

do wait till slot available
produce i1tem nextp

wait (empty) ;
wait (mutex);e _ Only producer OR consumer

can be in critical section
add nextp to buffer

signal (mutex) ;¢ Allow pr'oducer.QR consumer
signal (full) ; to (re)enter critical section

remalinder section

signal consumer
| while (TRUE):; that a slot is available

CS370: Operating Systems L11.6
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The Consumer

do { wait till slot available

for consumption
wait (full) ;

wait (mutex);e _ Only producer OR consumer
can be in critical section

remove 1tem from buffer

(nextc)
Allow producer OR consumer

signal (mutex) ;e to (re)enter critical section
signal (empty) ;

consume nextc

signal producer that a

| while (TRUE):; slot is available to add

CS370: Operating Systems L11.7
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

THE READERS-WRITERS PROBLEM

The Readers-Writers problem
A database is shared among several concurrent processes

Two types of processes

Readers

Writers

CS370: Operating Systems L11.9
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Readers-Writers: Potential for adverse effects

If two readers access shared data simultaneously?

No problems

If a writer and some other reader (or writer) access shared data
simultaneously?

Chaos

CS370: Operating Systems L11.10
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Writers must have exclusive access to shared
database while writing

FIRST readers-writers problem:

No reader should wait for other readers to finish; simply because a writer is
waiting

Writers may starve

SECOND readers-writers problem:

If a writer is ready it performs its write ASAP

Readers may starve

CS370: Operating Systems L11.11
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Solution to the FIRST readers-writers problem

Variable int readcount

Tracks how many readers are reading object

Semaphore mutex {1}

Ensure mutual exclusion when readcount is accessed

Semaphore wrt {1}
(1) Mutual exclusion for the writers

(2) First (last) reader that enters (exits) critical section

Not used by readers, when other readers are in their critical section

CS370: Operating Systems L11.12
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The Writer: When a writer signals either
a waiting writer or the readers resume

do |

When:

writer in critical section
and if n readers waiting

writing iper%- 1 reader is queued on wrt

(n-1) readers queued on mutex

walt (wrt) ;

signal (wrt) ;

} while (TRUE) ;

CS370: Operating Systems L11.13
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The Reader process

do | walt (mutex) ; g mutex for mutual
readcount++; exclusion to readcount
1f (readcount ==1) ({
walt (wrt) ;
J When:

signal (mutex) ; writer in critical section

and if n readers waiting

reading 1s performed

walt (mutex) ; 1lis queued on wrt

readcount—--; (n-l) queued on mutex
1f (readcount ==0) {

signal (wrt) ;
}

signal (mutex) ;
} while (TRUE) ;

CS370: Operating Systems

Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

L11.14

THE DINING PHILOSOPHERS PROBLEM

The situation
—

CS370: Operating Systems L11.16
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The Problem

(1) Philosopher tries to pick up two closest {LR} chopsticks

(2) Pick up only 1 chopstick at a time
Cannot pick up a chopstick being used

(3) Eat only when you have both chopsticks

(4) When done; put down both the chopsticks

CS370: Operating Systems L1117
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Why is the problem important?

Represents allocation of several resources

AMONG several processes

Can this be done so that it is:
Deadlock free

Starvation free

CS370: Operating Systems L11.18
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Dining philosophers: Simple solution

Each chopstick is a semaphore

Grab by executing wait ()

Release by executing signal ()

Shared data

semaphore chopstick[5];

All elements are initialized to 1

CS370: Operating Systems L11.19
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

What if all philosophers get hungry and grab the
same {L/R} chopstick?

o Deadlock:
wait (chopstick([i]) ; g If all Pl"OC@SS.eS .
wait (chopstick[(i+1)%5]); access chopstick with
same hand
//eat

signal (chopstick[i]) ;
signal (chopstick[(i+1) %$5]);

//think
We will look at solution with monitors

} while (TRUE) ;

CS370: Operating Systems L11.20
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

MONITORS

Overview of the semaphore solution

Processes share a semaphore mutex

Initialized to 1

Each process MUST execute
wait before entering critical section

signal after exiting critical section

CS370: Operating Systems L11.22
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Incorrect use of semaphores can lead to timing
errors

Hard to detect

Reveal themselves only during specific execution sequences

If correct sequence is not observed

2 processes may be in critical section simultaneously

Problems even if only one process is not well behaved

CS370: Operating Systems L11.23
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Incorrect use of semaphores: [1]
Interchange order of walt and signal

do {
signal (mutex) ; Problem:
critical Sectioné_ SZVZI"C\I PFOCZSS@S
simultaneously active
. in critical section
walt (mutex) ;
remainder section
} while (TRUE) ; NB: Not always reproducible

CS370: Operating Systems
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

L11.24

Incorrect use of semaphores: [2]

Replace si1gnal withwait
_]

do {

critical section

remainder secti_

} while (TRUE) ;

CS370: Operating Systems L11.25
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Incorrect use of semaphores: [3]
What if you omit signal AND/OR wait?

do | .« .
Omission:
. Mutual exclusion
walt (mutex) :
P violated
critical section
signal (mutex) ;
Omission:
remainder section Deadlock!

} while (TRUE) ;

CS370: Operating Systems
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

L11.26

When programmers use semaphores incorrectly
problems arise

We need a higher-level synchronization construct

Monitor

Before we move ahead: Abstract Data Types

Encapsulates private data with

Public methods to operate on them

CS370: Operating Systems L11.27
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

A monitor is an abstract data type

Mutual exclusion provided within the monitor

Contains:

Declaration of variables

Defining the instance’s state

Functions that operate on these variables

CS370: Operating Systems
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

L11.28

Monitor construct ensures that only one

Erocess at a time is active within monitor

monitor monitor name {

//shared variable declarations

function F1(..) {.. .}
function F2(..) {.. .}
function Fn(..) {.. .}
initialization code(..) {.. .}

CS370: Operating Systems L11.29
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Programmer does not code synchronization

constraint explicitl
B
OO

—— Entry Queve

operations

Initialization
code
CS370: Operating Systems L11.30

Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Basic monitor scheme not sufficiently powerful

Provides an easy way to achieve mutual exclusion

But ... we also need a way for processes to block when they cannot
proceed

CS370: Operating Systems L11.31
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

This blocking capability is provided by the condition
construct

The condition construct

condition x, Vy;

Operations on a condition variable

walt:e.g. x.wait ()
Process invoking this is suspended UNTIL
signal: e.g. x.signal ()

Resumes exactly-one suspended process

If no process waiting; NO EFFECT on state of x

CS370: Operating Systems L11.32
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Semantics of walt and signal

X.s1ignal () invoked by process P

Q is the suspended process waiting on x

Signal and wait: P waits for Q to leave monitor

Signal and continue: Q waits till P leaves monitor

PASCAL: When thread P calls signal

P leaves immediately

Q immediately resumed

CS370: Operating Systems L11.33
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Difference between the signal () in semaphores
and monitors

Monitors {condition variables}: Not persistent
If a signal is performed and no waiting threads?
Signal is simply ignored
During subsequent wa 1t operations
Thread blocks

Semaphores

Signal increments semaphore value even if there are no waiting threads

Future wa1t operations would immediately succeed!

CS370: Operating Systems L11.34
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

DINING PHILOSOPHERS USING MONITORS

Dining-Philosophers Using Monitors
Deadlock-free

enum {THINKING, HUNGRY,EATING} state[o];

state[i] = EATING only if

state[(1+4)%5] != EATING &&
state[(1+1)%5] != EATING

condition self[5H]

Delay self when HUNGRY but unable to get chopsticks

CS370: Operating Systems L11.36
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Sequence of actions

Before eating, must invoke pickup ()

May result in suspension of philosopher process

After completion of operation, philosopher may eat

DiningPhilosophers.pickup (1) ;

eat

DiningPhilosophers.putdown (1) ;

CS370: Operating Systems L11.37
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The pickup () and putdown () operations

pickup (1nt 1) {
state[1] = HUNGRY;
test (1) ;
if (state[i] != EATING) { Suspend self if unable

self[i].wait () ;e=—"_ to acquire chopstick
J

J

putdown (int i) {
state[1] = THINKING;

test ((1i+4)%5); Check 1‘0. see if person on
test ((i+1)%5) ;' left or'.r'lgh’r can use the
} chopstick

CS370: Operating Systems L11.38
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

test () to see if philosopher can eat

Eat only if HUNGRY and
Person on Left AND Right
are not eating

test (1nt 1) {
1f (state[(1+44)5%5] I= EATINGV
state[1] == HUNGRY & &
state[(1+1) % = EATING]) {

state[1] = EATING;

self[i] .signal() ;
} \ Signal a process that was

} suspended while trying to eat

CS370: Operating Systems L11.39
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Possibility of starvation

Philosopher 1 can starve if eating periods of
philosophers on left and right overlap

Possible solution
Introduce new state: STARVING
Chopsticks can be picked up if no neighbor is starving

Effectively wait for neighbor’s neighbor to stop eating
REDUCES concurrency!

CS370: Operating Systems L11.40
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

IMPLEMENTING A MONITOR USING
SEMAPHORES

Implementing a monitor using semaphores

For each monitor

Semaphore mutex initialized to 1

Process must execute
walt (mutex) : Before entering the monitor

signal (mutex): Before leaving the monitor

CS370: Operating Systems L11.42
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Semantics of the signaling process

Signaling process must wait until the resumed process leaves or waits

Additional semaphore next is introduced

So signaling process needs to suspend itself
Semaphore next initialized to O

Signaling processes use next to suspend themselves

Integer variable next count

Counts number of processes suspended on next

CS370: Operating Systems L11.43
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Implementing a function F in the monitor

walt (mutex) ;

body of function F

1f (next count > 0)
signal (next) ;

} else {
signal (mutex) ;

CS370: Operating Systems L11.44

Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Implementing condition variables:

X_count++;
1f (next count > 0) {

signal (next) ; if (x count > 0) {
} else { next count++;
signal (mutex) ; signal (x_sem) ;
} walt (next) ;
walt (x sem) ; next count--;
x _count--; }

x.wait() Operation x.signal () Operation

For each condition x we have:
semaphore xsem and
infeger variable x count

Both initialized to O

CS370: Operating Systems L11.45
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Resuming processes within a monitor

{C1} Several processes suspended on condition x

{C2} x.signal () executed by some process

Which suspended process should be resumed next?

Simple solution: FCFS ordering

Process waiting the longest is resumed first

CS370: Operating Systems L11.46
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Process resumption: conditional wait

X.walt (e)

C is an integer expression; evaluated when wait () is executed

Value of ¢ is the priority number

Stored with the name of process that is suspended

When x.signal () is executed

Process with smallest priority number resumed next

CS370: Operating Systems L11.47
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Monitor to allocate a single resource
B

Monitor ResourcelAllocator {
boolean busy;
condition X;

vold acquire (int time) {
1f (busy) {
x.walt (time) ;
}
busy = TRUE;
}

volid release () {
busy = FALSE;
x.signal () ;

}
initialization () {busy = FALSE;}

} CS370: Operating Systems L11.48
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

An example of conditional waits

Specify maximum time resource
will be used

R.acquire (t< Monitor allocates resource

based on shortest duration

access the resource;

R.release () ;

Monitor cannot guarantee that the access sequence will be observed

CS370: Operating Systems L11.49
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

Avoiding time dependent errors and ensuring that scheduling
algorithm is not defeated

User processes must make their calls on the monitor in correct
sequence

Ensure that uncooperative processes do not ignore the mutual exclusion
gateway

Should not access resource directly!

CS370: Operating Systems L11.50
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

The contents of this slide set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems
Concepts, 9" edition. John Wiley & Sons, Inc. ISBN-13: 978-
1118063330. [Chapter 5]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems.
4™ Edition, 2014. Prentice Hall. ISBN: 013359162X/ 97 8-
0133591620. [Chapter 2]

CS370: Operating Systems L11.51
Instructor: SHRIDEEP PALLICKARA Dept. Of Computer Science, Colorado State University

