
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[PROCESS SYNCHRONIZATION]

Computer Science
Colorado State University

L11.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.2
Instructor: SHRIDEEP PALLICKARA

Topics covered in the lecture

¨ Classical process synchronization problems
¤ Bounded Buffer – Producer/Consumer problem
¤ Readers Writers
¤ Dining philosopher’s problem

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CLASSIC PROBLEMS OF SYNCHRONIZATION

L11.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.4
Instructor: SHRIDEEP PALLICKARA

The bounded buffer problem

¨ Binary semaphore (mutex)
¤ Provides mutual exclusion for accesses to buffer pool
¤ Initialized to 1

¨ Counting semaphores
¤ empty: Number of empty slots available to produce

n Initialized to n
¤ full: Number of filled slots available to consume

n Initialized to 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.5
Instructor: SHRIDEEP PALLICKARA

Some other things to bear in mind

¨ Producer and consumer must be ready before they attempt to enter
critical section

¨ Producer readiness?
¤ When a slot is available to add produced item

n wait(empty): empty is initialized to n

¨ Consumer readiness?
¤ When a producer has added new item to the buffer

n wait(full) : full initialized to 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.6
Instructor: SHRIDEEP PALLICKARA

The Producer
do {
 produce item nextp

 add nextp to buffer

 remainder section

} while (TRUE);

wait(empty);
wait(mutex);

signal(mutex);
signal(full);

wait till slot available

Only producer OR consumer
can be in critical section

signal consumer
that a slot is available

Allow producer OR consumer
to (re)enter critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.7
Instructor: SHRIDEEP PALLICKARA

The Consumer
do {

 remove item from buffer
 (nextc)

 consume nextc

} while (TRUE);

wait(full);
wait(mutex);

signal(mutex);
signal(empty);

wait till slot available
for consumption

Only producer OR consumer
can be in critical section

signal producer that a
slot is available to add

Allow producer OR consumer
to (re)enter critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THE READERS-WRITERS PROBLEM

L13.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.9
Instructor: SHRIDEEP PALLICKARA

The Readers-Writers problem

¨ A database is shared among several concurrent processes

¨ Two types of processes
¤ Readers
¤ Writers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.10
Instructor: SHRIDEEP PALLICKARA

Readers-Writers: Potential for adverse effects

¨ If two readers access shared data simultaneously?
¤ No problems

¨ If a writer and some other reader (or writer) access shared data
simultaneously?
¤ Chaos

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.11
Instructor: SHRIDEEP PALLICKARA

Writers must have exclusive access to shared
database while writing

¨ FIRST readers-writers problem:
¤ No reader should wait for other readers to finish; simply because a writer is

waiting
n Writers may starve

¨ SECOND readers-writers problem:
¤ If a writer is ready it performs its write ASAP

n Readers may starve

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.12
Instructor: SHRIDEEP PALLICKARA

Solution to the FIRST readers-writers problem

¨ Variable int readcount
¤ Tracks how many readers are reading object

¨ Semaphore mutex {1}
¤ Ensure mutual exclusion when readcount is accessed

¨ Semaphore wrt {1}
① Mutual exclusion for the writers
② First (last) reader that enters (exits) critical section

n Not used by readers, when other readers are in their critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.13
Instructor: SHRIDEEP PALLICKARA

The Writer: When a writer signals either
a waiting writer or the readers resume

do {

 writing is performed

} while (TRUE);

wait(wrt);

signal(wrt);

When:
 writer in critical section
 and if n readers waiting

1 reader is queued on wrt
(n-1) readers queued on mutex

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.14
Instructor: SHRIDEEP PALLICKARA

The Reader process
do {

 reading is performed

} while (TRUE);

wait(mutex);
readcount++;
if (readcount ==1) {
 wait(wrt);
}
signal(mutex);

wait(mutex);
readcount--;
if (readcount ==0) {
 signal(wrt);
}
signal(mutex);

When:
 writer in critical section
 and if n readers waiting

1 is queued on wrt
(n-1) queued on mutex

mutex for mutual
exclusion to readcount

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THE DINING PHILOSOPHERS PROBLEM
L11.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.16
Instructor: SHRIDEEP PALLICKARA

The situation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.17
Instructor: SHRIDEEP PALLICKARA

The Problem

① Philosopher tries to pick up two closest {LR} chopsticks

② Pick up only 1 chopstick at a time
¤ Cannot pick up a chopstick being used

③ Eat only when you have both chopsticks

④ When done; put down both the chopsticks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.18
Instructor: SHRIDEEP PALLICKARA

Why is the problem important?

¨ Represents allocation of several resources
¤ AMONG several processes

¨ Can this be done so that it is:
¤ Deadlock free
¤ Starvation free

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.19
Instructor: SHRIDEEP PALLICKARA

Dining philosophers: Simple solution

¨ Each chopstick is a semaphore
¤ Grab by executing wait()
¤ Release by executing signal()

¨ Shared data
¤ semaphore chopstick[5];
¤ All elements are initialized to 1

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.20
Instructor: SHRIDEEP PALLICKARA

What if all philosophers get hungry and grab the
same {L/R} chopstick?

do {

 //eat

 //think

} while (TRUE);

wait(chopstick[i]);
wait(chopstick[(i+1)%5]);

signal(chopstick[i]);
signal(chopstick[(i+1)%5]);

Deadlock:
 If all processes
access chopstick with
same hand

We will look at solution with monitors

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MONITORS

L11.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.22
Instructor: SHRIDEEP PALLICKARA

Overview of the semaphore solution

¨ Processes share a semaphore mutex
¤ Initialized to 1

¨ Each process MUST execute
¤ wait before entering critical section
¤ signal after exiting critical section

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.23
Instructor: SHRIDEEP PALLICKARA

Incorrect use of semaphores can lead to timing
errors

¨ Hard to detect
¤ Reveal themselves only during specific execution sequences

¨ If correct sequence is not observed
¤ 2 processes may be in critical section simultaneously

¨ Problems even if only one process is not well behaved

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.24
Instructor: SHRIDEEP PALLICKARA

Incorrect use of semaphores: [1]
Interchange order of wait and signal

do {

 critical section

 remainder section

} while (TRUE);

signal(mutex);

wait(mutex);

Problem:
 Several processes
simultaneously active
in critical section

NB: Not always reproducible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.25
Instructor: SHRIDEEP PALLICKARA

Incorrect use of semaphores: [2]
Replace signal with wait

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

wait(mutex);
Problem:
 Deadlock!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.26
Instructor: SHRIDEEP PALLICKARA

Incorrect use of semaphores: [3]
What if you omit signal AND/OR wait?

do {

 critical section

 remainder section

} while (TRUE);

wait(mutex);

signal(mutex);
Omission:
 Deadlock!

Omission:
Mutual exclusion
violated

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.27
Instructor: SHRIDEEP PALLICKARA

When programmers use semaphores incorrectly
problems arise

¨ We need a higher-level synchronization construct
¤ Monitor

¨ Before we move ahead: Abstract Data Types
¤ Encapsulates private data with

n Public methods to operate on them

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.28
Instructor: SHRIDEEP PALLICKARA

A monitor is an abstract data type

¨ Mutual exclusion provided within the monitor

¨ Contains:
¤ Declaration of variables

n Defining the instance’s state

¤ Functions that operate on these variables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.29
Instructor: SHRIDEEP PALLICKARA

Monitor construct ensures that only one
process at a time is active within monitor

monitor monitor name {

 //shared variable declarations

 function F1(..) {.. .}

 function F2(..) {.. .}

 function Fn(..) {.. .}

 initialization code(..) {.. .}

}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.30
Instructor: SHRIDEEP PALLICKARA

Programmer does not code synchronization
constraint explicitly

shared data

initialization
code

…

operations

Entry Queue

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.31
Instructor: SHRIDEEP PALLICKARA

Basic monitor scheme not sufficiently powerful

¨ Provides an easy way to achieve mutual exclusion

¨ But … we also need a way for processes to block when they cannot
proceed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.32
Instructor: SHRIDEEP PALLICKARA

This blocking capability is provided by the condition
construct

¨ The condition construct
¤ condition x, y;

¨ Operations on a condition variable
¤ wait: e.g. x.wait()

n Process invoking this is suspended UNTIL

¤ signal: e.g. x.signal()
n Resumes exactly-one suspended process
n If no process waiting; NO EFFECT on state of x

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.33
Instructor: SHRIDEEP PALLICKARA

Semantics of wait and signal

¨ x.signal() invoked by process P
¨ Q is the suspended process waiting on x

¨ Signal and wait: P waits for Q to leave monitor
¨ Signal and continue: Q waits till P leaves monitor

¨ PASCAL: When thread P calls signal
¤ P leaves immediately
¤ Q immediately resumed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.34
Instructor: SHRIDEEP PALLICKARA

Difference between the signal() in semaphores
and monitors

¨ Monitors {condition variables}: Not persistent
¤ If a signal is performed and no waiting threads?

n Signal is simply ignored

¤ During subsequent wait operations
n Thread blocks

¨ Semaphores
¤ Signal increments semaphore value even if there are no waiting threads

n Future wait operations would immediately succeed!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DINING PHILOSOPHERS USING MONITORS
L13.35

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.36
Instructor: SHRIDEEP PALLICKARA

Dining-Philosophers Using Monitors
Deadlock-free

enum {THINKING,HUNGRY,EATING} state[5];

¨ state[i] = EATING only if
§ state[(i+4)%5] != EATING &&
state[(i+1)%5] != EATING

¨ condition self[5]

¤ Delay self when HUNGRY but unable to get chopsticks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.37
Instructor: SHRIDEEP PALLICKARA

Sequence of actions

¨ Before eating, must invoke pickup()
¤ May result in suspension of philosopher process
¤ After completion of operation, philosopher may eat

DiningPhilosophers.pickup(i);
 ...

 eat
 ...
DiningPhilosophers.putdown(i);

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.38
Instructor: SHRIDEEP PALLICKARA

The pickup() and putdown() operations

pickup(int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) {
 self[i].wait();
 }
}

putdown(int i) {
 state[i] = THINKING;
 test((i+4)%5);
 test((i+1)%5);
}

Suspend self if unable
to acquire chopstick

Check to see if person on
left or right can use the
chopstick

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.39
Instructor: SHRIDEEP PALLICKARA

test() to see if philosopher can eat

test(int i) {
 if (state[(i+4)%5] != EATING &&
 state[i] == HUNGRY &&
 state[(i+1)%5 != EATING]) {

 state[i] = EATING;
 self[i].signal();
 }
}

Eat only if HUNGRY and
Person on Left AND Right
are not eating

Signal a process that was
suspended while trying to eat

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.40
Instructor: SHRIDEEP PALLICKARA

Possibility of starvation

¨ Philosopher i can starve if eating periods of
philosophers on left and right overlap

¨ Possible solution
¤ Introduce new state: STARVING
¤ Chopsticks can be picked up if no neighbor is starving

n Effectively wait for neighbor’s neighbor to stop eating
n REDUCES concurrency!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

IMPLEMENTING A MONITOR USING
SEMAPHORES

L11.41

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.42
Instructor: SHRIDEEP PALLICKARA

Implementing a monitor using semaphores

¨ For each monitor
¤ Semaphore mutex initialized to 1

¨ Process must execute
§ wait(mutex) : Before entering the monitor
§ signal(mutex): Before leaving the monitor

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.43
Instructor: SHRIDEEP PALLICKARA

Semantics of the signaling process

¨ Signaling process must wait until the resumed process leaves or waits
¤ Additional semaphore next is introduced

¨ So signaling process needs to suspend itself
¤ Semaphore next initialized to 0

n Signaling processes use next to suspend themselves

¤ Integer variable next_count
n Counts number of processes suspended on next

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.44
Instructor: SHRIDEEP PALLICKARA

Implementing a function F in the monitor

wait(mutex);
 ...
 body of function F
 ...

if (next_count > 0) {
 signal(next);
} else {
 signal(mutex);
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.45
Instructor: SHRIDEEP PALLICKARA

Implementing condition variables:
x_count++;
if (next_count > 0) {
 signal(next);
} else {
 signal(mutex);
}
wait(x_sem);
x_count--;

x.wait() Operation

if (x_count > 0) {
 next_count++;
 signal(x_sem);
 wait(next);
 next_count--;
}

x.signal() Operation
For each condition x we have:
 semaphore xsem and
 integer variable x_count
Both initialized to 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.46
Instructor: SHRIDEEP PALLICKARA

Resuming processes within a monitor

¨ {C1} Several processes suspended on condition x
¨ {C2} x.signal() executed by some process

¨ Which suspended process should be resumed next?
¤ Simple solution: FCFS ordering

n Process waiting the longest is resumed first

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.47
Instructor: SHRIDEEP PALLICKARA

Process resumption: conditional wait

¨ x.wait(c)

¨ c is an integer expression; evaluated when wait() is executed

¨ Value of c is the priority number
¤ Stored with the name of process that is suspended

¨ When x.signal() is executed
¤ Process with smallest priority number resumed next

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.48
Instructor: SHRIDEEP PALLICKARA

Monitor to allocate a single resource
Monitor ResourceAllocator {
 boolean busy;
 condition x;

 void acquire(int time) {
 if (busy) {
 x.wait(time);
 }
 busy = TRUE;
 }

 void release() {
 busy = FALSE;
 x.signal();
 }
 initialization() {busy = FALSE;}
}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.49
Instructor: SHRIDEEP PALLICKARA

An example of conditional waits

R.acquire(t);
 ...
 access the resource;
 ...
R.release();

Specify maximum time resource
will be used

Monitor allocates resource
based on shortest duration

Monitor cannot guarantee that the access sequence will be observed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.50
Instructor: SHRIDEEP PALLICKARA

Avoiding time dependent errors and ensuring that scheduling
algorithm is not defeated

¨ User processes must make their calls on the monitor in correct
sequence

¨ Ensure that uncooperative processes do not ignore the mutual exclusion
gateway
¤ Should not access resource directly!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L11.51
Instructor: SHRIDEEP PALLICKARA

The contents of this slide set are based on the
following references

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems
Concepts, 9th edition. John Wiley & Sons, Inc. ISBN-13: 978-
1118063330. [Chapter 5]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems.
4th Edition, 2014. Prentice Hall. ISBN: 013359162X/ 978-
0133591620. [Chapter 2]

