
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[ATOMIC TRANSACTIONS]

Computer Science
Colorado State University

L15.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.2

Topics covered in today’s lecture

¨ Synchronization examples
¨ Atomic transactions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SYNCHRONIZATION EXAMPLES

L15.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.4

Synchronization in Solaris

¨ Condition variables

¨ Semaphores

¨ Adaptive mutexes

¨ Reader-writer locks

¨ Turnstiles

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.5

Synchronization in Solaris:
Adaptive mutex

¨ Starts as a standard semaphore implemented as spinlock

¨ On SMP systems if data is locked and in use?
¤ If lock held by thread on another CPU

n Spin waiting for lock to be available

¤ If thread holding the lock is not in the run state
n Block until awakened by release of the lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.6

Adaptive mutex:
On a single processor system

¨ Only one thread can run at a time

¨ So thread sleeps (instead of spinning) when a lock is encountered

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.7

Adaptive mutex is used only for short code segments

¨ Less than a few hundred instructions
¤ Spinlocks inefficient for code segments larger than that

¨ Cheaper to put a thread to sleep and awaken it
¤ Busy waiting in the spinlock is expensive

¨ Longer code segments?
¤ Condition variables and semaphores used

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.8

Reader-writer locks

¨ Used to protect data accessed frequently
¤ Usually accessed in a read-only manner

¨ Multiple threads can read data concurrently
¤ Unlike semaphores that serialize access to the data

¨ Relatively expensive to implement
¤ Used only on long sections of code

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.9

Solaris: Turnstiles

¨ Queue structure containing threads blocked on a lock

¨ Used to order threads waiting to acquire adaptive mutex or
reader-writer lock

¨ Each kernel thread has its own turnstile
¤ As opposed to every synchronized object
¤ Thread can be blocked only on one object at a time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.10

Solaris: Turnstiles

¨ Turnstile for the first thread to block on synchronized
object
¤ Becomes turnstile for the object itself
¤ Subsequent threads blocking on lock are added to this

turnstile

¨ When this first thread releases its lock?
¤ It gains a new turnstile from the list of free turnstiles

maintained by kernel

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.11

Turnstiles are organized according to the priority
inheritance protocol

¨ If the thread is holding a lock on which a higher priority thread is
blocked?
¤ Will temporarily inherit priority of higher priority thread
¤ Revert back to original priority after releasing the lock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.12

Linux: Prior to 2.6, Linux was a nonpreemptive kernel

¨ Provides spinlocks and semaphores

Single processor Multiple processors

Disable kernel preemption Acquire spinlock

Enable kernel preemption Release spinlock

17 December 2003 - Linux 2.6.0 was released (5,929,913 lines of code)
4 January 2011 - Linux 2.6.37 was released (13,996,612 lines of code)
2023: tens of millions of LoC!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.13

Kernel is not preemptible if a kernel-mode task is
holding a lock

¨ Each task has a thread-info structure
§ Counter preempt_count indicates number of locks being held by task
§ preempt_count incremented when lock acquired

n Decremented when lock released

§ If is preempt_count > 0; not safe to preempt
n OK otherwise; if no preempt_disable() calls pending

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.14

Linux: Other mechanisms

¨ Atomic integers atomic_t
¤ All math operations using atomic integers are performed without interruption
¤ E.g. Set, add, subtract, increment, decrement

¨ Mutex locks
¤ mutex_lock(): Prior to entering critical section
¤ mutex_unlock(): After exiting critical section

¤ If lock is unavailable, task calling mutex_lock() is put to sleep
n Awakened when another task calls mutex_unlock()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

ATOMIC TRANSACTIONS

L15.15

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.16

Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic execution
¤ As one uninterruptible unit

¨ Also important to ensure, that critical section forms a single logical
unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g. transfer of funds

n Credit one account and debit the other

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.17

Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤ Despite the possibility of failures

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.18

Storage system hierarchy based on speed, cost, size
and volatility

Registers

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tapes

Co
st/

bi
t i

nc
re

as
es

Access times increase

Volatile

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.19

A disk I/O transaction that accesses/updates data
items on disk

¨ Simply a sequence of read and write operations
¤ Terminated by commit or abort

¨ Commit: Successful transaction termination

¨ Abort: Unsuccessful due to
¤ Logical error or system failure

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.20

Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored
¤ To what it was before transaction started executing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.21

Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to various
accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort etc

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.22

Actual update cannot take place prior to the logging

¨ Prior to write(X) operation
¤ Log records for X should be written to stable storage

¨ Two physical writes for every logical write
¤ More storage needed

¨ Functionality worth the price:
¤ Data that is extremely important
¤ For fast failure recovery

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.23

Populating entries in the log

¨ Before transaction Ti starts execution
¤ Record <Ti starts> written to the log

¨ Any write by Ti is preceded by writing to the log

¨ When Ti commits
¤ Record <Ti commits> written to log

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.24

The system can handle any failure without loss of
information: Log

• undo(Ti)
n Restores value of all data updated by Ti to old values

• redo(Ti)
n Sets value of all data updated by Ti to new values

¤ undo(Ti) and redo(Ti)
n Are idempotent
n Multiple executions have the same result as 1 execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.25

If system failure occurs restore state by consulting
the log

¨ Determine which transactions need to be undone; and which need to
be redone

¨ Tiis undone if log
¤ Contains <Ti starts> but no <Ti commits> record

¨ Tiis redone if log
¤ Contains both <Ti starts> and <Ti commits>

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CHECKPOINTING

L15.26

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.27

Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤ Recovery takes longer

n Though no harm done by redoing (idempotency)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.28

In addition to write-ahead logging, periodically
perform checkpoints

¨ Output the following to stable storage
¤ All log records residing in main memory
¤ All modified data residing in main memory
¤ A log record <checkpoint>

¨ The <checkpoint> allows a system to streamline
recovery procedure

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.29

Implications of the checkpoint record

¨ Ti committed prior to checkpoint
§ <Ti commits> appears before <checkpoint>
§ Modifications made by Ti must have been written to stable

storage
n Prior to the checkpoint or
n As part of the checkpoint

¨ At recovery no need to redo such a transaction

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.30

Refining the recovery algorithm

¨ Search the log backward for first checkpoint record.
¤ Find transactions Ti following the last checkpoint
¤ redo and undo operations applied only to these transactions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.31

Looking at the log to determine which one to redo
and which one to undo

<T1 starts>
<T1 … write record>
<T1 aborts>

<T2 starts>
<T2 … write record>
<T2 commits>

<checkpoint>
<T3 starts>
<T3 … write record>
….
<checkpoint>
<T4 starts>
<T4 … write record>
<T4 commits>

<T5 starts>
<T5 ..write record>

T4 will be redone

T5 will be undone

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONCURRENT ATOMIC TRANSACTIONS

L15.32

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.33

Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤ Maintained by executing each transaction within a critical
section
n Too restrictive

¨ Allow transactions to overlap while maintaining
serializability
¤ Concurrency control algorithms

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.34

Serializability

¨ Serial schedule: Each transaction executes atomically
n! schedules for n transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.35

Non-serial schedule:
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤ Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤ AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.36

Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.37

Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤ By a series of swaps of non-conflicting operations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L15.38

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]

