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Topics covered in today’s lecture

¨ Synchronization examples
¨ Atomic transactions
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Synchronization in Solaris

¨ Condition variables

¨ Semaphores

¨ Adaptive mutexes

¨ Reader-writer locks

¨ Turnstiles
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Synchronization in Solaris: 
Adaptive mutex

¨ Starts as a standard semaphore implemented as spinlock

¨ On SMP systems if data is locked and in use?
¤ If lock held by thread on another CPU

n Spin waiting for lock to be available

¤ If thread holding the lock is not in the run state
n Block until awakened by release of the lock
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Adaptive mutex:
On a single processor system

¨ Only one thread can run at a time

¨ So thread sleeps (instead of spinning) when a lock is encountered
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Adaptive mutex is used only for short code segments

¨ Less than a few hundred instructions
¤ Spinlocks inefficient for code segments larger than that

¨ Cheaper to put a thread to sleep and awaken it
¤ Busy waiting in the spinlock is expensive

¨ Longer code segments?
¤ Condition variables and semaphores used
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Reader-writer locks

¨ Used to protect data accessed frequently
¤ Usually accessed in a read-only manner

¨ Multiple threads can read data concurrently
¤ Unlike semaphores that serialize access to the data

¨ Relatively expensive to implement
¤ Used only on long sections of code
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Solaris: Turnstiles

¨ Queue structure containing threads blocked on a lock

¨ Used to order threads waiting to acquire adaptive mutex or 
reader-writer lock

¨ Each kernel thread has its own turnstile
¤ As opposed to every synchronized object
¤ Thread can be blocked only on one object at a time
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Solaris: Turnstiles

¨ Turnstile for the first thread to block on synchronized 
object
¤ Becomes turnstile for the object itself
¤ Subsequent threads blocking on lock are added to this 

turnstile

¨ When this first thread releases its lock? 
¤ It gains a new turnstile from the list of free turnstiles 

maintained by kernel
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Turnstiles are organized according  to the priority 
inheritance protocol

¨ If the thread is holding a lock on which a higher priority thread is 
blocked?
¤ Will temporarily inherit priority of higher priority thread
¤ Revert back to original priority after releasing the lock
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Linux: Prior to 2.6, Linux was a nonpreemptive kernel

¨ Provides spinlocks and semaphores

Single processor Multiple processors

Disable kernel preemption Acquire spinlock

Enable kernel preemption Release spinlock

17 December 2003 - Linux 2.6.0 was released (5,929,913 lines of code)
4 January 2011 - Linux 2.6.37 was released (13,996,612 lines of code)
2023: tens of millions of LoC!
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Kernel is not preemptible if a kernel-mode task is 
holding a lock

¨ Each task has a thread-info structure
§ Counter preempt_count indicates number of locks being held by task
§ preempt_count incremented when lock acquired

n Decremented when lock released

§ If is preempt_count > 0; not safe to preempt
n OK otherwise; if no preempt_disable() calls pending
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Linux: Other mechanisms

¨ Atomic integers atomic_t
¤ All math operations using atomic integers are performed without interruption
¤ E.g. Set, add, subtract, increment, decrement

¨ Mutex locks
¤ mutex_lock(): Prior to entering critical section 
¤ mutex_unlock(): After exiting critical section

¤ If lock is unavailable, task calling mutex_lock() is put to sleep
n Awakened when another task calls  mutex_unlock()
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Atomic transactions

¨ Mutual exclusion of critical sections ensures their atomic execution
¤ As one uninterruptible unit

¨ Also important to ensure, that critical section forms a single logical 
unit of work
¤ Either work is performed in its entirety or not at all
¤ E.g. transfer of funds

n Credit one account and debit the other
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Transaction

¨ Collection of operations performing a single logical function

¨ Preservation of atomicity
¤ Despite the possibility of failures



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L15.18

Storage system hierarchy based on speed, cost, size 
and volatility
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A disk I/O transaction that accesses/updates data 
items on disk

¨ Simply a sequence of read and write operations
¤ Terminated by commit or abort

¨ Commit: Successful transaction termination

¨ Abort: Unsuccessful due to 
¤ Logical error or system failure
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Transaction rollbacks

¨ An aborted transaction may have modified data

¨ State of accessed data must be restored
¤ To what it was before transaction started executing
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Log-based recovery to ensure atomicity:
Rely on stable storage

¨ Record info describing all modifications made by transaction to various 
accessed data.

¨ Each log record describes a single write
¤ Transaction name
¤ Data item name
¤ Old value
¤ New value

¨ Other log records exist to record significant events
¤ Start of transaction, commit, abort etc
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Actual update cannot take place prior to the logging

¨ Prior to write(X) operation
¤ Log records for X should be written to stable storage

¨ Two physical writes for every logical write
¤ More storage needed

¨ Functionality worth the price: 
¤ Data that is extremely important
¤ For fast failure recovery
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Populating entries in the log

¨ Before transaction Ti starts execution
¤ Record <Ti starts> written to the log

¨ Any write by Ti is preceded by writing to the log

¨ When Ti commits  
¤ Record <Ti commits> written to log
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The system can handle any failure without loss of 
information: Log

• undo(Ti)
n Restores value of all data updated by Ti to old values

• redo(Ti)
n Sets value of all data updated by Ti to new values

¤ undo(Ti) and redo(Ti)
n Are idempotent
n Multiple executions have the same result as 1 execution
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If system failure occurs restore state by consulting 
the log

¨ Determine which transactions need to be undone; and which need to 
be redone

¨ Tiis undone if log 
¤ Contains <Ti starts> but no <Ti commits> record

¨ Tiis redone if log 
¤ Contains both <Ti starts> and <Ti commits> 
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Rationale for checkpointing

¨ When failure occurs we consult the log for undoing or redoing

¨ But if done naively, we need to search entire log!
¤ Time consuming
¤ Recovery takes longer

n Though no harm done by redoing (idempotency)
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In addition to write-ahead logging,  periodically 
perform checkpoints

¨ Output the following to stable storage 
¤ All log records residing in main memory
¤ All modified data residing in main memory
¤ A log record <checkpoint>

¨ The <checkpoint> allows a system to streamline
recovery procedure
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Implications of the checkpoint record

¨ Ti committed prior to checkpoint
§ <Ti commits> appears before <checkpoint>
§ Modifications made by Ti must have been written to stable 

storage
n Prior to the checkpoint or
n As part of the checkpoint

¨ At recovery no need to redo such a transaction
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Refining the recovery algorithm

¨ Search the log backward for first checkpoint record.
¤ Find transactions Ti following the last checkpoint
¤ redo and undo operations applied only to these transactions
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Looking at the log to determine which one to redo 
and which one to undo

<T1 starts>
<T1 … write record>
<T1 aborts>

<T2 starts>
<T2 … write record>
<T2 commits>

<checkpoint>
<T3 starts>
<T3 … write record>
….
<checkpoint>
<T4 starts>
<T4 … write record>
<T4 commits>

<T5 starts>
<T5 ..write record>

T4 will be redone

T5 will be undone
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Concurrent atomic transactions

¨ Since each transaction is atomic
¤ Executed serially in some arbitrary order

n Serializability

¤ Maintained by executing each transaction within a critical 
section
n Too restrictive

¨ Allow transactions to overlap while maintaining 
serializability
¤ Concurrency control algorithms 
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Serializability

¨ Serial schedule: Each transaction executes atomically
n! schedules for n transactions

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)
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Non-serial schedule: 
Allow two transactions to overlap

¨ Does not imply incorrect execution
¤ Define the notion of conflicting operations

¨ Oi and Oj conflict if they access same data item
¤ AND at least one of them is a write operation

¨ If Oi and Oj do not conflict; we can swap their order
¤ To create a new schedule
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Concurrent serializable schedule

T0
read(A)
write(A)

read(B)
write(B)

T1

read(A)
write(A)

read(B)
write(B)

T0
read(A)
write(A)
read(B)
write(B)

T1

read(A)
write(A)
read(B)
write(B)

Serial Schedule
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Conflict serializability

¨ If schedule S can be transformed into a serial schedule S’
¤ By a series of swaps of non-conflicting operations
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The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]


