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Topics covered in today’s lecture
N

= Synchronization examples

1 Atomic transactions
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SYNCHRONIZATION EXAMPLES



Synchronization in Solaris

Condition variables
Semaphores
Adaptive mutexes
Reader-writer locks

Turnstiles
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Synchronization in Solaris:
Adaptive mutex

Starts as a standard semaphore implemented as spinlock

On SMP systems if data is locked and in use?
If lock held by thread on another CPU

Spin waiting for lock to be available

If thread holding the lock is not in the run state

Block until awakened by release of the lock
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Adaptive mutex:
On a single processor system

Only one thread can run at a time

So thread sleeps (instead of spinning) when a lock is encountered
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Adaptive mutex is used only for short code segments

Less than a few hundred instructions

Spinlocks inefficient for code segments larger than that

Cheaper to put a thread to sleep and awaken it

Busy waiting in the spinlock is expensive

Longer code segments?

Condition variables and semaphores used
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Reader-writer locks

Used to protect data accessed frequently

Usually accessed in a read-only manner

Multiple threads can read data concurrently

Unlike semaphores that serialize access to the data

Relatively expensive to implement

Used only on long sections of code
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Solaris: Turnstiles

Queue structure containing threads blocked on a lock

Used to order threads waiting to acquire adaptive mutex or
reader-writer lock

Each kernel thread has its own turnstile
As opposed to every synchronized object

Thread can be blocked only on one object at a time
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Solaris: Turnstiles

Turnstile for the first thread to block on synchronized
object
Becomes turnstile for the object itself

Subsequent threads blocking on lock are added to this
turnstile

When this first thread releases its lock?

It gains a new turnstile from the list of free turnstiles
maintained by kernel
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Turnstiles are organized according to the priority
inheritance protocol

If the thread is holding a lock on which a higher priority thread is
blocked?

Will temporarily inherit priority of higher priority thread

Revert back to original priority after releasing the lock
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Linux: Prior to 2.6, Linux was a nonpreemptive kernel
S =

o Provides spinlocks and semaphores

Disable kernel preemption Acquire spinlock

Enable kernel preemption Release spinlock

17 December 2003 - Linux 2.6.0 was released (5,929,913 lines of code)
4 January 2011 - Linux 2.6.37 was released (13,996,612 lines of code)
2023: tens of millions of LoCl
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Kernel is not preemptible if a kernel-mode task is
holding a lock

Each task has a thread-info structure
Counter preempt count indicates number of locks being held by task

preempt count incremented when lock acquired
Decremented when lock released

If is preempt count > 0; not safe to preempt
OK otherwise; if no preempt disable () calls pending
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Linux: Other mechanisms

Atomic integers atomic t
All math operations using atomic integers are performed without interruption

E.g. Set, add, subtract, increment, decrement

Mutex locks
mutex lock (): Prior to entering critical section

mutex unlock (): After exiting critical section

If lock is unavailable, task calling mutex lock() is put to sleep

Awakened when another task calls mutex unlock ()
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ATOMIC TRANSACTIONS



Atomic transactions

Mutual exclusion of critical sections ensures their atomic execution

As one uninterruptible unit

Also important to ensure, that critical section forms a single logical
unit of work
Either work is performed in its entirety or not at all

E.g. transfer of funds

Credit one account and debit the other
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Transaction

Collection of operations performing a single logical function

Preservation of atomicity

Despite the possibility of failures
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Storage system hierarchy based on speed, cost, size
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A disk | /O transaction that accesses/updates data
items on disk

Simply a sequence of read and write operations

Terminated by commit or abort

Commit: Successful transaction termination

Abort: Unsuccessful due to

Logical error or system failure
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Transaction rollbacks

An aborted transaction may have modified data

State of accessed data must be restored

To what it was before transaction started executing
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Log-based recovery to ensure atomicity:
Rely on stable storage

Record info describing all modifications made by transaction to various
accessed data.

Each log record describes a single write
Transaction name

Data item name
Old value

New value

Other log records exist to record significant events

Start of transaction, commit, abort etc
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Actual update cannot take place prior to the logging

Prior to wr1te (X) operation

Log records for X should be written to stable storage

Two physical writes for every logical write

More storage needed

Functionality worth the price:
Data that is extremely important

For fast failure recovery
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Populating entries in the log

Before transaction T. starts execution

Record <T, starts> written to the log
Any write by T. is preceded by writing to the log

When T, commits

Record <T; commits> written to log
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The system can handle any failure without loss of
information: Log

undo (T,)

Restores value of all data updated by T. to old values

redo (T;)

Sets value of all data updated by T. to new values

undo (T;) and redo (T.)
Are idempotent

Multiple executions have the same result as 1 execution
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If system failure occurs restore state by consulting
the log

Determine which transactions need to be undone; and which need to
be redone

T.is undone if log

Contains <T; starts> but no <T; commits> record

T.is redone if log
Contains both <T, starts> and <T; commits>
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CHECKPOINTING



Rationale for checkpointing
When failure occurs we consult the log for undoing or redoing

But if done naively, we need to search entire log!
Time consuming

Recovery takes longer

Though no harm done by redoing (idempotency)
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In addition to write-ahead logging, periodically
perform checkpoints

Output the following to stable storage
All log records residing in main memory

All modified data residing in main memory

A log record <checkpoint>

The <checkpoint> allows a system to streamline
recovery procedure
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Implications of the checkpoint record

T, committed prior to checkpoint
<T., commits> appears before <checkpoint>

Modifications made by T, must have been written to stable
storage
Prior to the checkpoint or

As part of the checkpoint

At recovery no need to redo such a transaction
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Refining the recovery algorithm

Search the log backward for first checkpoint record.
Find transactions T, following the last checkpoint

redo and undo operations applied only to these transactions
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and which one to undo

<T1 starts>

<T1 ... write record>
<T1 aboris>

<T2 starts>

<T2 ... write record>
<T2 commits>

<checkpoint>
<T3 starts>
<T3 ... write record>

<checkpoint>
<T4 starts>

<T4 ... write record>
<T4 commits>

<T5 starts>
<T5 ..write record>

Looking at the log to determine which one to redo

T4 will be redone

TH5 will be undone
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CONCURRENT ATOMIC TRANSACTIONS



Concurrent atomic transactions

Since each transaction is atomic
Executed serially in some arbitrary order
Serializability

Maintained by executing each transaction within a critical
section

Too restrictive

Allow transactions to overlap while maintaining
serializability

Concurrency control algorithms
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Serializability

Serial schedule: Each transaction executes atomically

n! schedules for n transactions

TO T1l

read (A)

write (A)

read (B)

write (B)
read (A)
write (A)
read (B)
write (B)
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Non-serial schedule:
Allow two transactions to overlap

Does not imply incorrect execution

Define the notion of conflicting operations

O; and O, conflict if they access same data item

AND at least one of them is a write operation

If O, and O, do not conflict; we can swap their order

To create a new schedule
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Concurrent serializable schedule

TO TO
read (A) re?d(AJ
write (A) wrilte (A)
read (B)
write (B)
read (B)
write (B)

Serial Schedule
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Conflict serializability

If schedule S can be transformed into a serial schedule S’

By a series of swaps of non-conflicting operations
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The contents of this slide-set are based on the

following references
—

o1 Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9" edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5]
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