CS 370: OPERATING SYSTEMS
[CPU SCHEDULING]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

CPU Scheduling
Scheduling Criteria

Scheduling Algorithms
First Come First Serve (FCFS)
Shortest Job First

Round robin scheduling

CS370: Operating Systems L13.2
Dept. Of Computer Science, Colorado State University

CPU SCHEDULING

The basis of multiprogrammed Operating Systems

Multiprogramming organizes jobs so that the CPU
always has one to execute

A single program (generally) cannot keep CPU & 1/O devices busy at
all times

A user frequently runs multiple programs

When a job needs to wait, the CPU switches to another job

Utilizes resources effectively

CPU, memory, and peripheral devices

CS370: Operating Systems L13.4
Dept. Of Computer Science, Colorado State University

Observed Property of Process execution:

CPU-I1/O burst cycle

add store

Processes alternate read from file

CPU burst

between CPU-1/O bursts - }I/O burst

store increment -
index
write to file

= CPU burst

load store
add store CPU burst

read from file

CS370: Operating Systems

L13.5

Dept. Of Computer Science, Colorado State University

Distribution of the duration of CPU bursts

Large number of short CPU bursts
A typical 1/O bound process

Small number of long CPU bursts
A typical CPU-bound process

CS370: Operating Systems L13.6
Dept. Of Computer Science, Colorado State University

Bursts of CPU usage alternate with periods of

wai’ring for | ‘O
—

CPU Bound Process

Long CPU Burst

—|— L]]

1/O Bound Process
Short CPU Burst

CS370: Operating Systems L13.7
Dept. Of Computer Science, Colorado State University

As CPUs get faster ...

Processes tend to get more | /O bound

CPUs are improving faster than disks

Generally speaking, “computation is free, moving data is expensive”

Scheduling of |/O bound processes is essential for performance

Mostly about “slow” | /O such as disks, network, etc.

CS370: Operating Systems L13.8
Dept. Of Computer Science, Colorado State University

When CPU is idle, OS selects one of the processes in

the ready queue to execute
-b

71 Records in the ready queue are process control blocks (PCB)

0 Implemented as:
o FIFO queue
o Priority queue
o Tree
o Linked list

CS370: Operating Systems L13.9

Dept. Of Computer Science, Colorado State University

The Process Control Block (PCB)

When a process is not running,

The kernel maintains the hardware execution state of a process within the
PCB

Program counter, stack pointer, registers, etc.

When a process is being context-switched away from the CPU

The hardware state is transferred into the PCB

CS370: Operating Systems L13.10
Dept. Of Computer Science, Colorado State University

The Process Control Block (PCB) is a data structure
with several fields

Includes process ID, execution state, program counter, registers, priority,
accounting information, etc.

In Linux:
Kernel stores the list of tasks in a circular doubly linked list called the task
list
Each element in the task list is a process descriptor of the type struct
task struct, which is defined in <linux/sched.h>

Relatively large data structure: 1.7 KB on a 32-bit machine with ~100 fields

CS370: Operating Systems L13.11
Dept. Of Computer Science, Colorado State University

CPU scheduling takes places under the following

circumstances
_]
i 2
Intferrupt
terminated
new
N
, 4 exit
ready running

No scheduling choice {1,4}
Non preemptive

scheduler dispatch

I/0 or event

; 1
completion 3

waiting

N I/0 or wait

CS370: Operating Systems L13.12
Dept. Of Computer Science, Colorado State University

Nonpreemptive or cooperative sheduling

Process keeps CPU until it relinquishes it when:
(1) It terminates
(2) It switches to the waiting state

Sometimes the only method on certain hardware
platforms

E.g. when they don’t have a hardware timer

Used by initial versions of OS
Windows: Windows 3.x
Mac OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.13

Preemptive scheduling

Pick a process and let it run for a maximum of some fixed time

If it is still running at the end of time interval?

Suspend it ..

Pick another process to run

CS370: Operating Systems L13.14
Dept. Of Computer Science, Colorado State University

Preemptive scheduling: Requirements
A clock interrupt at the end of the time interval to give control of CPU
back to the scheduler

If no hardware timer is available?

Nonpremptive scheduling is the only option

CS370: Operating Systems L13.15
Dept. Of Computer Science, Colorado State University

Preemptive scheduling impacts ...
-

1 Concurrency management
o Design of the OS

01 Interrupt processing

CS370: Operating Systems L13.16
Dept. Of Computer Science, Colorado State University

Preemptive scheduling incurs some costs:
Manage concurrency

Access to shared data
Processes A and B share data
Process A is updating when it is preempted to let Process B run

Process B tries to read data, which is now in an inconsistent state

CS370: Operating Systems L13.17
Dept. Of Computer Science, Colorado State University

Preemptive scheduling incurs some costs:
Affects the design of the OS

System call processing

Kernel may be changing kernel data structure (1/O queue)

Process preempted in the middle AND

Kernel needs to read/modify same structure?

SOLUTION: Before context switch

Woait for system call to complete OR
1/O blocking to occur

CS370: Operating Systems L13.18
Dept. Of Computer Science, Colorado State University

Preemptive scheduling incurs some costs:
Interrupt processing

Interrupts can occur at any time

Cannot always be ignored by kernel

Consequences: Inputs lost or outputs overwritten

Guard code affected by interrupts from simultaneous use:
Disable interrupts during entry
Enable interrupts at exit

CAVEAT: Should not be done often, and critical section must contain few
instructions

CS370: Operating Systems L13.19
Dept. Of Computer Science, Colorado State University

The dispatcher is invoked during every process
switch

Gives control of CPU to process selected by the scheduler

Operations performed:
Switch context
Switch to user mode

Restart program at the right location

Dispatch latency

Time to stop one process and start another

CS370: Operating Systems L13.20
Dept. Of Computer Science, Colorado State University

SCHEDULING CRITERIA

Scheduling Algorithms: Goals
B

Throughput

Turnaround time Response time

CPU Utilization Proportionality

Batch Systems Interactive Systems

Fairness
Policy Enforcement
Balance

All System

Meeting deadlines

Predictability Real-time systems

CS370: Operating Systems L13.22
Dept. Of Computer Science, Colorado State University

CPU Utilization

Difference between elapsed time and idle time

Average over a period of time

Meaningful only within a context

CS370: Operating Systems L13.23
Dept. Of Computer Science, Colorado State University

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

CPU Utilization: Keep CPU as busy as possible? For example:
40% for lightly loaded system
?0% for heavily loaded system

Throughput: Number of completed processes per time unite For
example:

Long processes: 1 /hour

Short processes: 10/second

CS370: Operating Systems L13.24
Dept. Of Computer Science, Colorado State University

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

1 Turnaround time
T - T

completion submission

7 Waiting time

Total time spent waiting in the ready queue

-1 Response time

Time to start responding

tfirst_response - tsubmission

Generally limited by speed of output device

CS370: Operating Systems L13.25
Dept. Of Computer Science, Colorado State University

What are we trying to achieve?

Obijective is to maximize the average measure

Sometimes averages are not enough

Desirable to optimize minimum & maximum values

For good service put a ceiling on maximum response time

Minimize the variance instead of the average
Predictability more important

High variability, but faster on average, not desirable

CS370: Operating Systems L13.26
Dept. Of Computer Science, Colorado State University

Scheduling Algorithms

Decides which process in the ready queue is allocated the CPU
Could be preemptive or nonpreemptive
Optimize measure of interest

We will use Gantt charts to illustrate schedules

Bar chart with start and finish times for processes

CS370: Operating Systems L13.27
Dept. Of Computer Science, Colorado State University

FIRST COME, FIRST SERVED SCHEDULING
(FCFS)

First-Come, First-Served Scheduling (FCFS)

Process requesting CPU first, gets it first

Managed with a FIFO queue

When process enters ready queue?
PCB is tacked to the tail of the queue

When CPU is free?

It is allocated to process at the head of the queue

Simple to write and understand

CS370: Operating Systems L13.29
Dept. Of Computer Science, Colorado State University

Average waiting times in FCFS

P1 24 ° 24 27 30
P2 3 Wait time = (0 + 24 + 27)/3 = 17
P3 3
P2 | P3 P
0 3 6 30

Wait time = (6 + 0 + 3)/3 = 3

CS370: Operating Systems L13.30
Dept. Of Computer Science, Colorado State University

Disadvantages of the FCFS scheme (1)

Once a process gets the CPU, it keeps it
Till it terminates or does 1/O

Unsuitable for time-sharing systems

Average waiting time is generally not minimal

Varies substantially if CPU burst times vary greatly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.31

Disadvantages of the FCFS scheme (2)

Poor performance in certain situations
1 CPU-bound process and many 1/O-bound processes

Convoy effect: Smaller processes wait for the one big
process to get off the CPU

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.32

SHORTEST JOB FIRST (SJF)

Shortest Job First (SJF) scheduling algorithm

When CPU is available it is assigned to process with smallest CPU
burst

Moving a short process before a long process?

Reduction in waiting time for short process
GREATER THAN
Increase in waiting time for long process

Gives us minimum average waiting time for a set of processes that
arrived simultaneously

Provably Optimal

CS370: Operating Systems L13.34
Dept. Of Computer Science, Colorado State University

Depiction of SJF in action

-
P 6 0 3 9 16 24
P2 8 Wait time = (3 + 16 + 9 + 0)/4 = 7
P3 7/
P4 3

CS370: Operating Systems L13.35
Dept. Of Computer Science, Colorado State University

SJF is optimal ONLY when ALL the jobs are
available simultaneously

Consider 5 processes A, B, C, D and E
Run times are: 2,4,1,1,1

Arrival times are: 0,0, 3, 3, 3

SJF will run jobs: A, B, C, D and E

Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8
But if yourunB, C,D, E and A ¢
Average wait time: (7 + 0+ 1 + 2 +3)/5 = 2.6!

CS370: Operating Systems L13.36
Dept. Of Computer Science, Colorado State University

Visualizing the different runs of A, B, C, D and E

A B C D E

0 2 3 6 7 8 9

Average wait time: (0+2+3+4+5)/5=28

B C D E A
o 3 4 5 6 7 9
Average wait time: (7+0+1+2+3)/5=2.6
CS370: Operating Systems L13.37

Dept. Of Computer Science, Colorado State University

Preemptive SJF

A new process arrives in the ready queue

If it is shorter than the currently executing process

Preemptive SJF will preempt the current process

Pl P2 P4 Pl P3

o 1 5 10 17 26
Process Arrival Burst
Pl 0 8

Wait time =

P2] 4 [(10-1) + (1-1) + (17-2) + (5-3)]1/4
P3 2 9 = 26/4 = 6.5
P4 5

CS370: Operating Systems L13.38
Dept. Of Computer Science, Colorado State University

Use of SJF in long term schedulers

Length of the process time limit
Used as CPU burst estimate

Motivate users to accurately estimate time limit
Lower value will give faster response times

Too low a value?
Time limit exceeded error

Requires resubmission!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.39

The SJF algorithm and short term schedulers

N
7 No way to know the length of the next CPU burst

7 So try to predict it

71 Processes scheduled based on predicted CPU bursts

CS370: Operating Systems L13.40
Dept. Of Computer Science, Colorado State University

Prediction of CPU bursts:
Make estimates based on past behavior

t : Length of the n™ CPU burst
T, Estimate for the n™ CPU burst
a : Controls weight of recent and past history

T+ = at, + (] 'a) T,

Burst is predicted as an exponential average of the measured lengths
of previous CPU bursts

CS370: Operating Systems L13.41
Dept. Of Computer Science, Colorado State University

a controls the relative weight of recent and past
history

Tor1 — O"tn T (1-(1) Ty

Value of t, contains our most recent information, while T, stores the
past history

Tor=at, + (1-0) aty ... H(1-a) at; + ... +(1-a)*"! az,

o is less than 1, (1-0) is also less than one

Each successive term has less weight than its predecessor

CS370: Operating Systems L13.42
Dept. Of Computer Science, Colorado State University

The choice of a in our predictive equation

T+ = at, + (] 'a) T,

If a=0, T ,,=T

n

Current conditions are transient

if a=1, T, =t

n

Only most recent bursts matter

History is assumed to be old and irrelevant

CS370: Operating Systems L13.43
Dept. Of Computer Science, Colorado State University

The choice of a in our predictive equation

If a=1/2

Recent history and past history are equally weighted

With a = V2; successive estimates of T
ty/2 to/4+1,/2 t,/8 +t,/4+1t,/2 t,/16 +1,/8 +t,/4 +1;/2

By the 3@ estimate, weight of t, has dropped to 1/8.

CS370: Operating Systems L13.44
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 6]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

CS370: Operating Systems L13.45
Dept. Of Computer Science, Colorado State University

