
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[CPU SCHEDULING]

Computer Science
Colorado State University

L13.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.2

Topics covered in this lecture

¨ CPU Scheduling
¨ Scheduling Criteria
¨ Scheduling Algorithms

¤ First Come First Serve (FCFS)
¤ Shortest Job First
¤ Round robin scheduling

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CPU SCHEDULING
The basis of multiprogrammed Operating Systems

L13.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.4

Multiprogramming organizes jobs so that the CPU
always has one to execute

¨ A single program (generally) cannot keep CPU & I/O devices busy at
all times

¨ A user frequently runs multiple programs

¨ When a job needs to wait, the CPU switches to another job

¨ Utilizes resources effectively
¤ CPU, memory, and peripheral devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.5

Observed Property of Process execution:
CPU-I/O burst cycle

load store
add store
read from file

CPU burst

store increment
index
write to file

CPU burst

load store
add store
read from file

CPU burst

wait for I/O I/O burst

wait for I/O I/O burst

wait for I/O I/O burst

Processes alternate
between CPU-I/O bursts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.6

Distribution of the duration of CPU bursts

¨ Large number of short CPU bursts
¤ A typical I/O bound process

¨ Small number of long CPU bursts
¤ A typical CPU-bound process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.7

Bursts of CPU usage alternate with periods of
waiting for I/O

Long CPU Burst

Short CPU Burst

Waiting for I/O

CPU Bound Process

I/O Bound Process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.8

As CPUs get faster …

¨ Processes tend to get more I/O bound
¤ CPUs are improving faster than disks

¤ Generally speaking, “computation is free, moving data is expensive”

¨ Scheduling of I/O bound processes is essential for performance
¤ Mostly about “slow” I/O such as disks, network, etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.9

When CPU is idle, OS selects one of the processes in
the ready queue to execute

¨ Records in the ready queue are process control blocks (PCB)

¨ Implemented as:
¤ FIFO queue
¤ Priority queue
¤ Tree
¤ Linked list

process state

process number

program counter

registers

memory limits

list of open files

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.10

The Process Control Block (PCB)

¨ When a process is not running,
¤ The kernel maintains the hardware execution state of a process within the

PCB
n Program counter, stack pointer, registers, etc.

¨ When a process is being context-switched away from the CPU
¤ The hardware state is transferred into the PCB

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.11

The Process Control Block (PCB) is a data structure
with several fields

¨ Includes process ID, execution state, program counter, registers, priority,
accounting information, etc.

¨ In Linux:
¤ Kernel stores the list of tasks in a circular doubly linked list called the task

list
¤ Each element in the task list is a process descriptor of the type struct
task_struct, which is defined in <linux/sched.h>

¤ Relatively large data structure: 1.7 KB on a 32-bit machine with ~100 fields

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.12

CPU scheduling takes places under the following
circumstances

new

ready running

waiting

terminated

I/O or wait

scheduler dispatch

interrupt

exit

I/O or event
completion 1

4

2

3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.13

Nonpreemptive or cooperative sheduling

¨ Process keeps CPU until it relinquishes it when:
① It terminates
② It switches to the waiting state

¨ Sometimes the only method on certain hardware
platforms
¤ E.g. when they don’t have a hardware timer

¨ Used by initial versions of OS
¤ Windows: Windows 3.x
¤ Mac OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.14

Preemptive scheduling

¨ Pick a process and let it run for a maximum of some fixed time

¨ If it is still running at the end of time interval?
¤ Suspend it ..

¨ Pick another process to run

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.15

Preemptive scheduling: Requirements

¨ A clock interrupt at the end of the time interval to give control of CPU
back to the scheduler

¨ If no hardware timer is available?
¤ Nonpremptive scheduling is the only option

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.16

Preemptive scheduling impacts …

¨ Concurrency management
¨ Design of the OS
¨ Interrupt processing

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.17

Preemptive scheduling incurs some costs:
Manage concurrency

¨ Access to shared data
¤ Processes A and B share data
¤ Process A is updating when it is preempted to let Process B run
¤ Process B tries to read data, which is now in an inconsistent state

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.18

Preemptive scheduling incurs some costs:
Affects the design of the OS

¨ System call processing
¤ Kernel may be changing kernel data structure (I/O queue)

¨ Process preempted in the middle AND
¤ Kernel needs to read/modify same structure?

¨ SOLUTION: Before context switch
¤ Wait for system call to complete OR
¤ I/O blocking to occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.19

Preemptive scheduling incurs some costs:
Interrupt processing

¨ Interrupts can occur at any time
¤ Cannot always be ignored by kernel

n Consequences: Inputs lost or outputs overwritten

¨ Guard code affected by interrupts from simultaneous use:
¤ Disable interrupts during entry
¤ Enable interrupts at exit
¤ CAVEAT: Should not be done often, and critical section must contain few

instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.20

The dispatcher is invoked during every process
switch

¨ Gives control of CPU to process selected by the scheduler

¨ Operations performed:
¤ Switch context
¤ Switch to user mode
¤ Restart program at the right location

¨ Dispatch latency
¤ Time to stop one process and start another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SCHEDULING CRITERIA
L13.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.22

Scheduling Algorithms: Goals

Fairness
Policy Enforcement

BalanceAll Systems

Throughput
Turnaround time
CPU Utilization

Response time
Proportionality

Meeting deadlines
Predictability

Interactive SystemsBatch Systems

Real-time systems

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.23

CPU Utilization

¨ Difference between elapsed time and idle time

¨ Average over a period of time
¤ Meaningful only within a context

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.24

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

¨ CPU Utilization: Keep CPU as busy as possible? For example:
¤ 40% for lightly loaded system
¤ 90% for heavily loaded system

¨ Throughput: Number of completed processes per time unit? For
example:
¤ Long processes: 1/hour
¤ Short processes: 10/second

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.25

Scheduling Criteria: Choice of scheduling algorithm
may favor one over another

¨ Turnaround time
§ tcompletion - tsubmission

¨ Waiting time
§ Total time spent waiting in the ready queue

¨ Response time
§ Time to start responding
§ tfirst_response – tsubmission
§ Generally limited by speed of output device

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.26

What are we trying to achieve?

¨ Objective is to maximize the average measure

¨ Sometimes averages are not enough
¤ Desirable to optimize minimum & maximum values

n For good service put a ceiling on maximum response time

¤ Minimize the variance instead of the average
n Predictability more important
n High variability, but faster on average, not desirable

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.27

Scheduling Algorithms

¨ Decides which process in the ready queue is allocated the CPU

¨ Could be preemptive or nonpreemptive

¨ Optimize measure of interest

¨ We will use Gantt charts to illustrate schedules
¤ Bar chart with start and finish times for processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FIRST COME, FIRST SERVED SCHEDULING
(FCFS)

L13.28

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.29

First-Come, First-Served Scheduling (FCFS)

¨ Process requesting CPU first, gets it first

¨ Managed with a FIFO queue
¤ When process enters ready queue?

n PCB is tacked to the tail of the queue

¤ When CPU is free?
n It is allocated to process at the head of the queue

¨ Simple to write and understand

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.30

Average waiting times in FCFS

Process Burst
Time

P1 24

P2 3

P3 3

24 27 30

P1 P2 P3

0

3 6 30

P2 P1P3

0

Wait time = (0 + 24 + 27)/3 = 17

Wait time = (6 + 0 + 3)/3 = 3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.31

Disadvantages of the FCFS scheme (1)

¨ Once a process gets the CPU, it keeps it
¤ Till it terminates or does I/O
¤ Unsuitable for time-sharing systems

¨ Average waiting time is generally not minimal
¤ Varies substantially if CPU burst times vary greatly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.32

Disadvantages of the FCFS scheme (2)

¨ Poor performance in certain situations
¤ 1 CPU-bound process and many I/O-bound processes
¤ Convoy effect: Smaller processes wait for the one big

process to get off the CPU

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SHORTEST JOB FIRST (SJF)
L13.33

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.34

Shortest Job First (SJF) scheduling algorithm

¨ When CPU is available it is assigned to process with smallest CPU
burst

¨ Moving a short process before a long process?
¤ Reduction in waiting time for short process

GREATER THAN
Increase in waiting time for long process

¨ Gives us minimum average waiting time for a set of processes that
arrived simultaneously
¤ Provably Optimal

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.35

Depiction of SJF in action

Process Burst
Time

P1 6

P2 8

P3 7

P4 3

P4

0 3 9 16 24

P1 P3 P2

Wait time = (3 + 16 + 9 + 0)/4 = 7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.36

SJF is optimal ONLY when ALL the jobs are
available simultaneously

¨ Consider 5 processes A, B, C, D and E
¤ Run times are: 2, 4, 1, 1, 1
¤ Arrival times are: 0,0, 3, 3, 3

¨ SJF will run jobs: A, B, C, D and E
¤ Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8
¤ But if you run B, C, D, E and A ?

n Average wait time: (7 + 0 + 1 + 2 +3)/5 = 2.6!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.37

Visualizing the different runs of A, B, C, D and E

0 2 6 7 8

B C D E

9

A

0 4 5 6 7

C D E A

9

B

Average wait time: (0 + 2 + 3 + 4 + 5)/5 = 2.8

Average wait time: (7 + 0 + 1 + 2 +3)/5 = 2.6

3

3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.38

Preemptive SJF
¨ A new process arrives in the ready queue

¤ If it is shorter than the currently executing process
n Preemptive SJF will preempt the current process

Process Arrival Burst

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1
0 1 5 10 17

P2 P4 P1 P3

26

Wait time =
[(10-1) + (1-1) + (17-2) + (5-3)]/4
= 26/4 = 6.5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.39

Use of SJF in long term schedulers

¨ Length of the process time limit
¤ Used as CPU burst estimate

¨ Motivate users to accurately estimate time limit
¤ Lower value will give faster response times
¤ Too low a value?

n Time limit exceeded error
n Requires resubmission!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.40

The SJF algorithm and short term schedulers

¨ No way to know the length of the next CPU burst

¨ So try to predict it

¨ Processes scheduled based on predicted CPU bursts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.41

Prediction of CPU bursts:
Make estimates based on past behavior

¨ tn : Length of the nth CPU burst
¨ τn : Estimate for the nth CPU burst
¨ α : Controls weight of recent and past history
¨ τn+1 = αtn + (1-α) τn

¨ Burst is predicted as an exponential average of the measured lengths
of previous CPU bursts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.42

α controls the relative weight of recent and past
history

¨ τn+1 = αtn + (1-α) τn

¨ Value of tn contains our most recent information, while τn stores the
past history

¨ τn+1=αtn + (1-α) αtn-1+ ... +(1-α)j αtn-j + ... +(1-α)n+1 ατ0

¨ α is less than 1, (1-α) is also less than one
¤ Each successive term has less weight than its predecessor

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.43

The choice of α in our predictive equation

¨ τn+1 = αtn + (1-α) τn

¨ If α=0, τn+1= τn
¤ Current conditions are transient

¨ If α=1, τn+1= tn
¤ Only most recent bursts matter
¤ History is assumed to be old and irrelevant

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.44

The choice of α in our predictive equation

¨ If α=1/2
¤ Recent history and past history are equally weighted

¨ With α = ½; successive estimates of τ
t0/2 t0/4 + t1/2 t0/8 + t1/4 + t2/2 t0/16 + t1/8 + t2/4 + t3/2

¤ By the 3rd estimate, weight of t0 has dropped to 1/8.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L13.45

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 6]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 2]

