CS 370: OPERATING SYSTEMS
[CPU SCHEDULING]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA



Topics covered in this lecture

Scheduling Algorithms
Priority Scheduling
Lottery scheduling

Round robin scheduling

Scheduling Examples

Windows, Linux

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.2



Prediction of CPU bursts:
Make estimates based on past behavior

t : Length of the n™ CPU burst
T, Estimate for the n™ CPU burst
a : Controls weight of recent and past history

T+ = at, + (] 'a) T,

Burst is predicted as an exponential average of the measured lengths
of previous CPU bursts

CS370: Operating Systems L14.3
Dept. Of Computer Science, Colorado State University



a controls the relative weight of recent and past
history

R O"tn T (1-(1) Ty

0 Value of t, contains our most recent information, while T, stores the
past history

0 Ty =ot, + (1-a) ot 1+ ... +(1-a) ot + ... +(1-0)"! at,

o o is less than 1, (1-a) is also less than one

Each successive term has less weight than its predecessor

CS370: Operating Systems L14.4
Dept. Of Computer Science, Colorado State University



The choice of a in our predictive equation

T+ = at, + (] 'a) T,

If a=0, T ,,=T

n

Current conditions are transient

if a=1, T, =t

n

Only most recent bursts matter

History is assumed to be old and irrelevant

CS370: Operating Systems L14.5
Dept. Of Computer Science, Colorado State University



The choice of a in our predictive equation

If a=1/2

Recent history and past history are equally weighted

With a = V2; successive estimates of T
ty/2 to/4+1,/2  t,/8 +t,/4+1t,/2 t,/16 +1,/8 +t,/4 +1;/2

By the 3@ estimate, weight of t, has dropped to 1/8.

CS370: Operating Systems L14.6
Dept. Of Computer Science, Colorado State University



PRIORITY SCHEDULING



Priority Scheduling

Priority associated with each process
CPU allocated to process with highest priority

Can be preemptive or nonpreemptive

If preemptive: Preempt CPU from a lower priority process
when a higher one is ready

CS370: Operating Systems L14.8
Dept. Of Computer Science, Colorado State University



Depiction of priority scheduling in action

-E

Wait time

P1 10 3 Here: Lower number means higher priority
P2 1
P3 2 4
P4 1 5
P5 5 2
P2 P5 Pl P3 P4
0 1 6 16 18 19

= (6 + 0+ 16 + 18 + 1)/5 = 8.2

CS370: Operating Systems L14.9
Dept. Of Computer Science, Colorado State University



How priorities are set

Internally defined priorities based on:
Measured quantities

Time limits, memory requirements, # of open files, ratio (averages) of 1/O to
CPU burst

External priorities
Criteria outside the purview of the OS

Importance of process, $ paid for usage, politics, etc.

CS370: Operating Systems L14.10
Dept. Of Computer Science, Colorado State University



Issue with priority scheduling

Can leave lower priority processes waiting indefinitely

Perhaps apocryphal tale:
MIT’s IBM 7094 shutdown (197 3) found processes from 1967

CS370: Operating Systems L14.11
Dept. Of Computer Science, Colorado State University



Coping with issues in priority scheduling:
Aging

Gradually increase priority of processes that wait for a long time

Example:
Process with priority of 127 and increments every 15 minutes

Process priority becomes O in no more than 32 hours

CS370: Operating Systems L14.12
Dept. Of Computer Science, Colorado State University



Can SJF be thought as a priority algorithm?

I
o Priority is inverse of CPU burst

o1 The larger the burst, the lower the priority

CS370: Operating Systems L14.13
Dept. Of Computer Science, Colorado State University



ROUND ROBIN SCHEDULING



Round-Robin Scheduling

Similar to FCFS scheduling

Preemption to enable switch between processes

Ready queue is implemented as FIFO
Process Entry: PCB at tail of queue

Process chosen: From head of the queue

CPU scheduler goes around ready queue

Allocates CPU to each process one after the other

CPU-bound up to a maximum of 1 quantum

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.15



Round Robin: Choosing the quantum

Context switch is time consuming
Saving and loading registers and memory maps
Updating tables

Flushing and reloading memory cache

What if quantum is 4 ms and context switch overhead is 1 ms?

20% of CPU time thrown away in administrative overhead

CS370: Operating Systems L14.16
Dept. Of Computer Science, Colorado State University



Round Robin: Improving efficiency by increasing
quantum

Let’s say quantum is 100 ms and context-switch is 1ms

Now wasted time is only 1%

But what if 50 concurrent requests come in?
Each with widely varying CPU requirements
15" one starts immediately, 2"¥ one 100 ms later, ...
The last one may have to wait for 5 seconds!

A shorter quantum would have given them better service

CS370: Operating Systems L1417
Dept. Of Computer Science, Colorado State University



If quantum is set longer than mean CPU burst?

Preemption will not happen very often

Most processes will perform a blocking operation before quantum runs

out

Switches happens only when process blocks and cannot continue

CS370: Operating Systems L14.18
Dept. Of Computer Science, Colorado State University



Quantum: Summarizing the possibilities
—

1 Too short?
Too many context switches

Lowers CPU efficiency

1 Too long?

Poor responses to interactive requests

CS370: Operating Systems L14.19
Dept. Of Computer Science, Colorado State University



LOTTERY SCHEDULING



Lottery scheduling

Give processes lottery tickets for various system resources
E.g. CPU time

When a scheduling decision has to be made
Lottery ticket is chosen at random

Process holding ticket gets the resource

CS370: Operating Systems L14.21
Dept. Of Computer Science, Colorado State University



All processes are equal, but some processes are
more equal than others

More important processes are given extra tickets

Increase their odds of winning

Let’s say there are 100 outstanding tickets
1 process holds 20 of these

Has 20% chance of winning each lottery

A process holding a fraction f of tickets

Will get about a fraction f of the resource

CS370: Operating Systems L14.22
Dept. Of Computer Science, Colorado State University



Lottery Scheduling: Properties (1/2)

Highly responsive

Chance of winning is proportional to tickets

Cooperating processes may exchange tickets

Process A sends request to B, and then hands B all its tickets for a faster
response

Avoids starvation

Each process holds at least one ticket .... Is guaranteed to have a non-zero
probability of being scheduled

CS370: Operating Systems L14.23
Dept. Of Computer Science, Colorado State University



Lottery Scheduling: Properties (2/2)

Solves problems that are difficult to handle in other scheduling
algorithms

E.g. video server that is managing processes that feed video frames to
clients
Clients need frames at 10, 20, and 25 frames/sec

Allocate processes 10, 20 and 25 tickets
CPU divided into approximately 10:20:25

CS370: Operating Systems L14.24
Dept. Of Computer Science, Colorado State University



MULTIPROCESSOR/CORE ENVIRONMENTS



Load balancing: Migration based approaches

Push migration
Specific task periodically checks for imbalance

Balances load by pushing processes from overloaded to less-busy processors.

Pull migration

Idle processor pulls a waiting task from busy processor

Schemes not mutually exclusive: used in parallel

Linux: Runs a load-balancing algorithm
Every 200 ms (PUSH migration)

When processor run-queue is empty (PULL migration)

CS370: Operating Systems L14.26
Dept. Of Computer Science, Colorado State University



Multicore processors place multiple processor cores
on same physical chip

Each core has its own register set

Appears to the OS as a separate physical processor

Recent designs implement 2 or more hardware threads per core

If there is a memory stall (due to cache miss) on one thread, switch to
another hardware thread

CS370: Operating Systems L14.27
Dept. Of Computer Science, Colorado State University



Coping with memory stalls

C Compute cycle M Memory cycle

MY s C M C M C M C M
time b
Thread 1
> C M C M C M C M
Thread O

—> C M C M C M C M

CS370: Operating Systems L14.28
Dept. Of Computer Science, Colorado State University



Multithreading a processor

Coarse grained
Thread executes on processor till a memory stall

Switch to another thread

Switching between threads
Flush the instruction pipeline

Refill pipeline as new thread executes

Finer grained (or interleaved)
Switch between threads at the boundary of an instruction cycle

Design includes logic for thread switching: overheads are low

CS370: Operating Systems L14.29
Dept. Of Computer Science, Colorado State University



Tiered scheduling on multicore processors

First-level: OS

OS chooses which software thread to run on each hardware thread

Second-level: Core

Decides which hardware thread to run

UltraSPARC T1

8 cores, and 4 hardware threads/core

Round robin to schedule hardware threads on core

CS370: Operating Systems L14.30
Dept. Of Computer Science, Colorado State University



SCHEDULING EXAMPLES



Scheduling examples
B

1 Solaris
7 Windows

71 Linux

CS370: Operating Systems L14.32
Dept. Of Computer Science, Colorado State University



Scheduling Example: Solaris

Thread belongs to 1 of six classes

Inverse relationship between priorities and time slices

Higher priority = smaller time slice
Interactive processes
Priority 59: 20 millisecond quantum
Lower priority = bigger time slice
CPU bound processes
Priority O = 200 millisecond quantum

CS370: Operating Systems L14.33
Dept. Of Computer Science, Colorado State University



Solaris scheduling

169

highest4 A,
7 interrupt threads first
160
159
Global realtime threads Scheduling
Priority order
100
99
system threads
60
59
interactive threads
timeshare threads
fixed priority threads
fair share threads
last

lowest WV 0 ¥
CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

L14.34



WINDOWS XP SCHEDULING



Scheduling Example: Windows XP

Priority-based, preemptive scheduling

Highest priority thread will always run

32-level priority scheme
Variable class: priorities 1-15

Realtime class: priorities 16-31

Memory management thread: priority O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.36



Dispatcher in Windows XP

Use a queue for each scheduling priority

Traverse the queues from highest to lowest

Until it finds a thread that is ready to run

If no ready thread is found?

Dispatcher will execute a special thread: idle thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.37



|ldle thread in Windows

Primary purpose is to eliminate a special case
Cases when no threads are runnable or ready

|dle threads are always in a ready state

If not already running

Scheduler can always find a thread to execute

If there are other eligible threads?

Scheduler will never select the idle thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.38



|dle threads in Windows

Windows thread priorities go from 0-31
|dle thread priority can be thought of as -1

Threads in the system idle process can also implement CPU power
saving
On x86 processors, run a loop of halt instructions

Causes CPU to turn off internal components

Until an interrupt request arrives

Recent versions also reduce the CPU clock speed

CS370: Operating Systems L14.39
Dept. Of Computer Science, Colorado State University



Time consumed by the idle process

It may seem that the idle process is monopolizing the CPU
It is merely acting as a placeholder during free time

Proof that no other process wants that CPU time

CS370: Operating Systems L14.40
Dept. Of Computer Science, Colorado State University



Scheduling Example: Windows XP

|dentifies 6 priority classes for threads
=

o Thread priorities for classes are variable

-1 Relative priority for thread within a class

CS370: Operating Systems L14.41
Dept. Of Computer Science, Colorado State University



Windows AP priorities: Ihreads within o
priority class also have a relative

Time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
24 13 10 8 6 4
below norma 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

Base priority for
each thread class

CS370: Operating Systems L14.42
Dept. Of Computer Science, Colorado State University



Windows XP: Managing the priority of variable

iority th d
___ priority threads

- Lowering the priority of a thread

When a thread’s quantum runs out

w Lower priority BUT not below base priority

CS370: Operating Systems L14.43
Dept. Of Computer Science, Colorado State University



Windows XP: Boosting the priority of threads

Upon release from a wait operation
Thread waiting for keyboard IO gets big boost
Thread waiting for disk IO gets moderate boost

Window with which user is interacting

Gives good response for interactive thread

When process moves to foreground

Scheduling quantum boosted by 3

CS370: Operating Systems L14.44
Dept. Of Computer Science, Colorado State University



LINUX SCHEDULING



Highlights of Linux scheduling (1)

Scheduling algorithm runs in constant time

Implements real-time scheduling (POSIX 1.b)
Real-time tasks have static priorities

Other tasks have dynamic priorities

We look at the algorithm in kernel version 2.5

Revised again in version 2.6.23 of the kernel [called: Completely Fair
Scheduler]

CS370: Operating Systems L14.46
Dept. Of Computer Science, Colorado State University



Highlights of Linux scheduling (2)

Preemptive, priority-based algorithm

Two separate priority ranges

Real-time range: 0-99
Nice value: 100-140

Numerically lower values indicate higher priority

CS370: Operating Systems L14.47
Dept. Of Computer Science, Colorado State University



Highlights of Linux scheduling (3)

UNLIKE Solaris and Windows
Higher priority tasks = higher quanta

Lower priority tasks = lower quanta

Task’s interactivity determined by

Sleeping times waiting for | /O

CS370: Operating Systems L14.48
Dept. Of Computer Science, Colorado State University



Task execution in Linux

Task eligible for execution as long as it has time remaining in its time
slice

When a task has exhausted its time slice?
Ineligible for execution again, until ...

All other tasks have exhausted their time quanta

CS370: Operating Systems L14.49
Dept. Of Computer Science, Colorado State University



Each runqueue contains two priority arrays: Active
and Expired

Active array

All tasks with time remaining in their time slices

Expired array

Contains all expired tasks

Each priority array contains list of tasks indexed according to priority

CS370: Operating Systems L14.50
Dept. Of Computer Science, Colorado State University



Swapping the active and expired arrays

When all tasks have exhausted their time slices?

Active array is empty

The two priority arrays are exchanged

Expired array becomes the active array, and vice versa

CS370: Operating Systems L14.51
Dept. Of Computer Science, Colorado State University



Linux: Tasks indexed according to priority

o ACTIVE ARRAY EXPIRED ARRAY
Priority Priority

0] O—0O 1 O—CO—O
113 O—O——CO 1 O

[140] O o) O—O

CS370: Operating Systems L14.52
Dept. Of Computer Science, Colorado State University



Little’s formula

" be the average queue length
W average wait time in the queue

A average arrival rate of processes

When a process waits for time W

A x W processes arrives

Steady state: Processes leaving = Processes arriving

n=AxW

CS370: Operating Systems L14.53
Dept. Of Computer Science, Colorado State University



The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 6]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

CS370: Operating Systems L14.54
Dept. Of Computer Science, Colorado State University



