
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[CPU SCHEDULING]

Computer Science
Colorado State University

L14.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.2

Topics covered in this lecture

¨ Scheduling Algorithms
¤ Priority Scheduling
¤ Lottery scheduling
¤ Round robin scheduling

¨ Scheduling Examples
¤ Windows, Linux

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.3

Prediction of CPU bursts:
Make estimates based on past behavior

¨ tn : Length of the nth CPU burst
¨ τn : Estimate for the nth CPU burst
¨ α : Controls weight of recent and past history
¨ τn+1 = αtn + (1-α) τn

¨ Burst is predicted as an exponential average of the measured lengths
of previous CPU bursts

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.4

α controls the relative weight of recent and past
history

¨ τn+1 = αtn + (1-α) τn

¨ Value of tn contains our most recent information, while τn stores the
past history

¨ τn+1=αtn + (1-α) αtn-1+ ... +(1-α)j αtn-j + ... +(1-α)n+1 ατ0

¨ α is less than 1, (1-α) is also less than one
¤ Each successive term has less weight than its predecessor

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.5

The choice of α in our predictive equation

¨ τn+1 = αtn + (1-α) τn

¨ If α=0, τn+1= τn

¤ Current conditions are transient

¨ If α=1, τn+1= tn
¤ Only most recent bursts matter
¤ History is assumed to be old and irrelevant

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.6

The choice of α in our predictive equation

¨ If α=1/2
¤ Recent history and past history are equally weighted

¨ With α = ½; successive estimates of τ
t0/2 t0/4 + t1/2 t0/8 + t1/4 + t2/2 t0/16 + t1/8 + t2/4 + t3/2

¤ By the 3rd estimate, weight of t0 has dropped to 1/8.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PRIORITY SCHEDULING
L14.7

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.8

Priority Scheduling

¨ Priority associated with each process

¨ CPU allocated to process with highest priority

¨ Can be preemptive or nonpreemptive
¤ If preemptive: Preempt CPU from a lower priority process

when a higher one is ready

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.9

Depiction of priority scheduling in action
Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2

0 1 6 16 19

P5 P1 P3

18

P4

Wait time = (6 + 0 + 16 + 18 + 1)/5 = 8.2

Here: Lower number means higher priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.10

How priorities are set

¨ Internally defined priorities based on:
¤ Measured quantities
¤ Time limits, memory requirements, # of open files, ratio (averages) of I/O to

CPU burst

¨ External priorities
¤ Criteria outside the purview of the OS
¤ Importance of process, $ paid for usage, politics, etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.11

Issue with priority scheduling

¨ Can leave lower priority processes waiting indefinitely

¨ Perhaps apocryphal tale:
¤ MIT’s IBM 7094 shutdown (1973) found processes from 1967!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.12

Coping with issues in priority scheduling:
Aging

¨ Gradually increase priority of processes that wait for a long time

¨ Example:
¤ Process with priority of 127 and increments every 15 minutes
¤ Process priority becomes 0 in no more than 32 hours

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.13

Can SJF be thought as a priority algorithm?

¨ Priority is inverse of CPU burst

¨ The larger the burst, the lower the priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

ROUND ROBIN SCHEDULING
L14.14

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.15

Round-Robin Scheduling

¨ Similar to FCFS scheduling
¤ Preemption to enable switch between processes

¨ Ready queue is implemented as FIFO
¤ Process Entry: PCB at tail of queue
¤ Process chosen: From head of the queue

¨ CPU scheduler goes around ready queue
¤ Allocates CPU to each process one after the other

n CPU-bound up to a maximum of 1 quantum

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.16

Round Robin: Choosing the quantum

¨ Context switch is time consuming
¤ Saving and loading registers and memory maps
¤ Updating tables
¤ Flushing and reloading memory cache

¨ What if quantum is 4 ms and context switch overhead is 1 ms?
¤ 20% of CPU time thrown away in administrative overhead

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.17

Round Robin: Improving efficiency by increasing
quantum

¨ Let’s say quantum is 100 ms and context-switch is 1ms
¤ Now wasted time is only 1%

¨ But what if 50 concurrent requests come in?
¤ Each with widely varying CPU requirements
¤ 1st one starts immediately, 2nd one 100 ms later, …
¤ The last one may have to wait for 5 seconds!
¤ A shorter quantum would have given them better service

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.18

If quantum is set longer than mean CPU burst?

¨ Preemption will not happen very often

¨ Most processes will perform a blocking operation before quantum runs
out

¨ Switches happens only when process blocks and cannot continue

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.19

Quantum: Summarizing the possibilities

¨ Too short?
¤ Too many context switches
¤ Lowers CPU efficiency

¨ Too long?
¤ Poor responses to interactive requests

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LOTTERY SCHEDULING
L14.20

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.21

Lottery scheduling

¨ Give processes lottery tickets for various system resources
¤ E.g. CPU time

¨ When a scheduling decision has to be made
¤ Lottery ticket is chosen at random
¤ Process holding ticket gets the resource

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.22

All processes are equal, but some processes are
more equal than others

¨ More important processes are given extra tickets
¤ Increase their odds of winning

¨ Let’s say there are 100 outstanding tickets
¤ 1 process holds 20 of these
¤ Has 20% chance of winning each lottery

¨ A process holding a fraction f of tickets
¤ Will get about a fraction f of the resource

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.23

Lottery Scheduling: Properties (1/2)

¨ Highly responsive
¤ Chance of winning is proportional to tickets

¨ Cooperating processes may exchange tickets
¤ Process A sends request to B, and then hands B all its tickets for a faster

response

¨ Avoids starvation
¤ Each process holds at least one ticket …. Is guaranteed to have a non-zero

probability of being scheduled

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.24

Lottery Scheduling: Properties (2/2)

¨ Solves problems that are difficult to handle in other scheduling
algorithms

¨ E.g. video server that is managing processes that feed video frames to
clients
¤ Clients need frames at 10, 20, and 25 frames/sec
¤ Allocate processes 10, 20 and 25 tickets

n CPU divided into approximately 10:20:25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MULTIPROCESSOR/CORE ENVIRONMENTS
L14.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.26

Load balancing: Migration based approaches

¨ Push migration
¤ Specific task periodically checks for imbalance
¤ Balances load by pushing processes from overloaded to less-busy processors.

¨ Pull migration
¤ Idle processor pulls a waiting task from busy processor

¨ Schemes not mutually exclusive: used in parallel
¤ Linux: Runs a load-balancing algorithm

n Every 200 ms (PUSH migration)
n When processor run-queue is empty (PULL migration)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.27

Multicore processors place multiple processor cores
on same physical chip

¨ Each core has its own register set
¤ Appears to the OS as a separate physical processor

¨ Recent designs implement 2 or more hardware threads per core
¤ If there is a memory stall (due to cache miss) on one thread, switch to

another hardware thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.28

Coping with memory stalls

C M C M C M C M

C Compute cycle M Memory cycle

Thread

C M C M C M C M
Thread 1

C M C M C M C MThread 0

time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.29

Multithreading a processor

¨ Coarse grained
¤ Thread executes on processor till a memory stall
¤ Switch to another thread

¨ Switching between threads
¤ Flush the instruction pipeline
¤ Refill pipeline as new thread executes

¨ Finer grained (or interleaved)
¤ Switch between threads at the boundary of an instruction cycle
¤ Design includes logic for thread switching: overheads are low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.30

Tiered scheduling on multicore processors

¨ First-level: OS
¤ OS chooses which software thread to run on each hardware thread

¨ Second-level: Core
¤ Decides which hardware thread to run

¨ UltraSPARC T1
¤ 8 cores, and 4 hardware threads/core
¤ Round robin to schedule hardware threads on core

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SCHEDULING EXAMPLES
L14.31

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.32

Scheduling examples

¨ Solaris
¨ Windows
¨ Linux

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.33

Scheduling Example: Solaris

¨ Thread belongs to 1 of six classes

¨ Inverse relationship between priorities and time slices
¤ Higher priority = smaller time slice

n Interactive processes
n Priority 59: 20 millisecond quantum

¤ Lower priority = bigger time slice
n CPU bound processes
n Priority 0 = 200 millisecond quantum

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.34

Solaris scheduling
169

160
159

100
99

60
59

0

highest

lowest

first

last

interrupt threads

realtime threads

system threads

interactive threads
timeshare threads
fixed priority threads
fair share threads

Global
Priority

Scheduling
order

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

WINDOWS XP SCHEDULING
L14.35

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.36

Scheduling Example: Windows XP

¨ Priority-based, preemptive scheduling
¤ Highest priority thread will always run

¨ 32-level priority scheme
¤ Variable class: priorities 1-15
¤ Realtime class: priorities 16-31

¤ Memory management thread: priority 0

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.37

Dispatcher in Windows XP

¨ Use a queue for each scheduling priority

¨ Traverse the queues from highest to lowest
¤ Until it finds a thread that is ready to run

¨ If no ready thread is found?
¤ Dispatcher will execute a special thread: idle thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.38

Idle thread in Windows

¨ Primary purpose is to eliminate a special case
¤ Cases when no threads are runnable or ready
¤ Idle threads are always in a ready state

n If not already running

¨ Scheduler can always find a thread to execute

¨ If there are other eligible threads?
¤ Scheduler will never select the idle thread

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.39

Idle threads in Windows

¨ Windows thread priorities go from 0-31
¤ Idle thread priority can be thought of as -1

¨ Threads in the system idle process can also implement CPU power
saving
¤ On x86 processors, run a loop of halt instructions
¤ Causes CPU to turn off internal components

n Until an interrupt request arrives

¤ Recent versions also reduce the CPU clock speed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.40

Time consumed by the idle process

¨ It may seem that the idle process is monopolizing the CPU
¤ It is merely acting as a placeholder during free time
¤ Proof that no other process wants that CPU time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.41

Scheduling Example: Windows XP
Identifies 6 priority classes for threads

¨ Thread priorities for classes are variable

¨ Relative priority for thread within a class

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.42

Windows XP priorities: Threads within a
priority class also have a relative
priority

REAL
TIME

HIGH ABOVE
NORMAL

NORMAL BELOW
NORMAL

IDLE
PRIORITY

Time-critical 31 15 15 15 15 15

highest 26 15 12 10 8 6

above normal 25 14 11 9 7 5

normal 24 13 10 8 6 4

below normal 23 12 9 7 5 3

lowest 22 11 8 6 4 2

idle 16 1 1 1 1 1

Base priority for
each thread class

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.43

Windows XP: Managing the priority of variable
priority threads

¨ Lowering the priority of a thread
¤ When a thread’s quantum runs out

n Lower priority BUT not below base priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.44

Windows XP: Boosting the priority of threads

¨ Upon release from a wait operation
¤ Thread waiting for keyboard IO gets big boost
¤ Thread waiting for disk IO gets moderate boost

¨ Window with which user is interacting
¤ Gives good response for interactive thread

¨ When process moves to foreground
¤ Scheduling quantum boosted by 3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LINUX SCHEDULING
L14.45

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.46

Highlights of Linux scheduling (1)

¨ Scheduling algorithm runs in constant time

¨ Implements real-time scheduling (POSIX 1.b)
¤ Real-time tasks have static priorities
¤ Other tasks have dynamic priorities

¨ We look at the algorithm in kernel version 2.5
¤ Revised again in version 2.6.23 of the kernel [called: Completely Fair

Scheduler]

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.47

Highlights of Linux scheduling (2)

¨ Preemptive, priority-based algorithm

¨ Two separate priority ranges
¤ Real-time range: 0-99
¤ Nice value: 100-140

¨ Numerically lower values indicate higher priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.48

Highlights of Linux scheduling (3)

¨ UNLIKE Solaris and Windows
¤ Higher priority tasks = higher quanta
¤ Lower priority tasks = lower quanta

¨ Task’s interactivity determined by
¤ Sleeping times waiting for I/O

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.49

Task execution in Linux

¨ Task eligible for execution as long as it has time remaining in its time
slice

¨ When a task has exhausted its time slice?
¤ Ineligible for execution again, until …
¤ All other tasks have exhausted their time quanta

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.50

Each runqueue contains two priority arrays: Active
and Expired

¨ Active array
¤ All tasks with time remaining in their time slices

¨ Expired array
¤ Contains all expired tasks

¨ Each priority array contains list of tasks indexed according to priority

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.51

Swapping the active and expired arrays

¨ When all tasks have exhausted their time slices?
¤ Active array is empty

¨ The two priority arrays are exchanged
¤ Expired array becomes the active array, and vice versa

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.52

Linux: Tasks indexed according to priority

Priority
[0]

[1]

[140]

ACTIVE ARRAY

Priority
[0]

[1]

[140]

EXPIRED ARRAY

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.53

Little’s formula

¨ n be the average queue length
¨ W average wait time in the queue
¨ λ average arrival rate of processes

When a process waits for time W
 λ x W processes arrives

Steady state: Processes leaving = Processes arriving
 n = λ x W

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L14.54

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 6]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 2]

