CS 370: OPERATING SYSTEMS
[ATOMIC TRANSACTIONS & DEADLOCKS]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA



Topics covered in today’s lecture

Atomic Transactions
Locking protocols

Timestamp protocols
Deadlocks

Deadlock characterization

CS370: Operating Systems L16.2
Dept. Of Computer Science, Colorado State University



LOCKING PROTOCOLS



Locking protocol governs how locks are acquired
and released

There are different modes in which data can be locked

A transaction acquires a lock on a data item in different modes

Shared mode locks

T, can read, but not write, data item Q

Exclusive mode locks

T, can read and write data item Q

CS370: Operating Systems L16.4
Dept. Of Computer Science, Colorado State University



Transactions must request locks on data items in the
right mode

To access data item Q; T; must first lock it

Wait if Q is locked in the exclusive mode
If T, requests a shared-lock on Q

Obtain lock if Q is not locked in the exclusive mode

T, must hold lock on data item as long as it accesses it

CS370: Operating Systems L16.5
Dept. Of Computer Science, Colorado State University



Two-phase locking protocol: Locks and unlocks take

lace in two phases
R P X

o Transaction’s growing phase:
Obtain locks

Cannot release any lock

o Transaction’s shrinking phase
Can release locks

Cannot obtain any new locks

CS370: Operating Systems L16.6
Dept. Of Computer Science, Colorado State University



Two-phase locking protocol:
Conflict serializability

Conflicts occur when 2 transactions access same data item; and 1 of
them is a write

A transaction acquires locks serially; without releasing them during the
acquire phase

Other transactions must wait for first transaction to start releasing locks.

Deadlocks may occur

CS370: Operating Systems L16.7
Dept. Of Computer Science, Colorado State University



Order of conflicting transactions
—

1 Two-phase locking

Determined at execution time

1 How about selecting this order in advance?

Timestamp based protocols

CS370: Operating Systems L16.8
Dept. Of Computer Science, Colorado State University



Timestamp based protocols

For each T. there is a fixed timestamp
Denoted TS(T;)

Assigned before T. starts execution
For a later T, ; TS(T;) < TS(T,)

Schedule must be equivalent to schedule in which T. appears before

T..

CS370: Operating Systems L16.9
Dept. Of Computer Science, Colorado State University



Timestamp based locking

Protocol ensures there will be no deadlock

No transaction ever waits!

Conflict serializabilty

Conflicting operations are processed in timestamp order

CS370: Operating Systems L16.10
Dept. Of Computer Science, Colorado State University



Each data item Q has two values

W-timestamp (Q)

Largest timestamp of any transaction that successfully executed write ()

R-timestamp (Q)

Largest timestamp of any transaction that successfully executed read ()

CS370: Operating Systems L16.11
Dept. Of Computer Science, Colorado State University



Transaction issues a read (Q)

If TS(T,;) < W-timestamp (Q)

Needs value that was already overwritten

The read is rejected and T, is rolled back

TS(T;) >= W-timestamp (Q)

Operation is executed
R-timestamp (Q)= max (TS (T,;),R-timestamp (Q) )

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.12



Transaction issues a write (Q)

If TS(T;) < R-timestamp (Q)
Value of Q produced by T; needed previously

T. assumed that this value would never be produced

The write is rejected and T, is rolled back

If TS(T;) <W-timestamp (Q)
Trying to write an obsolete value of Q

The write is rejected and T, is rolled back

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.13



What happens when a transaction is rolled back?

T
0 Transactions T is assigned a new timestamp

o1 Restart

CS370: Operating Systems L16.14
Dept. Of Computer Science, Colorado State University



Schedule using the timestamp protocol:

T2 T3
read (B)
read (B)
write (B)
read (A)
read (A)
write (A)

Timestamps are assigned to transactions before
the start of the first instruction TS (T2) < TS (T3)

CS370: Operating Systems L16.15
Dept. Of Computer Science, Colorado State University



The Journey So Far ...
-

Interprocess

Communications

I Threads

Processes

Deadlocks

CPU Scheduling ‘L
Synchronization &

Coordination

CS370: Operating Systems L16.16
Dept. Of Computer Science, Colorado State University



A waiting process is never again able to change state
It is waiting for resources held by other processes

DEADLOCKS




What we will look at ...

System Model

Prevention

Characterization

Deadlocks

Avoidance

Requirements

Detection &
Recovery

CS370: Operating Systems L16.18
Dept. Of Computer Science, Colorado State University



For many applications, processes need exclusive
accesses to multiple resources

Process A: Asks for scanner and is granted it
Process B: Asks CD recorder first and is granted it.

Process A: Now asks for CD recorder

Process B: Now asks for Scanner

Both processes are blocked and will remain so forever!
Deadlock

CS370: Operating Systems L16.19
Dept. Of Computer Science, Colorado State University



Other deadlock situations

Distributed systems involving multiple machines

Database systems
Process 1 locks record R1
Process 2 locks record R2

Then, processes 1 and 2 try to lock each other’s record
Deadlock

Deadlocks can occur in hardware or software resources

CS370: Operating Systems L16.20
Dept. Of Computer Science, Colorado State University



Resource Deadlocks

Maijor class of deadlocks involves resources

Can occur when processes have been granted access to devices, data
records, files, etc.

Other classes of deadlocks: communication deadlocks, two-phase locking

Related concepts

Livelocks and starvation

CS370: Operating Systems L16.21
Dept. Of Computer Science, Colorado State University



Preemptable resources

Can be taken away from process owning it with no ill effects

Example: Memory

Process B's memory can be taken away and given to process A

Swap B from memory, write contents to backing store, swap A in and let it use the
memory

CS370: Operating Systems L16.22
Dept. Of Computer Science, Colorado State University



Non-preemptable resources

Cannot be taken away from a process without causing the process to
fail
If a process has started to burn a CD

Taking the CD-recorder away from it and giving it to another process?
Garbled CD

CD recorders are not preemptable at an arbitrary moment

In general, deadlocks involve non-preemptable resources

CS370: Operating Systems L16.23
Dept. Of Computer Science, Colorado State University



Some notes on deadlocks

The OS typically does not provide deadlock
prevention facilities

Programmers are responsible for designing deadlock
free programs

CS370: Operating Systems L16.24
Dept. Of Computer Science, Colorado State University



System model

Finite number of resources

Distributed among competing processes

Resources are partitioned into different types
Each type has a number of identical instances

Resource type examples:

Memory space, files, | /O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.25



A process must utilize resources in a sequence

I
7 Request

Requesting resource must wait until it can acquire resource

request (), open(),allocate()

1 Use

Operate on the resource

1 Release

release(),close (), free ()

CS370: Operating Systems L16.26
Dept. Of Computer Science, Colorado State University



For kernel managed resources, the OS maintains a
system resource table

Is the resource free?

Record process that the resource is allocated to

Is the resource allocated?

Add to queue of processes waiting for resource

For resources not managed by the OS

Use wait () and signal () on semaphores

CS370: Operating Systems L16.27
Dept. Of Computer Science, Colorado State University



Deadlock: Formal Definition

A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause.

Because all processes are waiting, none of them can cause events to
wake any other member of the set

Processes continue to wait forever

CS370: Operating Systems L16.28
Dept. Of Computer Science, Colorado State University



DEADLOCK CHARACTERIZATION



Deadlocks:
Necessary Conditions (I)

Mutual Exclusion
At least one resource held in nonsharable mode

When a resource is being used

Another requesting process must wait for its release

Hold-and-wait
A process must hold one resource

Wait to acquire additional resources

Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.30



Deadlocks:
Necessary Conditions (I 1)

No preemption
Resources cannot be preempted

Only voluntary release by process holding it

Circular wait
A set of {P,, P4, ..., P,} waiting processes must exist
P, 2> P; P,2> P,, ..., P, P,

Implies hold-and-wait

CS370: Operating Systems L16.31
Dept. Of Computer Science, Colorado State University



Resource allocation graph
Used to describe deadlocks precisely
Consists of a set of vertices and edges

Two different sets of nodes

P: the set of all active processes in system

R: the set of all resource types in the system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.32



Directed edges

Request edge
P, has requested an instance of resource type R;

Directed edge from process P, to resource R.

Denoted P; 2 R,
Currently waiting for that resource

Assignment edge
Instance of resource R, assigned to process P;

Directed edge from resource R, to process P;
Denoted R; =2 P;

CS370: Operating Systems L16.33
Dept. Of Computer Science, Colorado State University



Representation of Processes and Resources
——

S .

Processes Resources

A resource type may have
multiple instances

CS370: Operating Systems L16.34
Dept. Of Computer Science, Colorado State University



Resource Allocation Graph example
—

Ry R3

R, Request Edge ——

Assignment Edge ——>
CS370: Operating Systems L16.35
Dept. Of Computer Science, Colorado State University



Determining deadlocks

If the graph contains no cycles?

No process in the system is deadlocked

If there is a cycle in the graph?

If each resource type has exactly one instance

Deadlock has occurred

If each resource type has multiple instances

A deadlock may have occurred

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.36



Resource Allocation Graph:

Deadlock example
——

Two cycles
P,2R,2P,2R;2P;2R,2P;
P,2R;2P;2R,2P,

L
L
e
R

4

CS370: Operating Systems L16.37
Dept. Of Computer Science, Colorado State University



Resource Allocation Graph:
Cycle but not a deadlock

P,2R,2P;2R,2P,

P, may release instance of R,

allocate to P; and break cycle
RZ

CS370: Operating Systems L16.38
Dept. Of Computer Science, Colorado State University




Resource Allocation Graphs and Deadlocks

If the graph does not have a cycle
No deadlock

If the graph does have a cycle

System may or may not be deadlocked

CS370: Operating Systems L16.39
Dept. Of Computer Science, Colorado State University



Methods for handling deadlocks

Use protocol to prevent or avoid deadlocks

Ensure system never enters a deadlocked state

Allow system to enter deadlocked state; BUT

Detect it and recover

Ignore problem, pretend that deadlocks never occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.40



Problems with undetected deadlocks

Resources held by processes that cannot run

More and more processes enter deadlocked state

When they request more resources

Deterioration in system performance

Requires restart

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.41



When is ignoring the problem viable?

When they occur infrequently (once per year)
Ignoring is the cheaper solution

Prevention, avoidance, detection and recovery

Need to run constantly

CS370: Operating Systems L16.42
Dept. Of Computer Science, Colorado State University



SOME DEADLOCK EXAMPLES



Law passed by Kansas Legislature ... early 20"
Century

“When two trains approach each other at a crossing, both shall come to a
full stop and neither shall start up again until the other has gone”

CS370: Operating Systems L16.44
Dept. Of Computer Science, Colorado State University



Dining philosophers problem:

Necessary conditions for deadlock (1)
——

1 Mutual exclusion

2 philosophers cannot share the same chopstick

1 Hold-and-wait

A philosopher picks up one chopstick at a time

Will not let go of the first while it waits for the second one

CS370: Operating Systems L16.45
Dept. Of Computer Science, Colorado State University



Dining philosophers problem:

Necessary conditions for deadlock (2)
——

7 No preemption

A philosopher does not snatch chopsticks held by some other philosopher

1 Circular wait

Could happen if each philosopher picks chopstick with the same hand first

CS370: Operating Systems L16.46
Dept. Of Computer Science, Colorado State University



Is there a traffic deadlock here?

R
—>

C -
CS370: Operating Systems L16.47

Dept. Of Computer Science, Colorado State University



The traffic scenario:
Necessary Conditions (1)

Mutual Exclusion
A vehicle needs its own space

We can’t stack automobiles on top of each other

Hold-and-wait

A vehicle does not move and stays in place if it cannot advance

CS370: Operating Systems L16.48
Dept. Of Computer Science, Colorado State University



The traffic scenario:
Necessary Conditions (2)

No preemption

We cannot move an automobile to the side

Circular-wait

Each vehicle is waiting for the one in front of it to advance

CS370: Operating Systems L16.49
Dept. Of Computer Science, Colorado State University



DEALING WITH DEADLOCKS



Four strategies for dealing with deadlocks

Ignore the problem

May be if you ignore it, it will ignore you

Detection and Recovery

Let deadlocks occur, detect them, and take action

Deadlock avoidance

By careful resource allocation

Deadlock prevention

By structurally negating one of the four required conditions

CS370: Operating Systems L16.51
Dept. Of Computer Science, Colorado State University



The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5, 7]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 7]

CS370: Operating Systems L16.52
Dept. Of Computer Science, Colorado State University



