
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[ATOMIC TRANSACTIONS & DEADLOCKS]

Computer Science
Colorado State University

L16.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.2

Topics covered in today’s lecture

¨ Atomic Transactions
¤ Locking protocols
¤ Timestamp protocols

¨ Deadlocks

¨ Deadlock characterization

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

LOCKING PROTOCOLS

Governs how locks can be acquired and released

L16.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.4

Locking protocol governs how locks are acquired
and released

¨ There are different modes in which data can be locked
¤ A transaction acquires a lock on a data item in different modes

¨ Shared mode locks
¤ Ti can read, but not write, data item Q

¨ Exclusive mode locks
¤ Ti can read and write data item Q

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.5

Transactions must request locks on data items in the
right mode

¨ To access data item Q; Ti must first lock it
¤ Wait if Q is locked in the exclusive mode
¤ If Ti requests a shared-lock on Q

n Obtain lock if Q is not locked in the exclusive mode

¨ Ti must hold lock on data item as long as it accesses it

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.6

Two-phase locking protocol: Locks and unlocks take
place in two phases

¨ Transaction’s growing phase:
¤ Obtain locks
¤ Cannot release any lock

¨ Transaction’s shrinking phase
¤ Can release locks
¤ Cannot obtain any new locks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.7

Two-phase locking protocol:
Conflict serializability

¨ Conflicts occur when 2 transactions access same data item; and 1 of
them is a write

¨ A transaction acquires locks serially; without releasing them during the
acquire phase
¤ Other transactions must wait for first transaction to start releasing locks.

¨ Deadlocks may occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.8

Order of conflicting transactions

¨ Two-phase locking
¤ Determined at execution time

¨ How about selecting this order in advance?
¤ Timestamp based protocols

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.9

Timestamp based protocols

¨ For each Ti there is a fixed timestamp
¤ Denoted TS(Ti)
¤ Assigned before Ti starts execution

¨ For a later Tj ; TS(Ti) < TS(Tj)

¨ Schedule must be equivalent to schedule in which Ti appears before
Tj.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.10

Timestamp based locking

¨ Protocol ensures there will be no deadlock
¤ No transaction ever waits!

¨ Conflict serializabilty
¤ Conflicting operations are processed in timestamp order

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.11

Each data item Q has two values

¨ W-timestamp(Q)
¤ Largest timestamp of any transaction that successfully executed write()

¨ R-timestamp(Q)
¤ Largest timestamp of any transaction that successfully executed read()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.12

Transaction issues a read(Q)

¨ If TS(Ti) < W-timestamp(Q)
¤ Needs value that was already overwritten
¤ The read is rejected and Ti is rolled back

¨ TS(Ti) >= W-timestamp(Q)
¤ Operation is executed
¤ R-timestamp(Q)= max(TS(Ti),R-timestamp(Q))

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.13

Transaction issues a write(Q)

¨ If TS(Ti) < R-timestamp(Q)
¤ Value of Q produced by Ti needed previously

n Ti assumed that this value would never be produced

¤ The write is rejected and Ti is rolled back

¨ If TS(Ti) < W-timestamp(Q)
¤ Trying to write an obsolete value of Q
¤ The write is rejected and Ti is rolled back

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.14

What happens when a transaction is rolled back?

¨ Transactions Ti is assigned a new timestamp
¤ Restart

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.15

Schedule using the timestamp protocol:

T2
read(B)

T3

read(B)
write(B)

read(A)

read(A)
write(A)

Timestamps are assigned to transactions before
the start of the first instruction TS(T2) < TS(T3)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.16

The Journey So Far …

Processes

Multiprogramming

CPU Scheduling

Threads

Interprocess
Communications

Synchronization &
Coordination

Deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCKS

A waiting process is never again able to change state
 It is waiting for resources held by other processes

L16.17

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.18

What we will look at …

Deadlocks

System Model

Characterization

Requirements

Avoidance

Detection &
Recovery

Prevention

Why?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.19

For many applications, processes need exclusive
accesses to multiple resources

¨ Process A: Asks for scanner and is granted it
¨ Process B: Asks CD recorder first and is granted it.
¨ Process A: Now asks for CD recorder
¨ Process B: Now asks for Scanner

¨ Both processes are blocked and will remain so forever!
¤ Deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.20

Other deadlock situations

¨ Distributed systems involving multiple machines

¨ Database systems
¤ Process 1 locks record R1
¤ Process 2 locks record R2
¤ Then, processes 1 and 2 try to lock each other’s record

n Deadlock

¨ Deadlocks can occur in hardware or software resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.21

Resource Deadlocks

¨ Major class of deadlocks involves resources
¤ Can occur when processes have been granted access to devices, data

records, files, etc.
¤ Other classes of deadlocks: communication deadlocks, two-phase locking

¨ Related concepts
¤ Livelocks and starvation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.22

Preemptable resources

¨ Can be taken away from process owning it with no ill effects

¨ Example: Memory
¤ Process B’s memory can be taken away and given to process A

n Swap B from memory, write contents to backing store, swap A in and let it use the
memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.23

Non-preemptable resources

¨ Cannot be taken away from a process without causing the process to
fail

¨ If a process has started to burn a CD
¤ Taking the CD-recorder away from it and giving it to another process?

n Garbled CD
n CD recorders are not preemptable at an arbitrary moment

¨ In general, deadlocks involve non-preemptable resources

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.24

Some notes on deadlocks

¨ The OS typically does not provide deadlock
prevention facilities

¨ Programmers are responsible for designing deadlock
free programs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.25

System model

¨ Finite number of resources
¤ Distributed among competing processes

¨ Resources are partitioned into different types
¤ Each type has a number of identical instances
¤ Resource type examples:

n Memory space, files, I/O devices

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.26

A process must utilize resources in a sequence

¨ Request
¤ Requesting resource must wait until it can acquire resource
¤ request(), open(), allocate()

¨ Use
¤ Operate on the resource

¨ Release
¤ release(), close(), free()

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.27

For kernel managed resources, the OS maintains a
system resource table

¨ Is the resource free?
¤ Record process that the resource is allocated to

¨ Is the resource allocated?
¤ Add to queue of processes waiting for resource

¨ For resources not managed by the OS
¤ Use wait() and signal() on semaphores

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.28

Deadlock: Formal Definition

¨ A set of processes is deadlocked if each process in the set is waiting for
an event that only another process in the set can cause.

¨ Because all processes are waiting, none of them can cause events to
wake any other member of the set
¤ Processes continue to wait forever

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCK CHARACTERIZATION

L16.29

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.30

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources

n Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.31

Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0
¤ Implies hold-and-wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.32

Resource allocation graph

¨ Used to describe deadlocks precisely

¨ Consists of a set of vertices and edges

¨ Two different sets of nodes
§ P: the set of all active processes in system
§ R: the set of all resource types in the system

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.33

Directed edges

¨ Request edge
¤ Pi has requested an instance of resource type Rj
¤ Directed edge from process Pi to resource Rj
¤ Denoted Pi à Rj
¤ Currently waiting for that resource

¨ Assignment edge
¤ Instance of resource Rj assigned to process Pi
¤ Directed edge from resource Rj to process Pi
¤ Denoted Rj à Pi

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.34

Representation of Processes and Resources

Processes Resources

A resource type may have
multiple instances

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.35

R3R1

R2

Resource Allocation Graph example

P1 P2 P3

R4 Request Edge
Assignment Edge

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.36

Determining deadlocks

¨ If the graph contains no cycles?
¤ No process in the system is deadlocked

¨ If there is a cycle in the graph?
¤ If each resource type has exactly one instance

n Deadlock has occurred

¤ If each resource type has multiple instances
n A deadlock may have occurred

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.37

Resource Allocation Graph:
Deadlock example

P1 P2 P3

R1

R2

R3

R4

P1àR1àP2àR3àP3àR2àP1
P2àR3àP3àR2àP2

Two cycles

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.38

Resource Allocation Graph:
Cycle but not a deadlock

P1 P3

R1

R2

P1àR1àP3àR2àP1

P4

P2

P4 may release instance of R2
allocate to P3 and break cycle

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.39

Resource Allocation Graphs and Deadlocks

¨ If the graph does not have a cycle
¤ No deadlock

¨ If the graph does have a cycle
¤ System may or may not be deadlocked

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.40

Methods for handling deadlocks

¨ Use protocol to prevent or avoid deadlocks
¤ Ensure system never enters a deadlocked state

¨ Allow system to enter deadlocked state; BUT
¤ Detect it and recover

¨ Ignore problem, pretend that deadlocks never occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.41

Problems with undetected deadlocks

¨ Resources held by processes that cannot run

¨ More and more processes enter deadlocked state
¤ When they request more resources

¨ Deterioration in system performance
¤ Requires restart

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.42

When is ignoring the problem viable?

¨ When they occur infrequently (once per year)
¤ Ignoring is the cheaper solution
¤ Prevention, avoidance, detection and recovery

n Need to run constantly

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SOME DEADLOCK EXAMPLES
L16.43

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.44

Law passed by Kansas Legislature … early 20th
Century

“When two trains approach each other at a crossing, both shall come to a
full stop and neither shall start up again until the other has gone”

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.45

Dining philosophers problem:
Necessary conditions for deadlock (1)

¨ Mutual exclusion
¤ 2 philosophers cannot share the same chopstick

¨ Hold-and-wait

¤ A philosopher picks up one chopstick at a time
¤ Will not let go of the first while it waits for the second one

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.46

Dining philosophers problem:
Necessary conditions for deadlock (2)

¨ No preemption
¤ A philosopher does not snatch chopsticks held by some other philosopher

¨ Circular wait

¤ Could happen if each philosopher picks chopstick with the same hand first

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.47

Is there a traffic deadlock here?

T

C

C

T

C

C

TCT

C C

C

C

…

C

… …

… …

…

… …

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.48

The traffic scenario:
Necessary Conditions (1)

¨ Mutual Exclusion
¤ A vehicle needs its own space
¤ We can’t stack automobiles on top of each other

¨ Hold-and-wait

¤ A vehicle does not move and stays in place if it cannot advance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.49

The traffic scenario:
Necessary Conditions (2)

¨ No preemption
¤ We cannot move an automobile to the side

¨ Circular-wait
¤ Each vehicle is waiting for the one in front of it to advance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEALING WITH DEADLOCKS
L16.50

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.51

Four strategies for dealing with deadlocks

¨ Ignore the problem
¤ May be if you ignore it, it will ignore you

¨ Detection and Recovery
¤ Let deadlocks occur, detect them, and take action

¨ Deadlock avoidance
¤ By careful resource allocation

¨ Deadlock prevention
¤ By structurally negating one of the four required conditions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L16.52

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 5, 7]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 7]

