
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS
[DEADLOCKS]

Computer Science
Colorado State University

L17.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.2

Topics covered in this lecture

¨ Ostrich Algorithm
¨ Deadlock Prevention
¨ Deadlock Avoidance

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

THE OSTRICH ALGORITHM

L19.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.4

Ostrich Algorithm

¨ Stick your head in the sand; pretend there is no problem at all

¨ Reactions
¤ Mathematician: Unacceptable; prevent at all costs
¤ Engineers: How often? Costs? Etc.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.5

OS suffer from deadlocks that are not even
detected [1/3]

¨ Number of processes in the system
¤ Total determined by slots in the process table

n Slots are a finite resource

¨ Maximum number of open files
¤ Restricted by size of the inode table

¨ Swap space on the disk

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.6

OS suffer from deadlocks that are not even
detected [2/3]

¨ Every OS table represents a finite resource

¨ Should we abolish all of these because collection of n processes
① Might claim 1/n th of the total AND
② Then try to claim another one

¨ Most users prefer occasional deadlock to a restrictive policy
¤ E.g. All users: 1 process, 1 open file …. one everything is far too restrictive

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.7

OS suffer from deadlocks that are not even
detected [3/3]

¨ If deadlock elimination is free
¤ No discussions

¨ But the price is often high
¤ Inconvenient restrictions on processes

¨ Tradeoff
¤ Between convenience and correctness

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCK CHARACTERIZATION

L17.8

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.9

Deadlocks:
Necessary Conditions (I)

¨ Mutual Exclusion
¤ At least one resource held in nonsharable mode
¤ When a resource is being used

n Another requesting process must wait for its release

¨ Hold-and-wait
¤ A process must hold one resource
¤ Wait to acquire additional resources

n Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.10

Deadlocks:
Necessary Conditions (II)

¨ No preemption
¤ Resources cannot be preempted
¤ Only voluntary release by process holding it

¨ Circular wait
¤ A set of {P0, P1, …, Pn} waiting processes must exist

n P0 à P1; P1à P2, …, Pnà P0
¤ Implies hold-and-wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCK PREVENTION

L17.11

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.12

Deadlock Prevention

¨ Ensure that one of the necessary conditions for deadlocks cannot occur
① Mutual exclusion

② Hold and wait

③ No preemption

④ Circular wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.13

Mutual exclusion must hold for
non-sharable resources, but …

¨ Sharable resources do not require mutually exclusive access
¤ Cannot be involved in a deadlock

¨ A process never needs to wait for sharable resource
¤ Read-only files

¨ Some resources are intrinsically nonsharable
¤ So denying mutual exclusion often not possible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.14

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 1]

¨ Process must request and be allocated all its resources before
execution
¤ Resource requests must precede other system calls

¨ E.g. copy data from DVD drive, sort file & print
¤ Printer needed only at the end
¤ BUT process will hold printer for the entire execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.15

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 2]

¨ Allow a process to request resources only when it has none
¤ Release all resources, before requesting additional ones

¨ E.g. copy data from DVD drive, sort file & print
¤ First request DVD and disk file

n Copy and release resources

¤ Then request file and printer

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.16

Disadvantages of protocols doing hold-and-wait

¨ Low resource utilization
¤ Resources are allocated but unused for long durations

¨ Starvation
¤ If a process needs several popular resources

n Popular resource might always be allocated to some other process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.17

Deadlock Prevention: Eliminate the preemption
constraint [1/2]

¨ {C1} If a process is holding some resources
¨ {C2} Process requests another resource

n Cannot be immediately allocated

¨ All resources currently held by process is preempted
¤ Preempted resources added to list of resources process is waiting for

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.18

Deadlock Prevention: Eliminate the preemption
constraint [2/2]

¨ Process requests resources that are not currently available
¤ If resources allocated to another waiting process

n Preempt resources from the second process and assign it to the first one

¨ Often applied when resource state can be saved and restored
¤ CPU registers and memory space
¤ Unsuitable for tape drives

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.19

Deadlock Prevention: Eliminating Circular wait

¨ Impose total ordering of all resource types
¤ Assign each resource type a unique number
¤ One-to-one function F:RàN
F(tape drive) = 1;
F(printer) = 12

① Request resources in increasing order

② If several instances of a resource type needed?
¤ Single request for all them must be issued

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.20

Requesting resources in an increasing order of
enumeration

¨ Process initially requested Ri
¨ This process can now request Rj ONLY IF
 F(Rj)> F(Ri)

¨ Alternatively, process requesting Rj must have released
resources Ri such that
 F(Ri)>= F(Rj)

¨ Eliminates circular wait

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.21

Hierarchy of resources and deadlock prevention

¨ Hierarchy by itself does not prevent deadlocks
¤ Developed programs must follow ordering

¨ F based on order of usage of resources
¤ Tape drive needed before printing

n F(tape drive) < F(printer)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.22

Deadlock Prevention: Summary

¨ Prevent deadlocks by restraining how requests are made.
¤ Ensure at least 1 of the 4 conditions cannot occur

¨ Side effects:
¤ Low device utilization
¤ Reduced system throughput

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.23

Dining Philosophers:
Deadlock prevention (1)

¨ Mutual exclusion
¤ Philosophers can share a chopstick

¨ Hold-and-wait

¤ Philosopher should release the first chopstick if it cannot obtain the second
one

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.24

Dining Philosophers:
Deadlock prevention (2)

¨ Preemption
¤ Philosophers can forcibly take each other’s chopstick

¨ Circular-wait

¤ Number the chopsticks
¤ Pick up chopsticks in ascending order

n Pick the lower numbered one before the higher numbered one

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

DEADLOCK AVOIDANCE

L17.25

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.26

Deadlock avoidance

¨ Require additional information about how resources are to be
requested

¨ Knowledge about sequence of requests and releases for processes
¤ Allows us to decide if resource allocation could cause a future deadlock
¤ Process P: Tape drive, then printer
¤ Process Q: Printer, then tape drive

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.27

Deadlock avoidance:
Handling resource requests

¨ For each resource request:
¤ Decide whether or not process should wait

n To avoid possible future deadlock

¨ Predicated on:
① Currently available resources
② Currently allocated resources
③ Future requests and releases of each process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.28

Avoidance algorithms differ in the
amount and type of information needed

¨ Resource allocation state
¤ Number of available and allocated resources
¤ Maximum demands of processes

¨ Dynamically examine resource allocation state
¤ Ensure circular-wait cannot exist

¨ Simplest model:
¤ Declare maximum number of resources for each type
¤ Use information to avoid deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.29

Safe sequence

¨ Sequence of processes <P1,P2,…,Pn> for the current
allocation state

¨ Resource requests made by Pi can be satisfied by:
¤ Currently available resources
¤ Resources held by Pj where j < i

n If needed resources not available, Pi can wait

¤ In general, when Pi terminates, Pi+1 can obtain its needed
resources

¨ If no such sequence exists: system state is unsafe

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.30

Deadlock avoidance: Safe states

¨ If the system can:
① Allocate resources to each process in some order

n Up to the maximum for the process

② Still avoid deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.31

Safe states and deadlocks

¨ A system is safe ONLY IF there is a safe sequence

¨ A safe state is not a deadlocked state
¤ Deadlocked state is an unsafe state
¤ Not all unsafe states are deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.32

unsafe

State spaces

safe

deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.33

Unsafe states

¨ A unsafe state may lead to deadlock

¨ Behavior of processes controls unsafe states

¨ Cannot prevent processes from requesting resources such that
deadlocks occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.34

Example: 12 Tape drives available in the system

Maximum Needs Current Needs

P0 10 5

P1 4 2

P2 9 2

¨ At time T0 the system is in a safe state
¨ P1 can be given 2 tape drives
¨ When P1 releases its resources; there are 5 drives
¨ P0 uses 5 and subsequently releases them (# 10 now)
¨ P2 can then proceed

Safe sequence
<P1, P0 , P2>

Before T0:
3 drives available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.35

Example: 12 Tape drives available in the system

¨ At time T1, P2 is allocated 1 tape drive

Maximum Needs Current Needs

P0 10 5

P1 4 2

P2 9 2

Before T1:
3 drives available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.36

Example: 12 Tape drives available in the system

¨ At time T1, P2 is allocated 1 tape drive
¨ Only P1can proceed.
¨ When P1 releases its resources; there are 4 drives

¤ P0 needs 5 and P2 needs 6
¨ Mistake in granting P2 additional tape drive

Maximum Needs Current Needs

P0 10 5

P1 4 2

P2 9 3

After T1:
2 drives available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.37

Crux of deadlock avoidance algorithms

¨ Ensure that the system will always remain in a safe state

¨ Resource allocation request granted only if it will leave the system in a
safe state

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

RESOURCE ALLOCATION GRAPH ALGORITHM

L17.38

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.39

Claim edges

¨ Indicates that a process Pi may request a resource Rj at some time in
the future.

¨ Representation:
¤ Same direction as request
¤ Dotted line

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.40

Resource allocation graph with a claim edge

P1 P2

R1

R2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.41

Conversion of claim edges

¨ When process Pi requests resource Rj
¤ Claim edge converted to a request edge

¨ When resource Rj released by Pi
¤ The assignment edge RjàPi is reconverted to a claim edge PiàRj

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.42

Allocating resources

¨ When process Pi requests resource Rj

¨ Request granted only if
¤ Converting claim edge to PiàRj to an assignment edge RjàPi does not

result in a cycle

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.43

Using the allocation graph to allocate resources
safely

P1 P2

R1

R2
P2has requested R2

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.44

Using the allocation graph to allocate resources
safely

P1 P2

R1

R2
Assignment leads
to a cycle

If P1 requests R2after it’s
 assigned to P2?
 A deadlock will occur

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.45

Resource allocation graph algorithm

¨ Not applicable in systems with multiple resource instances

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.46

Resource Trajectories

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.47

The contents of this slide-set are based on the
following references

¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems
Concepts, 9th edition. John Wiley & Sons, Inc. ISBN-13: 978-
1118063330. [Chapter 7]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition,
2014. Prentice Hall. ISBN: 013359162X/ 978-0133591620.
[Chapter 6]

