CS 370: OPERATING SYSTEMS
[DEADLOCKS]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

I
o Ostrich Algorithm

1 Deadlock Prevention

1 Deadlock Avoidance

CS370: Operating Systems L17.2
Dept. Of Computer Science, Colorado State University

THE OSTRICH ALGORITHM

Ostrich Algorithm

Stick your head in the sand; pretend there is no problem at all

Reactions
Mathematician: Unacceptable; prevent at all costs

Engineers: How often?¢ Costs¢ Etc.

CS370: Operating Systems L17.4
Dept. Of Computer Science, Colorado State University

OS suffer from deadlocks that are not even
detected [1/3]

Number of processes in the system

Total determined by slots in the process table

Slots are a finite resource

Maximum number of open files

Restricted by size of the inode table

Swap space on the disk

CS370: Operating Systems L17.5
Dept. Of Computer Science, Colorado State University

OS suffer from deadlocks that are not even
detected [2/3]

Every OS table represents a finite resource

Should we abolish all of these because collection of n processes
(1) Might claim 1/n th of the total AND

(2) Then try to claim another one

Most users prefer occasional deadlock to a restrictive policy

E.g. All users: 1 process, 1 open file one everything is far too restrictive

CS370: Operating Systems L17.6
Dept. Of Computer Science, Colorado State University

OS suffer from deadlocks that are not even

detected [3/3]

If deadlock elimination is free

No discussions

But the price is often high

Inconvenient restrictions on processes

Tradeoff

Between convenience and correctness

CS370: Operating Systems L17.7
Dept. Of Computer Science, Colorado State University

DEADLOCK CHARACTERIZATION

Deadlocks:
Necessary Conditions (I)

Mutual Exclusion
At least one resource held in nonsharable mode

When a resource is being used

Another requesting process must wait for its release

Hold-and-wait
A process must hold one resource

Wait to acquire additional resources

Which are currently held by other processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.9

Deadlocks:
Necessary Conditions (I 1)

No preemption
Resources cannot be preempted

Only voluntary release by process holding it

Circular wait
A set of {P,, P4, ..., P,} waiting processes must exist
P, 2> P; P,2 P,, ..., P, P,

Implies hold-and-wait

CS370: Operating Systems L17.10
Dept. Of Computer Science, Colorado State University

DEADLOCK PREVENTION

Deadlock Prevention

Ensure that one of the necessary conditions for deadlocks cannot occur
(1) Mutual exclusion

(2) Hold and wait
(3) No preemption
(4) Circular wait

CS370: Operating Systems L17.12
Dept. Of Computer Science, Colorado State University

Mutual exclusion must hold for
non-sharable resources, but ...

Sharable resources do not require mutually exclusive access

Cannot be involved in a deadlock

A process never needs to wait for sharable resource

Read-only files

Some resources are intrinsically nonsharable

So denying mutual exclusion often not possible

CS370: Operating Systems L17.13
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 1]

Process must request and be allocated all its resources before
execution

Resource requests must precede other system calls

E.g. copy data from DVD drive, sort file & print
Printer needed only at the end

BUT process will hold printer for the entire execution

CS370: Operating Systems L17.14
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Ensure hold-and-wait never
occurs in the system [Strategy 2]

Allow a process to request resources only when it has none

Release all resources, before requesting additional ones

E.g. copy data from DVD drive, sort file & print
First request DVD and disk file

Copy and release resources

Then request file and printer

CS370: Operating Systems L17.15
Dept. Of Computer Science, Colorado State University

Disadvantages of protocols doing hold-and-wait

Low resource utilization

Resources are allocated but unused for long durations

Starvation

If a process needs several popular resources

Popular resource might always be allocated to some other process

CS370: Operating Systems L17.16
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Eliminate the preemption
constraint [1/2]

{C1} If a process is holding some resources

{C2} Process requests another resource

Cannot be immediately allocated

All resources currently held by process is preempted

Preempted resources added to list of resources process is waiting for

CS370: Operating Systems L1717
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Eliminate the preemption
constraint [2/2]

Process requests resources that are not currently available

If resources allocated to another waiting process

Preempt resources from the second process and assign it to the first one

Often applied when resource state can be saved and restored
CPU registers and memory space

Unsuitable for tape drives

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.18

Deadlock Prevention: Eliminating Circular wait

Impose total ordering of all resource types

Assign each resource type a unique number

One-to-one function F: R2>N
F(tape drive) = 1;
F(printer) = 12

(1) Request resources in increasing order

(2) If several instances of a resource type needed?

Single request for all them must be issued

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.19

Requesting resources in an increasing order of
enumeration

Process initially requested R
This process can now request Ry ONLY IF
F(R;)> F (R;)

Alternatively, process requesting R, must have released
resources R. such that

F(R;)>=F (R;)

Eliminates circular wait

CS370: Operating Systems L17.20
Dept. Of Computer Science, Colorado State University

Hierarchy of resources and deadlock prevention

Hierarchy by itself does not prevent deadlocks

Developed programs must follow ordering

F based on order of usage of resources

Tape drive needed before printing
F(tape drive) < F(printer)

CS370: Operating Systems L17.21
Dept. Of Computer Science, Colorado State University

Deadlock Prevention: Summary

Prevent deadlocks by restraining how requests are made.

Ensure at least 1 of the 4 conditions cannot occur

Side effects:

Low device utilization

Reduced system throughput

CS370: Operating Systems L17.22
Dept. Of Computer Science, Colorado State University

Dining Philosophers:
Deadlock prevention (1)

Mutual exclusion

Philosophers can share a chopstick

Hold-and-wait

Philosopher should release the first chopstick if it cannot obtain the second
one

CS370: Operating Systems L17.23
Dept. Of Computer Science, Colorado State University

Dining Philosophers:
Deadlock prevention (2)

Preemption

Philosophers can forcibly take each other’s chopstick

Circular-wait

Number the chopsticks

Pick up chopsticks in ascending order

Pick the lower numbered one before the higher numbered one

CS370: Operating Systems L17.24
Dept. Of Computer Science, Colorado State University

DEADLOCK AVOIDANCE

Deadlock avoidance

Require additional information about how resources are to be
requested

Knowledge about sequence of requests and releases for processes
Allows us to decide if resource allocation could cause a future deadlock
Process P: Tape drive, then printer

Process Q: Printer, then tape drive

CS370: Operating Systems L17.26
Dept. Of Computer Science, Colorado State University

Deadlock avoidance:
Handling resource requests

For each resource request:

Decide whether or not process should wait

To avoid possible future deadlock

Predicated on:
(1) Currently available resources
(2) Currently allocated resources

(3) Future requests and releases of each process

CS370: Operating Systems L17.27
Dept. Of Computer Science, Colorado State University

Avoidance algorithms differ in the
amount and type of information needed

Resource allocation state
Number of available and allocated resources

Maximum demands of processes

Dynamically examine resource allocation state

Ensure circular-wait cannot exist

Simplest model:
Declare maximum number of resources for each type

Use information to avoid deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.28

Safe sequence

Sequence of processes <P,, P,, ..., P> for the current
allocation state

Resource requests made by P. can be satisfied by:

Currently available resources
Resources held by P, where J < 1

If needed resources not available, P. can wait

In general, when P, terminates, P, .; can obtain its needed
resources

If no such sequence exists: system state is unsafe

CS370: Operating Systems L17.29
Dept. Of Computer Science, Colorado State University

Deadlock avoidance: Safe states
]

0 If the system can:

(1) Allocate resources to each process in some order

w Up to the maximum for the process

(2) Still avoid deadlock

CS370: Operating Systems L17.30
Dept. Of Computer Science, Colorado State University

Safe states and deadlocks

A system is safe ONLY IF there is a safe sequence

A safe state is not a deadlocked state
Deadlocked state is an unsafe state

Not all unsafe states are deadlocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L17.31

State spaces
=

unsafe

CS370: Operating Systems L17.32
Dept. Of Computer Science, Colorado State University

Unsafe states

A unsafe state may lead to deadlock
Behavior of processes controls unsafe states

Cannot prevent processes from requesting resources such that
deadlocks occur

CS370: Operating Systems L17.33
Dept. Of Computer Science, Colorado State University

Example: 12 Tape drives available in the system

Maximum Needs Current Needs

Before TO:
Py 10 > 3 drives available
P, 4 2
b, - > Safe sequence

<P1I PO ’ P2>
At time TO the system is in a safe state

P, can be given 2 tape drives
When P, releases its resources; there are 5 drives
P, uses 5 and subsequently releases them (# 10 now)

P, can then proceed

CS370: Operating Systems L17.34
Dept. Of Computer Science, Colorado State University

Example: 12 Tape drives available in the system

P, 10 5 Befqr'e T1: |
3 drives available

P, 4 2
P, 9 2

01 At time T1, P, is allocated 1 tape drive

CS370: Operating Systems L17.35
Dept. Of Computer Science, Colorado State University

Example: 12 Tape drives available in the system

Maximum Needs Current Needs
P, 10 5 After T1:

2 drives available
P, 4 2

P, 9 3

At time T1, P, is allocated 1 tape drive

Only P,can proceed.

When P, releases its resources; there are 4 drives
P, needs 5 and P, needs 6

Mistake in granting P, additional tape drive

CS370: Operating Systems L17.36
Dept. Of Computer Science, Colorado State University

Crux of deadlock avoidance algorithms

Ensure that the system will always remain in a safe state

Resource allocation request granted only if it will leave the system in a
safe state

CS370: Operating Systems L17.37
Dept. Of Computer Science, Colorado State University

RESOURCE ALLOCATION GRAPH ALGORITHM

Claim edges

Indicates that a process P, may request a resource R at some time in
the future.

Representation:

Same direction as request

Dotted line

CS370: Operating Systems L17.39
Dept. Of Computer Science, Colorado State University

Resource allocation graph with a claim edge
—

Ry

CS370: Operating Systems L17.40
Dept. Of Computer Science, Colorado State University

Conversion of claim edges

When process P. requests resource R,

Claim edge converted to a request edge

When resource R, released by P,

The assignment edge R; 2P, is reconverted to a claim edge P; 2R.

CS370: Operating Systems L17.41
Dept. Of Computer Science, Colorado State University

Allocating resources

When process P. requests resource R,

Request granted only if

Converting claim edge to P; 2R, to an assignment edge R;2>P; does not
result in a cycle

CS370: Operating Systems L17.42
Dept. Of Computer Science, Colorado State University

Using the allocation graph to allocate resources

safel
-—

P,has requested R,

CS370: Operating Systems L17.43
Dept. Of Computer Science, Colorado State University

Using the allocation graph to allocate resources

fel
___ safely

If P, requests R after it’s

assigned to P,¢

A deadlock will occur

Assignment leads
to a cycle

CS370: Operating Systems L17.44
Dept. Of Computer Science, Colorado State University

Resource allocation graph algorithm
N

1 Not applicable in systems with multiple resource instances

CS370: Operating Systems L17.45
Dept. Of Computer Science, Colorado State University

Resource Trajectories
N

%.=. !

CS370: Operating Systems L17.46
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems
Concepts, 9" edition. John Wiley & Sons, Inc. ISBN-13: 97 8-

1118063330. [Chapter 7]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition,

201 4. Prentice Hall. ISBN: 013359162X/ 978-0133591620.
[Chapter 6]

CS370: Operating Systems L17.47
Dept. Of Computer Science, Colorado State University

