
CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS  
[DEADLOCKS (AGAIN!)]

Computer Science
Colorado State University

L18.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.2

Topics covered in this lecture

¨ Deadlock Avoidance
¤ Banker’s Algorithm 

¨ Deadlock Detection
¤ And … recovery

¨ Other issues relating to deadlocks



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

BANKER’S ALGORITHM

L18.3



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.4

Banker’s Algorithm

¨ Designed by Dijkstra in 1965

¨ Modeled on a small-town banker
¤ Customers have been extended lines of credit
¤ Not ALL customers will need their maximum credit immediately

¨ Customers make loan requests from time to time  



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.5

Crux of the Banker’s Algorithm 

¨ Consider each request as it occurs
¤ See if granting it is safe

¨ If safe: grant it;    If unsafe: postpone

¨ For safety banker checks if he/she has enough to satisfy some 
customer
¤ If so, that customer’s loans are assumed to be repaid
¤ Customer closest to limit is checked next
¤ If all loans can be repaid; state is safe: loan approved



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.6

Banker’s Algorithm: Managing the customers. 
Banker has only reserved 10 units instead of 22

A 0 6

B 0 5

C 0 4

D 0 7

Has Max

A 1 6

B 1 5

C 2 4

D 4 7

Has Max

A 1 6

B 2 5

C 2 4

D 4 7

Has Max

Free: 10 Free: 2 Free: 1

SAFE SAFE UNSAFE
Delay all requests except C

A customer may not need  the 
entire credit line. But the banker 
cannot count on this behaviorThere is ONLY ONE resource: Credit



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.7

Banker’s algorithm: Crux

¨ Declare maximum number of resource instances 
needed
¤ Cannot exceed resource thresholds

¨ Determine if resource allocations leave system in a safe 
state



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.8

Data Structures: n is the number of processes and m is the number 
of resource types

¨ Available: Vector of length m
¤ Number of resources for each type

n Available[i] = k

¨ Max: n x m matrix  
¤ Maximum demand for each process (in each row)
¤ Max[i,j]= k

n Process Pi may request at most k instances of Rj



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.9

Data Structures: n is the number of processes and m is the number 
of resource types

¨ Allocation: n x m matrix  
¤ Resource instances allocated for each process (each row)
¤ Allocation[i,j]=k

n Process Pi currently allocated k instances of Rj

¨ Need: n x m matrix  
¤ Resource instances needed for each process (each row)
¤ Need[i,j]=k

n Process Pi may need k more instances of Rj



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.10

Vectors identifying a process’ resource requirements: 
Rows in the matrices

¨ Allocationi
¤ Resource instances allocated for process Pi 

¨ Needi
¤ Additional resource instances process Pi may still request



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.11

Banker’s algorithm: Notations

¨ X and Y are vectors of length m

¨ X ≤ Y if-and-only-if
 X[i] ≤ Y[i] for all i=1,2,...,m

¨ X = {1,7,3,2} and Y = {0,3,2,1}
So, Y ≤ X
Also Y < X if Y ≤ X and Y ≠ X



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.12

Banker’s Algorithm: Resource-request 

¨ Requesti: Request vector for process Pi
¤ Requesti[j]=k

n Process Pi wants k instances of Rj



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.13

Bankers Algorithm: Resource-request

Requesti≤ Needi

Requesti≤ Available

Available = Available – Requesti
Allocationi = Allocationi + Requesti
Needi = Needi - Requesti

Yes

Yes

NO

NO

Error
Exceeded claim

Wait for 
availability



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.14

Bankers Algorithm: Safety
Initialize Work = Available

Find i such that:
Finish[i]==false && Needi≤ Work

Work = Work + Allocationi
Finish[i]=true 

for all i 
   if (Finish[i] == true)

YES

NO

YES

Safe state

NO
Unsafe state



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.15

Bankers Algorithm: Example

Allocation           Max           Available
         A   B   C        A   B   C        A   B   C
P0       0   1   0        7   5   3        3   3   2
P1       2   0   0        3   2   2
P2       3   0   2        9   0   2
P3       2   1   1        2   2   2
P4       0   0   2        4   3   3

<P1, P3, P4, P2, P0> satisfies safety criteria

Suppose process P1 requests 1 A, and 2 Cs: Request1 = (1,0,2)
Request1≤ Available
Pretend request was fulfilled



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.16

Bankers Algorithm: Example

Allocation           Max           Available
         A   B   C        A   B   C        A   B   C
P0       0   1   0        7   5   3        2   3   0
P1       3   0   2        3   2   2
P2       3   0   2        9   0   2
P3       2   1   1        2   2   2
P4       0   0   2        4   3   3

<P1, P3, P4, P0, P2> satisfies safety criteria

Request0 = (0,2,0) from process P0 cannot be granted: unsafe state

Request4 = (3,3,0) from process P4 cannot be granted: resources unavailable



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.17

Bankers Algorithm: 
Limited practical value

¨ Processes rarely know in advance about their maximum resource needs

¨ Number of processes is not fixed
¤ Varies dynamically

¨ Resources thought to be available can vanish

¨ Few systems use this for avoiding deadlocks



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

DEADLOCK DETECTION

L18.18



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.19

Single instance of EACH resource type

¨ Use wait-for graph
¤ Variant of the resource allocation graph

¨ Deadlock exists if there is a cycle in the graph

¨ Transformation
① Remove resource nodes
② Collapse appropriate edges



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.20

What the edges in the wait-for graph imply

¨ Pi à Pj
¤ Process Pi is waiting for a resource held by Pj

¨ Pi à Pj only if resource allocation graph has
① Pià Rq and

② Rqà Pj for some resource Rq



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.21

Transforming a resource allocation graph into a 
wait-for graph

R4R1

R2

P1 P2 P3

R5

R3

P4

P5



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.22

Transforming a resource allocation graph into a 
wait-for graph

R4

R2

R1

P1 P2 P3

R5

R3

P4

P5



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.23

Transforming a resource allocation graph into a 
wait-for graph

P1 P2 P3

P4

P5



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

DEADLOCK DETECTION

L18.24



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.25

Deadlock detection for multiple instances of a 
resource type

¨ Wait-for graph is not applicable

¨ Approach uses data structures similar to Banker’s algorithm 



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.26

Data Structures: n is number of processes
m is number of resource types

¨ Available: Vector of length m
¤ Number of resources for each type

¨ Allocation: n x m matrix  
¤ Resource instances allocated for each process
¤ Allocation[i,j]=k

n Process Pi currently allocated k instances of Rj

¨ Request: n x m matrix  
¤ Current request for each process
¤ Request[i,j]=k

n Process Pi requests k more instances of Rj



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.27

Deadlock detection: Initialization
Work and Finish are vectors of length m & n

Work = Available
if (Allocationi ≠ 0) {

  Finish[i] = false;

} else {

  Finish[i] = true;

}



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.28

Deadlock detection

Find i such that:
Finish[i]==false && Requesti≤ Work

Work = Work + Allocationi
Finish[i]=true 

for all i 
   if (Finish[i] == true)

YESNO

YES

Safe state

NO
Deadlock



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.29

Deadlock detection: Usage

¨ How often will the deadlock occur?

¨ How many processes will be affected when it happens?



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.30

Frequency of invoking deadlock detection

¨ Resources allocated to deadlocked process idle
¤ Until the deadlock can be broken

¨ Deadlocks occur only when process makes a request
¤ Significant overheads to run detection per request

¨ Middle ground: Run at regular intervals



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

RECOVERY FROM DEADLOCK

L18.31



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.32

Recovery from deadlock

¨ Automated or manual

¨ OPTIONS
¤ Break the circular wait: Abort processes
¤ Preempt resources from deadlocked process(es)



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.33

Breaking circular wait: 
Process termination

¨ Abort all deadlocked processes

¨ Abort processes one at a time
¤ After each termination,  check if deadlock persists

¨ Reclaim all resources allocated to terminated process



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.34

Terminating a Process

¨ Process may be in the midst of something
¤ Updating files, printing data etc

¨ Abort process whose termination will incur minimum costs
¤ Policy decision similar to scheduling decisions



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.35

Factors determining process termination

¨ Priority

¨ How long has the process been running? 
¤ How much longer?

¨ Number and types of resources used
¤ How many more needed?

¨ Interactive or batch



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.36

Deadlock recovery: Resource preemption

Preempt resources from 
some process

Give resources to some 
other process

Deadlock broken

DONE

Deadlock persists

For a set of deadlocked processes



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.37

Resource preemption: Issues

¨ Selecting a victim
¤ Which resource and process
¤ Order of preemption to minimize cost

¨ Starvation
¤ Process can be selected for preemption finite number of 

times



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.38

Deadlock recovery through rollbacks

¨ Checkpoint process periodically
¤ Contains memory image and resource state

¨ Deadlock detection tells us which resources are needed

¨ Process owning a needed resource
¤ Rolled back to before it acquired needed resource

n Work done since rolled back checkpoint discarded

¤ Assign resource to deadlocked process



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

OTHER ISSUES
L18.39



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.40

Two-phase locking

¨ Used in database systems

¨ Operation involves requesting locks on several records and updating 
all the locked records

¨ When multiple processes are running?
¤ Possibility of deadlocks



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.41

Two-Phase Locking

¨ First phase
¤ Process tries to acquire all the locks it needs, one at time
¤ If successful: start second-phase
¤ If some record is already locked?

n Release all locks and start the first phase all over

¨ Second-phase
¤ Perform updates and release the locks



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.42

Communication Deadlocks

¨ Process A sends a request message to process B
¤ Blocks until B sends a reply back

¨ Suppose, that the request was lost
¤ A is blocked waiting for a reply
¤ B is blocked waiting for a request to do something
¤ Communication deadlock



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.43

Communication deadlocks

¨ Cannot be prevented by ordering resources (there are none)
¤ Or avoided by careful scheduling (no moments when a request can be 

postponed)

¨ Solution to breaking communication deadlocks?
¤ Timeouts

n Start a timer when you send a message to which a reply is expected.



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.44

Livelocks

¨ Polling (busy waits) used to enter critical section or access a resource
¤ Typically used for a short time when overhead for suspension is considered 

greater

¨ In a livelock two processes need each other’s resource
¤ Both run and make no progress, but neither process blocks
¤ Use CPU quantum over and over without making progress



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.45

Livelocks do occur

¨ If fork fails because process table is full
¤ Wait for some time and try again

¨ But there could be a collection of processes each trying to do the same 
thing



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.46

Starvation

¨ In dynamic systems, some policy is needed to make decision about who 
gets resource when
¤ Some processes never get service even though they are not deadlocked

¨ E.g.: Give printer to process with the smallest file to print
¤ If there is constant stream of small jobs, process with large file will starve 
¤ Can be avoided with first-come-first-served policy



CS370: Operating Systems 
Dept. Of Computer Science, Colorado State University

L18.47

The contents of this slide-set are based on the 
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th  edition. 

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 7]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th  Edition, 2014. 
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 6]


