CS 370: OPERATING SYSTEMS
[DEADLOCKS (AGAIN!)]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Deadlock Avoidance

Banker’s Algorithm

Deadlock Detection

And ... recovery

Other issues relating to deadlocks

CS370: Operating Systems L18.2
Dept. Of Computer Science, Colorado State University

BANKER’S ALGORITHM

Banker’s Algorithm

Designed by Dijkstra in 1965

Modeled on a small-town banker
Customers have been extended lines of credit

Not ALL customers will need their maximum credit immediately

Customers make loan requests from time to time

CS370: Operating Systems L18.4
Dept. Of Computer Science, Colorado State University

Crux of the Banker’s Algorithm

Consider each request as it occurs

See if granting it is safe
If safe: grant it; If unsafe: postpone

For safety banker checks if he/she has enough to satisfy some
customer

If so, that customer’s loans are assumed to be repaid
Customer closest to limit is checked next

If all loans can be repaid; state is safe: loan approved

CS370: Operating Systems L18.5
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm: Managing the customers.
Banker has only reserved 10 units instead of 22

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
cC 0 4 cC 2 4 cC 2 4
b 0 7 D 4 7 D 4 7

Free: 10 Free: 2 Free: 1

Delay all requests except C
SAFE SAFE UNSAFE

A customer may not need the

entire credit line. But the banker

There is ONLY ONE resource: Credit) ;
cannot count on this behavior

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.6

Banker’s algorithm: Crux

Declare maximum number of resource instances
nheeded

Cannot exceed resource thresholds

Determine if resource allocations leave system in a safe
state

CS370: Operating Systems L18.7
Dept. Of Computer Science, Colorado State University

Data Structures: n is the number of processes and m is the number
of resource types

Availlable: Vector of length m

Number of resources for each type
Availlable[1] = k

Max: n X m matrix
Maximum demand for each process (in each row)
Max[i,7]= k

Process P, may request at most k instances of Rj

CS370: Operating Systems L18.8
Dept. Of Computer Science, Colorado State University

Data Structures: n is the number of processes and m is the number
of resource types

Allocation: n X m matrix

Resource instances allocated for each process (each row)
Allocation[1i,7]]=k

Process P, currently allocated k instances of R,

Need: n X m matrix

Resource instances needed for each process (each row)
Need[1,7]]=k

Process P, may need k more instances of R,

CS370: Operating Systems L18.9
Dept. Of Computer Science, Colorado State University

Vectors identifying a process’ resource requirements:

Rows in the matrices
.

0 Allocation;

Resource instances allocated for process P;

0 Need;

Additional resource instances process P; may still request

CS370: Operating Systems L18.10
Dept. Of Computer Science, Colorado State University

Banker’s algorithm: Notations

X and Y are vectors of length m

X < Y if-and-only-if
X[1] <£Y¥Y[1i] forall1=1,2,...,m

X={1,7,32}and ¥ ={0,3,2,1}
So,¥Y<X
AlsoY<X ifY<Xand Y #X

CS370: Operating Systems L18.11
Dept. Of Computer Science, Colorado State University

Banker’s Algorithm: Resource-request

I ——
7 Request,: Request vector for process P.
o Request;[]]=k

= Process P; wants k instances of R,

CS370: Operating Systems L18.12
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Resource-request

Request,;< Need;

l Yes

Request.< Availlable

NO
> Error
Exceeded claim
NO —>» Wait for
availability

l Yes

Need;

Available = Available — Request;
Allocation; = Allocation; + Request;

= Need; - Request;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.13

Bankers Algorithm: Safety
Initialize Work = Available

Find i1 such that: <
Finish[l1]==false && Need;< Work
lYTS
NO _ .
Work = Work + Allocation;
Finish[i]=true
for all 1 NO Unsafe tat
—> if (Finish[i] == true) [2 ~aesae
l YES
Safe state
CS370: Operating Systems L18.14

Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Example

Allocation Max Available

A B C A B C A B C

PO 0 0] 5 3 3 3 2
Pl 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<P1l, P3, P4, P2, PO> satisfies safety criteria

Suppose process P1 requests 1 A, and 2 Cs: Request; =(1,0,2)
Request;< Available

Pretend request was fulfilled
CS370: Operating Systems L18.15
Dept. Of Computer Science, Colorado State University

Bankers Algorithm: Example

Allocation Max Available

A B C A B C A B C

PO 0 0] 5 3 2 3 0
Pl 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

<P1l, P3, P4, PO, P2> satisfies safety criteria

Request, = (3,3,0) from process P4 cannot be granted: resources unavailable

Request, = (0,2,0) from process PO cannot be granted: unsafe state

CS370: Operating Systems L18.16
Dept. Of Computer Science, Colorado State University

Bankers Algorithm:
Limited practical value
Processes rarely know in advance about their maximum resource needs

Number of processes is not fixed

Varies dynamically
Resources thought to be available can vanish

Few systems use this for avoiding deadlocks

CS370: Operating Systems L18.17
Dept. Of Computer Science, Colorado State University

DEADLOCK DETECTION

Single instance of EACH resource type

Use wait-for graph

Variant of the resource allocation graph
Deadlock exists if there is a cycle in the graph

Transformation
(1) Remove resource nodes

(2) Collapse appropriate edges

CS370: Operating Systems L18.19
Dept. Of Computer Science, Colorado State University

What the edges in the wait-for graph imply

P, 2 P,

Process P; is waiting for a resource held by P.

P, = P. only if resource allocation graph has
P;2 R, and

RCI% P, for some resource R,

CS370: Operating Systems L18.20
Dept. Of Computer Science, Colorado State University

Transforming a resource allocation graph into a
wait-for graph

CS370: Operating Systems L18.21
Dept. Of Computer Science, Colorado State University

Transforming a resource allocation graph into a
wait-for graph

CS370: Operating Systems L18.22
Dept. Of Computer Science, Colorado State University

Transforming a resource allocation graph into a

wait-for graph

CS370: Operating Systems L18.23
Dept. Of Computer Science, Colorado State University

DEADLOCK DETECTION

Deadlock detection for multiple instances of a

resource type

1 Wait-for graph is not applicable

0 Approach uses data structures similar to Banker’s algorithm

CS370: Operating Systems L18.25
Dept. Of Computer Science, Colorado State University

Data Structures: n is number of processes

m is number of resource types

Availlable: Vector of length m

Number of resources for each type

Allocation: n X m matrix
Resource instances allocated for each process
Allocation[i,]]=k

Process P; currently allocated k instances of R;

Request: n X m matrix
Current request for each process
Request[1i,]]=k
Process P; requests k more instances of R;

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.26

Deadlock detection: Initialization

Work and Finish are vectors of length m & n
S =

Work = Availlable

1f (Allocation; # 0) {
Finish|[i1i] = false;

} else {

True;

Finish[1]

CS370: Operating Systems L18.27
Dept. Of Computer Science, Colorado State University

Deadlock detection

Find i1 such that: ”
Finish[l1]==false && Request,< Work
NO l YES
Work = Work + Allocation;
Finish[i]=true
for all 1 NO Deadlock
-> if (Finish[i] == true) [ode¢
lYES
Safe state
CS370: Operating Systems L18.28

Dept. Of Computer Science, Colorado State University

Deadlock detection: Usage
How often will the deadlock occur?

How many processes will be affected when it happens?

CS370: Operating Systems L18.29
Dept. Of Computer Science, Colorado State University

Frequency of invoking deadlock detection

Resources allocated to deadlocked process idle
Until the deadlock can be broken

Deadlocks occur only when process makes a request

Significant overheads to run detection per request

Middle ground: Run at regular intervals

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.30

RECOVERY FROM DEADLOCK

Recovery from deadlock
Automated or manual

OPTIONS

Break the circular wait: Abort processes

Preempt resources from deadlocked process(es)

CS370: Operating Systems L18.32
Dept. Of Computer Science, Colorado State University

Breaking circular wait:
Process termination

Abort all deadlocked processes

Abort processes one at a time

After each termination, check if deadlock persists

Reclaim all resources allocated to terminated process

CS370: Operating Systems L18.33
Dept. Of Computer Science, Colorado State University

Terminating a Process

Process may be in the midst of something

Updating files, printing data etc

Abort process whose termination will incur minimum costs

Policy decision similar to scheduling decisions

CS370: Operating Systems L18.34
Dept. Of Computer Science, Colorado State University

Factors determining process termination

Priority

How long has the process been running?

How much longer?

Number and types of resources used

How many more needed?

Interactive or batch

CS370: Operating Systems L18.35
Dept. Of Computer Science, Colorado State University

Deadlock recovery: Resource preemption

For a set of deadlocked processes

Preempt resources from
p h

some process

l Deadlock persists

Give resources to some

other process

l Deadlock broken

DONE

CS370: Operating Systems L18.36
Dept. Of Computer Science, Colorado State University

Resource preemption: Issues

Selecting a victim
Which resource and process

Order of preemption to minimize cost

Starvation

Process can be selected for preemption finite number of
times

CS370: Operating Systems L18.37
Dept. Of Computer Science, Colorado State University

Deadlock recovery through rollbacks

Checkpoint process periodically

Contains memory image and resource state
Deadlock detection tells us which resources are needed

Process owning a needed resource

Rolled back to before it acquired needed resource

Work done since rolled back checkpoint discarded

Assign resource to deadlocked process

CS370: Operating Systems L18.38
Dept. Of Computer Science, Colorado State University

OTHER ISSUES

Two-phase locking

Used in database systems

Operation involves requesting locks on several records and updating
all the locked records

When multiple processes are running?

Possibility of deadlocks

CS370: Operating Systems L18.40
Dept. Of Computer Science, Colorado State University

Two-Phase Locking

First phase
Process tries to acquire all the locks it needs, one at time
If successful: start second-phase

If some record is already locked?

Release all locks and start the first phase all over

Second-phase

Perform updates and release the locks

CS370: Operating Systems L18.41
Dept. Of Computer Science, Colorado State University

Communication Deadlocks

Process A sends a request message to process B

Blocks until B sends a reply back

Suppose, that the request was lost
A is blocked waiting for a reply
B is blocked waiting for a request to do something

Communication deadlock

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L18.42

Communication deadlocks

Cannot be prevented by ordering resources (there are none)

Or avoided by careful scheduling (no moments when a request can be
postponed)

Solution to breaking communication deadlocks?

Timeovuts

Start a timer when you send a message to which a reply is expected.

CS370: Operating Systems L18.43
Dept. Of Computer Science, Colorado State University

Livelocks

Polling (busy waits) used to enter critical section or access a resource

Typically used for a short time when overhead for suspension is considered
greater

In a livelock two processes need each other’s resource
Both run and make no progress, but neither process blocks

Use CPU quantum over and over without making progress

CS370: Operating Systems L18.44
Dept. Of Computer Science, Colorado State University

Livelocks do occur

If fork fails because process table is full

Woait for some time and try again

But there could be a collection of processes each trying to do the same
thing

CS370: Operating Systems L18.45
Dept. Of Computer Science, Colorado State University

Starvation

In dynamic systems, some policy is needed to make decision about who
gets resource when

Some processes never get service even though they are not deadlocked

E.g.: Give printer to process with the smallest file to print
If there is constant stream of small jobs, process with large file will starve

Can be avoided with first-come-first-served policy

CS370: Operating Systems L18.46
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 7]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 6]

CS370: Operating Systems L18.47
Dept. Of Computer Science, Colorado State University

