CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture
S
1 Address binding
1 Address spaces
1 Swapping

-1 Contiguous memory allocations

CS370: Operating Systems L19.2
Dept. Of Computer Science, Colorado State University

Memory is an important resource that must be
managed carefully

Memory capacities have been increasing

But programs are getting bigger faster

Parkinson’s Law

Programs expand to fill the memory available to hold them

CS370: Operating Systems L19.3
Dept. Of Computer Science, Colorado State University

What every programmer would like

Memory that is
Private, infinitely large, infinitely fast
Non-volatile

Inexpensive too

Unfortunately, no such memory exists as of now

CS370: Operating Systems L19.4
Dept. Of Computer Science, Colorado State University

The second choice is to manage a hierarchy of

memorz
I

.
5
()
w []
%
Electronic Disk o
®0
©

Magnetic Disk '

Optical Disk '

Magnetic Tapes '

CS370: Operating Systems L19.5
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENT

Memory Management: Why?

Main objective of system is to execute programs

Programs and data must be in memory (af least
partially) during execution

To improve CPU vutilization and response times
Several processes need to be memory resident

Memory needs to be shared

CS370: Operating Systems L19.7
Dept. Of Computer Science, Colorado State University

Memory

Large array of words or bytes

Each word /byte has its own address

Typical execution cycle:
(1) Fetch instruction from memory where program is stored
(2) Decode
(3) Execute. Operands may be fetched from memory

(4) Result of execution may be stored back to memory

CS370: Operating Systems L19.8
Dept. Of Computer Science, Colorado State University

Memory Unit

Sees only a stream of memory addresses

Oblivious to

How these addresses are generated

Instruction counter, indexing, indirection, etc.

What they are for

Instructions or data

CS370: Operating Systems L19.9
Dept. Of Computer Science, Colorado State University

Why processes must be memory resident

Storage that the CPU can access directly
(1) Registers in the processor

(2) Main memory

Machine instructions take memory addresses as arguments

None operate on disk addresses

Any instructions in execution plus needed data

Must be in memory

CS370: Operating Systems L19.10
Dept. Of Computer Science, Colorado State University

Overheads in direct-access storage devices

CPUs can decode instructions and perform simple operations on
register contents

1 or more per clock cycle
Registers accessible in 1 clock cycle

Main memory access is a transaction on the memory bus

Takes several cycles to complete

CS370: Operating Systems L19.11
Dept. Of Computer Science, Colorado State University

Coping with the speed differential

Introduce fast memory between CPU and main memory for reused
data

Cache (data)
Cache (instructionsl)

Cache (translation!)
Cache ...

CS370: Operating Systems L19.12
Dept. Of Computer Science, Colorado State University

Besides coping with the speed differential, correct

operation needed
o

1 OS must be protected from accesses by user processes

1 User processes must be protected from one another

CS370: Operating Systems L19.13
Dept. Of Computer Science, Colorado State University

Protection: Making sure each process has separate

memory spaces
— Y

1 Determine range of legal addresses for process

1 Ensure that process can access only those

CS370: Operating Systems L19.14
Dept. Of Computer Science, Colorado State University

Providing protection with registers

Base

Smallest legal physical address

Limit

Size of the range of physical address

Eg: Base = 300040 and limit = 120900
Legal: 300040 <> (300040 + 120900 -1) = 420939

CS370: Operating Systems L19.15
Dept. Of Computer Science, Colorado State University

Base and limit registers loaded only by the OS

Privileged instructions needed to load registers
Executed ONLY in kernel mode

User programs cannot change these registers’ contents

OS is given unrestricted access to OS and user’s memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.16

CPU hardware compares every address generated

in user mode
e

address

CPU

NO NO
v v memory

TRAP to OS: Addressing ERROR

CS370: Operating Systems L19.17
Dept. Of Computer Science, Colorado State University

Processes and memory

To execute, a program needs to be placed inside a
process

Process executes

Access instructions and data from memory

Process terminates

Memory reclaimed and declared available

CS370: Operating Systems L19.18
Dept. Of Computer Science, Colorado State University

Binding is a mapping from one address space to the
next

Processes can reside in any part of the physical memory
First address of process need not be X0000

Addresses in source program are symbolic
Compiler binds symbolic addresses to relocatable addresses

Loader binds relocatable addresses to absolute addresses

CS370: Operating Systems L19.19
Dept. Of Computer Science, Colorado State University

Binding can be done at ... [1/2]

Compile time

Known that the process will reside at location R

If location changes: recompile

MS-DOS .COM programs were bound this way

Load time

Based on compiler generated relocatable code

CS370: Operating Systems L19.20
Dept. Of Computer Science, Colorado State University

Binding can be done at ... [2/2]:
Execution-time

Process can be moved around during execution
Binding delayed until run time
Special hardware needed

Supported by most OS

CS370: Operating Systems L19.21
Dept. Of Computer Science, Colorado State University

ADDRESS SPACES

Address spaces

Logical
Addresses generated by the program running on CPU

Physical

Addresses seen by the memory unit

Logical address space
Set of logical addresses generated by program

Physical address space
Set of physical addresses corresponding to the logical address space

CS370: Operating Systems L19.23
Dept. Of Computer Science, Colorado State University

Generation of physical and logical addresses

Compile-time and load-time

Identical logical and physical addresses

Execution time
Logical addresses differ from physical addresses

Logical address referred to as virtual address

Runtime mapping performed in hardware

Memory management unit (MMU)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.24

Memory management unit

Mapping converts logical to physical addresses

User program never sees real physical address
Create pointer to location

Store in memory, manipulate and compare

When used as a memory address (load /store)

Relocated to physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.25

Dynamic relocation using a relocation register

Relocation
Register
14000
Logical Physical
Address Address
CPU — + — —

346 -/ 14346

memory

MMU

User program never sees the real physical addresses

CS370: Operating Systems L19.26
Dept. Of Computer Science, Colorado State University

But ...
N

7 Do we need to load the entire program in memory?

CS370: Operating Systems L19.27
Dept. Of Computer Science, Colorado State University

In dynamic loading an unused routine is never
loaded into memory

Routine is not loaded until it is called

Kept on disk in relocatable load format

When routine calls another one

If routine not present?

Load routine and update address tables

Does not require special support from OS

Design programs appropriately

CS370: Operating Systems L19.28
Dept. Of Computer Science, Colorado State University

Contrasting Loading and Linking

Loading

Load executable into memory prior to execution

Linking
Takes some smaller executables and joins them together as a single larger
executable.

CS370: Operating Systems L19.29
Dept. Of Computer Science, Colorado State University

Static linking

Language libraries treated as other modules

Combined by loader into program image

Each program includes a copy of library functions called in
executable image

Wastes disk / memory space, but make the binary self-contained

CS370: Operating Systems L19.30
Dept. Of Computer Science, Colorado State University

Dynamic linking is similar to dynamic loading

Stub included for each library reference
Locate memory resident routine

How to load routine if not in memory

After routine is loaded, stub replaces itself with address of routine

Subsequent accesses to code-segment do not incur dynamic linking costs

CS370: Operating Systems L19.31
Dept. Of Computer Science, Colorado State University

Unlike dynamic loading, dynamic linking needs

t f the OS
_suppor rom the

1 Only the OS can allow multiple processes to access the same memory
region

Shared Pages

CS370: Operating Systems L19.32
Dept. Of Computer Science, Colorado State University

SWAPPING

Swapping: Temporarily moving a process

out of memory into a backing store

Operating
System \\/
Swap out -

Swap in -
User space \/

CS370: Operating Systems L19.34
Dept. Of Computer Science, Colorado State University

Swapping and memory space restrictions: Effects of
binding

Process may or may not be swapped back into the same space that it
occupied

Binding at compile or load time?

Difficult to relocate

Execution-time binding
Process can be swapped into different memory space

Physical addresses computed at run-time

CS370: Operating Systems L19.35
Dept. Of Computer Science, Colorado State University

When a CPU scheduler decides to execute a

process, it calls the dispatcher

1 Check whether the next process is in memory

0 If it is not & there is no free memory?
Swap out a process that is memory resident

Swap in the desired process

CS370: Operating Systems L19.36
Dept. Of Computer Science, Colorado State University

Overheads in swapping: Context switch time

User process size: 100 MB
Transfer rate: 50 MB /sec
Transfer time = 2 seconds
Average latency: 8 milliseconds

Swap out = transfer time + latency
2000 + 8 = 2008 milliseconds

Total swap time = swap in + swap out
401 6 milliseconds

CS370: Operating Systems L19.37
Dept. Of Computer Science, Colorado State University

Factors constraining swapping besides swap time

Process must be completely idle
No pending |/O

Device is busy so | /O is queuved
Swap out P; and swap in P,

|/O operation may attempt to use P,’s memory
Solution 1: Never swap process with pending | /O

Solution 2: Execute |/O operations into OS buffers

CS370: Operating Systems L19.38
Dept. Of Computer Science, Colorado State University

Swapping is not a reasonable memory management
solution

Too much swapping time; too little execution time

Modification of swapping exists in many versions of UNIX
Swapping is normally disabled
Starts if many processes are running, and a set threshold is breached

Halted when system load reduces

CS370: Operating Systems L19.39
Dept. Of Computer Science, Colorado State University

Each process is contained in a single continuous section of memory

CONTIGUOUS MEMORY ALLOCATION

Partitioning of memory

Main memory needs to accommodate the OS and user processes

Divided into two partitions
Resident OS

Usually low memory

User processes

CS370: Operating Systems L19.41
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

Relocation register

Smallest physical address

Limit register

Range of logical addresses

CS370: Operating Systems L19.42
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

When CPU scheduler selects a process for execution

Relocation and limit registers reloaded as part of context switch

Every address generated by the CPU

Checked against the relocation/limit registers

CS370: Operating Systems L19.43
Dept. Of Computer Science, Colorado State University

Memory Mapping and Protection

limit relocation

register register
Logical l Physical
address address

YES
CPU —_—> < > + >
NO
v memory

TRAP to OS: Addressing ERROR

E.g.: relocation=100040 and limit=74600

CS370: Operating Systems L19.44
Dept. Of Computer Science, Colorado State University

Memory Allocation: Fixed Partition method

Divide memory into several fixed-size partitions

Each partition contains exactly one process

Degree of multiprogramming

Bound by the number of partitions

CS370: Operating Systems L19.45
Dept. Of Computer Science, Colorado State University

Memory allocation: Variable-partition method [1 /2]

Used in batch environments

OS maintains table tracking memory utilization
What is available?

Which ones are occupied?

Initially all memory is available
Considered a large memory hole
Eventually many memory holes will exist

CS370: Operating Systems L19.46
Dept. Of Computer Science, Colorado State University

Memory allocation: Variable-partition method [2 /2]

OS orders processes according to the scheduling algorithm

Memory allocated to processes until requirements of the next process
cannot be met

Wait till a larger block is available

Check if smaller requirements of other processes can be met

CS370: Operating Systems L19.47
Dept. Of Computer Science, Colorado State University

Variable-partition method: Reclaiming spaces

When process arrives if space is too large

Split into two

When process terminates

If released memory is adjacent to other memory holes

Fuse to form a larger space

CS370: Operating Systems L19.48
Dept. Of Computer Science, Colorado State University

Splitting and Fusing Memory spaces
B

CS370: Operating Systems L19.49
Dept. Of Computer Science, Colorado State University

Dynamic Storage Allocation Problem
—

0 Satisfying a request of size n from the set of available spaces
First fit

Best fit
Worst fit

CS370: Operating Systems L19.50
Dept. Of Computer Science, Colorado State University

First fit

Scan list of segments until you find a memory-hole that is big enough

Hole is broken up into two pieces
One for the process

The other is unused memory

CS370: Operating Systems L19.51
Dept. Of Computer Science, Colorado State University

Best Fit

Scan the entire list from beginning to the end

Pick the smallest memory-hole that is adequate to
host the process

CS370: Operating Systems L19.52
Dept. Of Computer Science, Colorado State University

Comparing Best Fit and First Fit

Best fit is slower than first fit

Surprisingly, it also results in more wasted memory than first fit

Tends to fill up memory with tiny, useless holes

CS370: Operating Systems L19.53
Dept. Of Computer Science, Colorado State University

Worst fit

How about going the other extreme?
Always take the largest available memory-hole

Perhaps, the new memory-hole would be useful

Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems L19.54
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L19.55
Dept. Of Computer Science, Colorado State University

