
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Computer Science
Colorado State University

L19.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.2

Topics covered in this lecture

¨ Address binding
¨ Address spaces
¨ Swapping
¨ Contiguous memory allocations

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.3

Memory is an important resource that must be
managed carefully

¨ Memory capacities have been increasing
¤ But programs are getting bigger faster

¨ Parkinson’s Law
Programs expand to fill the memory available to hold them

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.4

What every programmer would like

¨ Memory that is
¤ Private, infinitely large, infinitely fast
¤ Non-volatile
¤ Inexpensive too

¨ Unfortunately, no such memory exists as of now

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.5

The second choice is to manage a hierarchy of
memory

Registers

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tapes

Co
st/

bi
t i

nc
re

as
es

Access times increase

Volatile

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY MANAGEMENT

L19.6

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.7

Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least
partially) during execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.8

Memory

¨ Large array of words or bytes
¤ Each word/byte has its own address

¨ Typical execution cycle:
① Fetch instruction from memory where program is stored
② Decode
③ Execute. Operands may be fetched from memory
④ Result of execution may be stored back to memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.9

Memory Unit

¨ Sees only a stream of memory addresses

¨ Oblivious to
¤ How these addresses are generated

n Instruction counter, indexing, indirection, etc.

¤What they are for
n Instructions or data

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.10

Why processes must be memory resident

¨ Storage that the CPU can access directly
① Registers in the processor
② Main memory

¨ Machine instructions take memory addresses as arguments
¤ None operate on disk addresses

¨ Any instructions in execution plus needed data
¤ Must be in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.11

Overheads in direct-access storage devices

¨ CPUs can decode instructions and perform simple operations on
register contents
¤ 1 or more per clock cycle

¨ Registers accessible in 1 clock cycle

¨ Main memory access is a transaction on the memory bus
¤ Takes several cycles to complete

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.12

Coping with the speed differential

¨ Introduce fast memory between CPU and main memory for reused
data
¤ Cache (data)
¤ Cache (instructions!)
¤ Cache (translation!)
¤ Cache …

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.13

Besides coping with the speed differential, correct
operation needed

¨ OS must be protected from accesses by user processes

¨ User processes must be protected from one another

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.14

Protection: Making sure each process has separate
memory spaces

¨ Determine range of legal addresses for process

¨ Ensure that process can access only those

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.15

Providing protection with registers

¨ Base
¤ Smallest legal physical address

¨ Limit
¤ Size of the range of physical address

¨ Eg: Base = 300040 and limit = 120900
§ Legal: 300040 ßà (300040 + 120900 -1) = 420939

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.16

Base and limit registers loaded only by the OS

¨ Privileged instructions needed to load registers
¤ Executed ONLY in kernel mode

¨ User programs cannot change these registers’ contents

¨ OS is given unrestricted access to OS and user’s memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.17

CPU hardware compares every address generated
in user mode

≥
YES

base base + limit

<

memory

CPU

NO NO

TRAP to OS: Addressing ERROR

address YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.18

Processes and memory

¨ To execute, a program needs to be placed inside a
process

¨ Process executes
¤ Access instructions and data from memory

¨ Process terminates
¤ Memory reclaimed and declared available

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.19

Binding is a mapping from one address space to the
next

¨ Processes can reside in any part of the physical memory
¤ First address of process need not be x0000

¨ Addresses in source program are symbolic

¨ Compiler binds symbolic addresses to relocatable addresses

¨ Loader binds relocatable addresses to absolute addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.20

Binding can be done at … [1/2]

¨ Compile time
¤ Known that the process will reside at location R

n If location changes: recompile

¤ MS-DOS .COM programs were bound this way

¨ Load time
¤ Based on compiler generated relocatable code

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.21

Binding can be done at … [2/2]:
Execution-time

¨ Process can be moved around during execution
¤ Binding delayed until run time
¤ Special hardware needed
¤ Supported by most OS

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

ADDRESS SPACES

L19.22

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.23

Address spaces

¨ Logical
¤ Addresses generated by the program running on CPU

¨ Physical
¤ Addresses seen by the memory unit

¨ Logical address space
¤ Set of logical addresses generated by program

¨ Physical address space
¤ Set of physical addresses corresponding to the logical address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.24

Generation of physical and logical addresses

¨ Compile-time and load-time
¤ Identical logical and physical addresses

¨ Execution time
¤ Logical addresses differ from physical addresses
¤ Logical address referred to as virtual address

¨ Runtime mapping performed in hardware
¤ Memory management unit (MMU)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.25

Memory management unit

¨ Mapping converts logical to physical addresses

¨ User program never sees real physical address
¤ Create pointer to location
¤ Store in memory, manipulate and compare

¨ When used as a memory address (load/store)
¤ Relocated to physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.26

Dynamic relocation using a relocation register

memory

CPU

MMU

+
Logical
Address

Physical
Address

346

Relocation
Register
14000

14346

User program never sees the real physical addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.27

But …

¨ Do we need to load the entire program in memory?

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.28

In dynamic loading an unused routine is never
loaded into memory

¨ Routine is not loaded until it is called
¤ Kept on disk in relocatable load format

¨ When routine calls another one
¤ If routine not present?

n Load routine and update address tables

¨ Does not require special support from OS
¤ Design programs appropriately

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.29

Contrasting Loading and Linking

¨ Loading
¤ Load executable into memory prior to execution

¨ Linking
¤ Takes some smaller executables and joins them together as a single larger

executable.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.30

Static linking

¨ Language libraries treated as other modules
¤ Combined by loader into program image

¨ Each program includes a copy of library functions called in
executable image
¤ Wastes disk / memory space, but make the binary self-contained

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.31

Dynamic linking is similar to dynamic loading

¨ Stub included for each library reference
¤ Locate memory resident routine
¤ How to load routine if not in memory

¨ After routine is loaded, stub replaces itself with address of routine
¤ Subsequent accesses to code-segment do not incur dynamic linking costs

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.32

Unlike dynamic loading, dynamic linking needs
support from the OS

¨ Only the OS can allow multiple processes to access the same memory
region
¤ Shared Pages

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SWAPPING
L19.33

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.34

Swapping: Temporarily moving a process
out of memory into a backing store

Process
P1

Process
P2

Operating
System

User space

Swap out

Swap in

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.35

Swapping and memory space restrictions: Effects of
binding

¨ Process may or may not be swapped back into the same space that it
occupied

¨ Binding at compile or load time?
¤ Difficult to relocate

¨ Execution-time binding
¤ Process can be swapped into different memory space
¤ Physical addresses computed at run-time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.36

When a CPU scheduler decides to execute a
process, it calls the dispatcher

¨ Check whether the next process is in memory

¨ If it is not & there is no free memory?
¤ Swap out a process that is memory resident
¤ Swap in the desired process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.37

Overheads in swapping: Context switch time

¨ User process size: 100 MB

¨ Transfer rate: 50 MB/sec

¨ Transfer time = 2 seconds

¨ Average latency: 8 milliseconds

¨ Swap out = transfer time + latency
¤ 2000 + 8 = 2008 milliseconds

¨ Total swap time = swap in + swap out
¤ 4016 milliseconds

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.38

Factors constraining swapping besides swap time

¨ Process must be completely idle
¤ No pending I/O

¨ Device is busy so I/O is queued
¤ Swap out P1 and swap in P2
¤ I/O operation may attempt to use P2’s memory

n Solution 1: Never swap process with pending I/O
n Solution 2: Execute I/O operations into OS buffers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.39

Swapping is not a reasonable memory management
solution

¨ Too much swapping time; too little execution time

¨ Modification of swapping exists in many versions of UNIX

¤ Swapping is normally disabled
¤ Starts if many processes are running, and a set threshold is breached
¤ Halted when system load reduces

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CONTIGUOUS MEMORY ALLOCATION

Each process is contained in a single continuous section of memory

L19.40

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.41

Partitioning of memory

¨ Main memory needs to accommodate the OS and user processes

¨ Divided into two partitions
¤ Resident OS

n Usually low memory

¤ User processes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.42

Memory Mapping and Protection

¨ Relocation register
¤ Smallest physical address

¨ Limit register
¤ Range of logical addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.43

Memory Mapping and Protection

¨ When CPU scheduler selects a process for execution
¤ Relocation and limit registers reloaded as part of context switch

¨ Every address generated by the CPU
¤ Checked against the relocation/limit registers

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.44

Memory Mapping and Protection

<
YES

limit
register

relocation
register

memory

CPU

NO

TRAP to OS: Addressing ERROR

+
Logical
address

Physical
address

E.g.: relocation=100040 and limit=74600

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.45

Memory Allocation: Fixed Partition method

¨ Divide memory into several fixed-size partitions
¤ Each partition contains exactly one process

¨ Degree of multiprogramming
¤ Bound by the number of partitions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.46

Memory allocation: Variable-partition method [1/2]

¨ Used in batch environments

¨ OS maintains table tracking memory utilization
¤ What is available?
¤ Which ones are occupied?

¨ Initially all memory is available
¤ Considered a large memory hole

¤ Eventually many memory holes will exist

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.47

Memory allocation: Variable-partition method [2/2]

¨ OS orders processes according to the scheduling algorithm

¨ Memory allocated to processes until requirements of the next process
cannot be met
¤ Wait till a larger block is available
¤ Check if smaller requirements of other processes can be met

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.48

Variable-partition method: Reclaiming spaces

¨ When process arrives if space is too large
¤ Split into two

¨ When process terminates
¤ If released memory is adjacent to other memory holes

n Fuse to form a larger space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.49

Splitting and Fusing Memory spaces

P1

P2

P3

P4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.50

Dynamic Storage Allocation Problem

¨ Satisfying a request of size n from the set of available spaces
¤ First fit
¤ Best fit
¤ Worst fit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.51

First fit

¨ Scan list of segments until you find a memory-hole that is big enough

¨ Hole is broken up into two pieces
¤ One for the process
¤ The other is unused memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.52

Best Fit

¨ Scan the entire list from beginning to the end

¨ Pick the smallest memory-hole that is adequate to
host the process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.53

Comparing Best Fit and First Fit

¨ Best fit is slower than first fit

¨ Surprisingly, it also results in more wasted memory than first fit
¤ Tends to fill up memory with tiny, useless holes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.54

Worst fit

¨ How about going the other extreme?
¤ Always take the largest available memory-hole
¤ Perhaps, the new memory-hole would be useful

¨ Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L19.55

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

