CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Contiguous memory allocations

Fragmentations

External and Internal
Paging

Hardware support for paging

CS370: Operating Systems L20.2
Dept. Of Computer Science, Colorado State University

Splitting and Fusing Memory spaces
B

CS370: Operating Systems L20.3
Dept. Of Computer Science, Colorado State University

Dynamic Storage Allocation Problem
—

0 Satisfying a request of size n from the set of available spaces
First fit

Best fit
Worst fit

CS370: Operating Systems L20.4
Dept. Of Computer Science, Colorado State University

First fit

Scan list of segments until you find a memory-hole that is big enough

Hole is broken up into two pieces
One for the process

The other is unused memory

CS370: Operating Systems L20.5
Dept. Of Computer Science, Colorado State University

Best Fit

Scan the entire list from beginning to the end

Pick the smallest memory-hole that is adequate to host the process

CS370: Operating Systems L20.6
Dept. Of Computer Science, Colorado State University

Comparing Best Fit and First Fit

Best fit is slower than first fit

Surprisingly, it also results in more wasted memory than first fit

Tends to fill up memory with tiny, useless holes

CS370: Operating Systems L20.7
Dept. Of Computer Science, Colorado State University

Worst fit

How about going to the other extreme?
Always take the largest available memory-hole

Perhaps, the new memory-hole would be useful

Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems L20.8
Dept. Of Computer Science, Colorado State University

FRAGMENTATION

Contiguous Memory Allocation: Fragmentation

As processes are loaded/removed from memory

Free memory space is broken into small pieces

External fragmentation
Enough space to satisfy request; BUT

Available spaces are not contiguous

CS370: Operating Systems L20.10
Dept. Of Computer Science, Colorado State University

°
Fragmentation: Example
.
CS370: Operating Systems L20.11
Dept. Of Computer Science, Colorado State University

Fragmentation can be internal as well

Memory allocated to process may be slightly larger than requested

Internal fragmentation

Unused memory is internal to blocks

CS370: Operating Systems L20.12
Dept. Of Computer Science, Colorado State University

Compaction: Solution to external fragmentation

Shuffle memory contents

Place free memory into large block

Not possible if relocation is static

Load time

Approach involves moving:
(1) Processes towards one end

@ Gaps towards the other end

CS370: Operating Systems L20.13
Dept. Of Computer Science, Colorado State University

Compaction: Example

CS370: Operating Systems L20.14
Dept. Of Computer Science, Colorado State University

Memory compaction is time intensive and is usually

not done
Let’s consider a machine with 1 GB of RAM
The machine can copy 4 bytes in 20 nanoseconds

Time to compact all the memory?
10 x (20x10?/4) = 5 seconds (approximately)
Note: 1 GB is approximately 107 bytes.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.15

Summarizing the pure Swapping based approach

Bring in each process in its entirety into memory

Run process for a while before eviction due to:
Space being needed for another process

Process becomes idle

|dle processes should not take up space in memory

CS370: Operating Systems L20.16
Dept. Of Computer Science, Colorado State University

Overview of how mapping of logical and physical

addresses is performed
—

CPU

Virtual
address

A\ 4

Memory s Iranslation Physical
Management o Lookaside Memory
Unit (MMU) Buffer (TLB)

Physical '

address | TTc=--o_______ o o-===7T7

MMU may access Physical Memory to perform translations
{PageTable may be stored there}

CS370: Operating Systems L20.17
Dept. Of Computer Science, Colorado State University

Noncontiguous memory management

PAGING

The Pc:glng memory mcmc:gemen’r scheme
Physical address space of process can be non-contiguous

Solves problem of fitting variable-sized memory chunks to backing
store

Backing store has fragmentation problem

Compaction is impossible

CS370: Operating Systems L20.19
Dept. Of Computer Science, Colorado State University

Basic method for implementing pages

Break memory into fixed-sized blocks

Physical memory: frames
. Same size
Logical memory: pages :|'

Backing store is also divided the same way

CS370: Operating Systems L20.20
Dept. Of Computer Science, Colorado State University

Paging Hardware: Paging is a form of dynamic

relocation
—

Page Page
number [... offset Physical

A Address

CPU —)‘ p | d }'_" Frame f

£111..111

f
A

Page Table

CS370: Operating Systems L20.21
Dept. Of Computer Science, Colorado State University

Paging: Logical and Physical Memory

w N B O

Page Table

Logical Memory

Physical Memory
CS370: Operating Systems L20.22
Dept. Of Computer Science, Colorado State University

Page size

Usually a power of 2
512 bytes— 16 MB

Size of logical address: 2™

Page size: 27

Page number Page offset

m - n n m bits

Logical address

CS370: Operating Systems L20.23
Dept. Of Computer Science, Colorado State University

Paging and Fragmentation

No external fragmentation

Free frame available for allocation to other processes

Internal fragmentation possible
Last frame may not be full

If process size is independent of page size

Internal fragmentation = 2 page per process

CS370: Operating Systems L20.24
Dept. Of Computer Science, Colorado State University

Page sizes

Processes, data sets, and memory have all grown over
time

Page sizes have also increased

Some CPUs/kernels support multiple page sizes

CS370: Operating Systems L20.25
Dept. Of Computer Science, Colorado State University

Paging: User program views memory das a single
space

Program is scattered throughout memory

User view and physical memory reconciled by

Address-translation hardware

Process has no way of addressing memory outside of its page table

CS370: Operating Systems L20.26
Dept. Of Computer Science, Colorado State University

OS manages the physical memory

Maintains frame-table; one entry per frame
Free or allocated?

If allocated: Which page of which process

Maintains a page table for each process

Used by CPU dispatcher to define hardware page table when process is
CPU-bound

Paging increases context switching time

CS370: Operating Systems L20.27
Dept. Of Computer Science, Colorado State University

Example: 32-bit address space

Page size = 4K
Logical address = 0x23Fn427

What's the offset within the page?
0x427

What’s the page number?
0x23FA

Page table entry maps 0x23FA to frame 0x12345 what is the physical
memory address for the logical address?

0x12345427

CS370: Operating Systems L20.28
Dept. Of Computer Science, Colorado State University

Example: 32-bit address space

Page size = 1K
Logical address = 0x23Fn427

What'’s the offset within the page?
©+| 0000100111

What’s the page number?
0000 0010 0011 1111 1010 01

CS370: Operating Systems L20.29
Dept. Of Computer Science, Colorado State University

All accesses to memory must go through a map.
Efficiency is important.

HARDWARE SUPPORT FOR PAGING

The purpose of the page table is to map virtual
pages onto physical frames

Think of the page table as a function
Takes virtual page number as an argument

Produces physical frame number as result

Virtual page field in virtual address replaced by frame field

Physical memory address

CS370: Operating Systems L20.31
Dept. Of Computer Science, Colorado State University

Two major issues facing page tables

Can be extremely large
With a 4 KB page size, a 32-bit address space has 1 million pages

Also, each process has its own page table

The mapping must be fast
Virtual-to-physical mapping must be done on every memory reference

Page table lookup should not be a bottleneck

CS370: Operating Systems L20.32
Dept. Of Computer Science, Colorado State University

Implementing the page table:
Dedicated registers

When a process is assigned the CPU, the dispatcher reloads these
registers

Feasible if the page table is small

However, for most contemporary systems entries are greater than 10°

CS370: Operating Systems L20.33
Dept. Of Computer Science, Colorado State University

Implementing the page table in memory

Page table base register (PTBR) points to page table

2 memory accesses for each access
One for the page-table entry
One for the byte

CS370: Operating Systems L20.34
Dept. Of Computer Science, Colorado State University

Observation

Most programs make a large number of references to a small number
of pages

Not the other way around

Only a small fraction of the page table entries are heavily read

Others are barely used at all

CS370: Operating Systems L20.35
Dept. Of Computer Science, Colorado State University

Translation look-aside buffer
Small, fast-lookup hardware cache

Number of TLB entries is small (64 ~ 1024)

Contains few page-table entries

Each entry of the TLB consists of 2 parts

A key and a value

When the associative memory is presented with an item

ltem is compared with all keys simultaneously

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.36

Using the TLB with page tables (1)

TLB contains only a few page table entries

When a logical address is generated by the CPU, the page number is
presented to the TLB

When frame number is found, use to access memory

Usually just 10-20% longer than an unmapped memory reference

CS370: Operating Systems L20.37
Dept. Of Computer Science, Colorado State University

Using the TLB with page tables (2)

What if there is a TLB miss¢

Memory reference to page table is made

Replacement policies for the entries

Some TLBs allow certain entries to be wired down

TLB entries for kernel code are wired down

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.38

TLB and Address Space Identifiers (ASIDs)

ASID uniquely identifies each process

Allows TLB to contain addresses from several different processes
simultaneously

When resolving page numbers
TLB ensures that ASIDs match

If not, it is treated as a TLB miss

CS370: Operating Systems L20.39
Dept. Of Computer Science, Colorado State University

Without ASIDs TLB must be flushed with every

context switch
.

o1 Each process has its own page table

1 Without flushing or ASIDs, TLB could include old entries
Valid virtual addresses

But incorrect or invalid physical addresses ;fﬁ “&7

® From previous process

CS370: Operating Systems L20.40
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4™ Edition, 201 4.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L20.41
Dept. Of Computer Science, Colorado State University

