
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Computer Science
Colorado State University

L20.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.2

Topics covered in this lecture

¨ Contiguous memory allocations
¨ Fragmentations

¤ External and Internal

¨ Paging
¨ Hardware support for paging

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.3

Splitting and Fusing Memory spaces

P1

P2

P3

P4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.4

Dynamic Storage Allocation Problem

¨ Satisfying a request of size n from the set of available spaces
¤ First fit
¤ Best fit
¤ Worst fit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.5

First fit

¨ Scan list of segments until you find a memory-hole that is big enough

¨ Hole is broken up into two pieces
¤ One for the process
¤ The other is unused memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.6

Best Fit

¨ Scan the entire list from beginning to the end

¨ Pick the smallest memory-hole that is adequate to host the process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.7

Comparing Best Fit and First Fit

¨ Best fit is slower than first fit

¨ Surprisingly, it also results in more wasted memory than first fit
¤ Tends to fill up memory with tiny, useless holes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.8

Worst fit

¨ How about going to the other extreme?
¤ Always take the largest available memory-hole
¤ Perhaps, the new memory-hole would be useful

¨ Simulations have shown that worst fit is not a good idea either

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

FRAGMENTATION
L20.9

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.10

Contiguous Memory Allocation: Fragmentation

¨ As processes are loaded/removed from memory
¤ Free memory space is broken into small pieces

¨ External fragmentation
¤ Enough space to satisfy request; BUT
¤ Available spaces are not contiguous

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.11

Fragmentation: Example

P1

P2

P3

P4
P5

Process P5 cannot be loaded because
memory space is fragmented

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.12

Fragmentation can be internal as well

¨ Memory allocated to process may be slightly larger than requested

¨ Internal fragmentation
¤ Unused memory is internal to blocks

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.13

Compaction: Solution to external fragmentation

¨ Shuffle memory contents
¤ Place free memory into large block

¨ Not possible if relocation is static
¤ Load time

¨ Approach involves moving:
① Processes towards one end
② Gaps towards the other end

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.14

Compaction: Example

P1

P2

P3

P4
P5

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.15

Memory compaction is time intensive and is usually
not done

¨ Let’s consider a machine with 1 GB of RAM

¨ The machine can copy 4 bytes in 20 nanoseconds

¨ Time to compact all the memory?
 109 x (20x10-9/4) = 5 seconds (approximately)
 Note: 1 GB is approximately 109 bytes.

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.16

Summarizing the pure Swapping based approach

¨ Bring in each process in its entirety into memory

¨ Run process for a while before eviction due to:
¤ Space being needed for another process
¤ Process becomes idle

n Idle processes should not take up space in memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.17

Overview of how mapping of logical and physical
addresses is performed

CPU

Memory
Management
Unit (MMU)

Translation
Lookaside

Buffer (TLB)

Physical
Memory

Virtual
address

Physical
address

MMU may access Physical Memory to perform translations
 {PageTable may be stored there}

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGING

Noncontiguous memory management

L20.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.19

The Paging memory management scheme

¨ Physical address space of process can be non-contiguous

¨ Solves problem of fitting variable-sized memory chunks to backing
store
¤ Backing store has fragmentation problem

n Compaction is impossible

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.20

Basic method for implementing pages

¨ Break memory into fixed-sized blocks
¤ Physical memory: frames
¤ Logical memory: pages

¨ Backing store is also divided the same way

Same size

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.21

Paging Hardware: Paging is a form of dynamic
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.22

Paging: Logical and Physical Memory

Page 0

Page 1

Page 2

Page 3

0

1

2

3

1

4

3

7

0

1

2

3

4

5

6

7

Page 0

Page 2

Page 1

Page 3

Logical Memory

Page Table

Physical Memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.23

m bits

Logical address

Page size

¨ Usually a power of 2
§ 512 bytes – 16 MB

¨ Size of logical address: 2m

¨ Page size: 2n

Page offset

nm - n

Page number

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.24

Paging and Fragmentation

¨ No external fragmentation
¤ Free frame available for allocation to other processes

¨ Internal fragmentation possible
¤ Last frame may not be full
¤ If process size is independent of page size

n Internal fragmentation = ½ page per process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.25

Page sizes

¨ Processes, data sets, and memory have all grown over
time
¤ Page sizes have also increased

¨ Some CPUs/kernels support multiple page sizes

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.26

Paging: User program views memory as a single
space

¨ Program is scattered throughout memory

¨ User view and physical memory reconciled by
¤ Address-translation hardware

¨ Process has no way of addressing memory outside of its page table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.27

OS manages the physical memory

¨ Maintains frame-table; one entry per frame
¤ Free or allocated?
¤ If allocated: Which page of which process

¨ Maintains a page table for each process
¤ Used by CPU dispatcher to define hardware page table when process is

CPU-bound
n Paging increases context switching time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.28

Example: 32-bit address space

¨ Page size = 4K
¨ Logical address = 0x23FA427

¨ What’s the offset within the page?
¤ 0x427

¨ What’s the page number?
¤ 0x23FA

¨ Page table entry maps 0x23FA to frame 0x12345 what is the physical
memory address for the logical address?
¤ 0x12345427

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.29

Example: 32-bit address space

¨ Page size = 1K
¨ Logical address = 0x23FA427

¨ What’s the offset within the page?
¤ 01| 00 0010 0111

¨ What’s the page number?
¤ 0000 0010 0011 1111 1010 01

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

HARDWARE SUPPORT FOR PAGING

All accesses to memory must go through a map.
Efficiency is important.

L21.30

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.31

The purpose of the page table is to map virtual
pages onto physical frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.32

Two major issues facing page tables

¨ Can be extremely large
¤ With a 4 KB page size, a 32-bit address space has 1 million pages
¤ Also, each process has its own page table

¨ The mapping must be fast
¤ Virtual-to-physical mapping must be done on every memory reference
¤ Page table lookup should not be a bottleneck

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.33

Implementing the page table:
Dedicated registers

¨ When a process is assigned the CPU, the dispatcher reloads these
registers

¨ Feasible if the page table is small
¤ However, for most contemporary systems entries are greater than 106

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.34

Implementing the page table in memory

¨ Page table base register (PTBR) points to page table

¨ 2 memory accesses for each access
¤ One for the page-table entry
¤ One for the byte

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.35

Observation

¨ Most programs make a large number of references to a small number
of pages
¤ Not the other way around

¨ Only a small fraction of the page table entries are heavily read
¤ Others are barely used at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.36

Translation look-aside buffer
Small, fast-lookup hardware cache

¨ Number of TLB entries is small (64 ~ 1024)
¤ Contains few page-table entries

¨ Each entry of the TLB consists of 2 parts
¤ A key and a value

¨ When the associative memory is presented with an item
¤ Item is compared with all keys simultaneously

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.37

Using the TLB with page tables (1)

¨ TLB contains only a few page table entries

¨ When a logical address is generated by the CPU, the page number is
presented to the TLB
¤ When frame number is found, use to access memory
¤ Usually just 10-20% longer than an unmapped memory reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.38

Using the TLB with page tables (2)

¨ What if there is a TLB miss?
¤ Memory reference to page table is made
¤ Replacement policies for the entries

¨ Some TLBs allow certain entries to be wired down
¤ TLB entries for kernel code are wired down

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.39

TLB and Address Space Identifiers (ASIDs)

¨ ASID uniquely identifies each process
¤ Allows TLB to contain addresses from several different processes

simultaneously

¨ When resolving page numbers
¤ TLB ensures that ASIDs match
¤ If not, it is treated as a TLB miss

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.40

Without ASIDs TLB must be flushed with every
context switch

¨ Each process has its own page table

¨ Without flushing or ASIDs, TLB could include old entries
¤ Valid virtual addresses
¤ But incorrect or invalid physical addresses

n From previous process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L20.41

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. 4th Edition, 2014.
Prentice Hall. ISBN: 013359162X/ 978-0133591620. [Chapter 3]

