
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Computer Science
Colorado State University

L21.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.2

Topics covered in this lecture

¨ Hardware support for paging
¨ Memory Protection in paged environments
¨ Shared Pages
¨ Page sizes
¨ Structure of Page tables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

HARDWARE SUPPORT FOR PAGING

All accesses to memory must go through a map.
Efficiency is important.

L21.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.4

The purpose of the page table is to map virtual
pages onto page frames

¨ Think of the page table as a function
¤ Takes virtual page number as an argument
¤ Produces physical frame number as result

¨ Virtual page field in virtual address replaced by frame field
¤ Physical memory address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.5

Two major issues facing page tables

¨ Can be extremely large
¤ With a 4 KB page size, a 32-bit address space has 1 million pages
¤ Also, each process has its own page table

¨ The mapping must be fast
¤ Virtual-to-physical mapping must be done on every memory reference
¤ Page table lookup should not be a bottleneck

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.6

Implementing the page table:
Dedicated registers

¨ When a process is assigned the CPU, the dispatcher reloads these
registers

¨ Feasible if the page table is small
¤ However, for most contemporary systems entries are greater than 106

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.7

Implementing the page table in memory

¨ Page table base register (PTBR) points to page table

¨ 2 memory accesses for each access
¤ One for the page-table entry
¤ One for the byte

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.8

Observation

¨ Most programs make a large number of references to a small number
of pages
¤ Not the other way around

¨ Only a small fraction of the page table entries are heavily read
¤ Others are barely used at all

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.9

Translation look-aside buffer (TLB): Small, fast-
lookup hardware cache

¨ Number of TLB entries is small (64 ~ 1024)
¤ Contains few page-table entries

¨ Each entry of the TLB consists of 2 parts
¤ A key and a value

¨ When the associative memory is presented with an item
¤ Item is compared with all keys simultaneously

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.10

Using the TLB with page tables (1)

¨ TLB contains only a few page table entries

¨ When a logical address is generated by the CPU, the page number is
presented to the TLB
¤ When frame number is found, use to access memory
¤ Usually just 10-20% longer than an unmapped memory reference

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.11

Using the TLB with page tables (2)

¨ What if there is a TLB miss?
¤ Memory reference to page table is made
¤ Replacement policies for the entries

¨ Some TLBs allow certain entries to be wired down
¤ TLB entries for kernel code are wired down

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.12

TLB and Address Space Identifiers (ASIDs)

¨ ASID uniquely identifies each process
¤ Allows TLB to contain addresses from several different processes

simultaneously

¨ When resolving page numbers
¤ TLB ensures that ASIDs match
¤ If not, it is treated as a TLB miss

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.13

Without ASIDs TLB must be flushed with every
context switch

¨ Each process has its own page table

¨ Without flushing or ASIDs, TLB could include old entries
¤ Valid virtual addresses
¤ But incorrect or invalid physical addresses

n From previous process

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.14

Effective memory access times

¨ 20 ns to search TLB
¨ 100 ns to access memory

¨ If page is in TLB: access time = 20 + 100 = 120 ns
¨ If page is not in TLB:

 20 + 100 + 100 = 220 ns

Access TLB Access memory to retrieve frame number

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.15

Effective access times with different hit ratios

¨ 80%
 = 0.80 x 120 + 0.20 x 220 = 140 ns

¨ 98%
 = 0.98 x 120 + 0.02 x 220 = 122 ns

¨ When hit rate increases from 80% to 98%
¤ Results in a 12% reduction in access time

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.16

Process and its page table:
When page table is entirely in memory

¨ A pointer to the page table is stored in the page table base register
(PTBR) in the PCB
¤ Similar to the program counter

¨ Often there is also a register which tracks the number of entries in the
page table

¨ Page table need not be memory resident when the process is swapped
out
¤ But must be in memory when process is running

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.17

Paging Hardware with a TLB

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

TLB

TLB Miss

TLB hit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

MEMORY PROTECTION IN PAGED
ENVIRONMENTS

L21.18

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.19

Protection bits are associated with each frame

¨ Kept in the page table

¨ Bits can indicate
¤ Read-write, read-only, execute
¤ Illegal accesses can be trapped by the OS

¨ Valid-invalid bit
¤ Indicates if page is in the process’s logical address space

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.20

0

1

2

3

4

5

6

7

Protection Bits: Page size=2K;
Logical address space = 16K

Page 0

Page 1

Page 2

2

3

4

7

Logical Memory

Page Table

Page 3

Page 4

Page 5

8

9

0

0

v

v

v

v

v

v

i

i

0

1

2
3

4
5

6

Page 0

Page n

Physical Memory

Page 1

Page 2

Page 3

Page 4

Page 5

…

7
8

9

Program restricted to 0 - 10468

10K = 10240

Frame
Number

Valid/
Invalid bit

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SHARED PAGES
L21.21

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.22

Reentrant Code [1/2]

¨ A computer program or subroutine is called reentrant if:
¤ It can be interrupted in the middle of its execution and
¤ Then safely called again ("re-entered") before its previous invocations

complete execution

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.23

Reentrant Code [2/2]

¨ Non-self-modifying
¤ Does not change during execution

¨ Two or more processes can:
① Execute same code at same time
② Will have different data

¨ Each process has:
¤ Copy of registers and data storage to hold the data

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.24

Shared Pages

¨ System with N users
¤ Each user runs a text editing program

¨ Text editing program
¤ 150 KB of code
¤ 50 KB of data space

¨ 40 users
¤ Without sharing: 8000 KB space needed
¤ With sharing : 150 + 40 x 50 = 2150 KB needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.25

Shared Paging
ed 1

ed 2

ed 3

Data 1

Data 3

Page n

Physical Memory

ed 1

ed 2

Data 2

…

0

1

2
3

4
5

6
7
8

9

3

6

1

4

3

6

7

4

Data 1

ed 3Process P1
ed 1

ed 2

ed 3

Data 2

Process P2

ed 1

ed 2

ed 3

Data 3

3

6

2

4

Process P3

Page Tables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.26

Shared Paging

¨ Other heavily used programs can be shared
¤ Compilers, runtime libraries, database systems, etc.

¨ To be shareable:
① Code must be reentrant
② The OS must enforce read-only nature of the shared

code

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

PAGE SIZES
L21.27

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.28

Paging and page sizes

¨ On average, ½ of the final page is empty
¤ Internal fragmentation: wasted space

¨ With n processes in memory, and a page size p
¤ Total np/2 bytes of internal fragmentation

¨ Greater page size = Greater fragmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.29

But having small pages is not necessarily
efficient

¨ Small pages mean programs need more pages
¤ Larger page tables
¤ 32KB program needs

n 4 8KB pages, but 64 512-byte pages

¨ Context switches can be more expensive with small pages
¤ Need to reload the page table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.30

Transfers to-and-from disk are a page at a time

• Primary Overheads: Seek and rotational delays

¨ Transferring a small page almost as expensive as transferring a big
page
§ 64 x 15 = 960 msec to load 64 512-bytes pages
§ 4 x 25 = 100 msec to load 4 8KB pages

¨ Here, large pages make sense

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.31

Overheads in paging:
Page table and internal fragmentation

¨ Average process size = s
¨ Page size = p
¨ Size of each page entry = e
¨ Pages per process = s/p

n se/p: Total page table space

¨ Total Overhead = se/p + p/2

Page table overhead Internal fragmentation loss

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.32

Looking at the overhead a little closer

¨ Total Overhead = se/p + p/2

Increases if p is small Increases if p is large

• Optimum is somewhere in between

• First derivative with respect to p
 -se/p2 + ½ = 0 i.e. p2 = 2se
 p = √2se

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.33

Optimal page size: Considering only page size and
internal fragmentation

¨ p = sqrt(2se)

¨ s = 128KB and e=8 bytes per entry

¨ Optimal page size = 1448 bytes
¤ In practice we will never use 1448 bytes
¤ Instead, either 1K or 2K would be used

nWhy? Pages sizes are in powers of 2 i.e. 2X

n Deriving offsets and page numbers is also easier

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.34

Pages sizes and size of physical memory

¨ As physical memories get bigger, page sizes get larger as well

¤ Though not linearly

¨ Quadrupling physical memory size rarely even doubles page size

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

STRUCTURE OF THE PAGE TABLE
L21.35

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.36

Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.37

Paging Hardware: Paging is a form of dynamic
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.38

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

