CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Hardware support for paging

Memory Protection in paged environments
Shared Pages

Page sizes

Structure of Page tables

CS370: Operating Systems L21.2
Dept. Of Computer Science, Colorado State University

All accesses to memory must go through a map.
Efficiency is important.

HARDWARE SUPPORT FOR PAGING

The purpose of the page table is to map virtual
pages onto page frames

Think of the page table as a function
Takes virtual page number as an argument

Produces physical frame number as result

Virtual page field in virtual address replaced by frame field

Physical memory address

CS370: Operating Systems L21.4
Dept. Of Computer Science, Colorado State University

Two major issues facing page tables

Can be extremely large
With a 4 KB page size, a 32-bit address space has 1 million pages

Also, each process has its own page table

The mapping must be fast
Virtual-to-physical mapping must be done on every memory reference

Page table lookup should not be a bottleneck

CS370: Operating Systems L21.5
Dept. Of Computer Science, Colorado State University

Implementing the page table:
Dedicated registers

When a process is assigned the CPU, the dispatcher reloads these
registers

Feasible if the page table is small

However, for most contemporary systems entries are greater than 10°

CS370: Operating Systems L21.6
Dept. Of Computer Science, Colorado State University

Implementing the page table in memory

Page table base register (PTBR) points to page table

2 memory accesses for each access
One for the page-table entry
One for the byte

CS370: Operating Systems L21.7
Dept. Of Computer Science, Colorado State University

Observation

Most programs make a large number of references to a small number
of pages

Not the other way around

Only a small fraction of the page table entries are heavily read

Others are barely used at all

CS370: Operating Systems L21.8
Dept. Of Computer Science, Colorado State University

Translation look-aside buffer (TLB): Small, fast-
lookup hardware cache

Number of TLB entries is small (64 ~ 1024)

Contains few page-table entries

Each entry of the TLB consists of 2 parts

A key and a value

When the associative memory is presented with an item

ltem is compared with all keys simultaneously

CS370: Operating Systems L21.9
Dept. Of Computer Science, Colorado State University

Using the TLB with page tables (1)

TLB contains only a few page table entries

When a logical address is generated by the CPU, the page number is
presented to the TLB

When frame number is found, use to access memory

Usually just 10-20% longer than an unmapped memory reference

CS370: Operating Systems L21.10
Dept. Of Computer Science, Colorado State University

Using the TLB with page tables (2)

What if there is a TLB miss¢

Memory reference to page table is made

Replacement policies for the entries

Some TLBs allow certain entries to be wired down

TLB entries for kernel code are wired down

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.11

TLB and Address Space Identifiers (ASIDs)

ASID uniquely identifies each process

Allows TLB to contain addresses from several different processes
simultaneously

When resolving page numbers
TLB ensures that ASIDs match

If not, it is treated as a TLB miss

CS370: Operating Systems L21.12
Dept. Of Computer Science, Colorado State University

Without ASIDs TLB must be flushed with every

context switch
.

o1 Each process has its own page table

1 Without flushing or ASIDs, TLB could include old entries
Valid virtual addresses

But incorrect or invalid physical addresses ;fﬁ “&7

® From previous process

CS370: Operating Systems L21.13
Dept. Of Computer Science, Colorado State University

Effective memory access times

20 ns to search TLB

100 ns to access memory

If page is in TLB: access time = 20 + 100 = 120 ns

If page is not in TLB:
20 + 100 + 1002220 ns

A N

Access TLB Access memory to retrieve frame number

CS370: Operating Systems L21.14
Dept. Of Computer Science, Colorado State University

Effective access times with different hit ratios

80%
= 0.80x 120+ 0.20 x 220 =140 ns

98%
=098 x 120+ 0.02 x220=122ns

When hit rate increases from 80% to 98%

Results in a 12% reduction in access time

CS370: Operating Systems L21.15
Dept. Of Computer Science, Colorado State University

Process and its page table:
When page table is entirely in memory

A pointer to the page table is stored in the page table base register
(PTBR) in the PCB

Similar to the program counter

Often there is also a register which tracks the number of entries in the
page table

Page table need not be memory resident when the process is swapped
out

But must be in memory when process is running

CS370: Operating Systems L21.16
Dept. Of Computer Science, Colorado State University

Paging Hardware with a TLB

Page Page
number ;.. offset Physical
A Address
ddress £000..000
CPU > p | d s> £ | d —> =
rame f
A
> TLB TLB hit £111..111
P J
> £ ‘
TLB Miss
Page Table

CS370: Operating Systems L21.17

Dept. Of Computer Science, Colorado State University

MEMORY PROTECTION IN PAGED
ENVIRONMENTS

Protection bits are associated with each frame

Kept in the page table

Bits can indicate
Read-write, read-only, execute

lllegal accesses can be trapped by the OS

Valid-invalid bit

Indicates if page is in the process’s logical address space

CS370: Operating Systems L21.19
Dept. Of Computer Science, Colorado State University

Protection Bits: Page size=2K;
Logical address space = 16K

Program restrictedto 0 - 10468

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Logical Memory

10K = 10240

S o 0 W NN B O

Frame Valid/

Number Invalid bit
2 v
3 v
4 v
7 v
8 v
9 v
0 i
0 i

Page Table

CS370: Operating Systems

© 0O 0O U W N H O

Page 0

Page 1

Page

Page 3

Page 4

Page

Page

n

Physical Memory

Dept. Of Computer Science, Colorado State University

L21.20

SHARED PAGES

Reentrant Code [1/2]

A computer program or subroutine is called reentrant if:
It can be interrupted in the middle of its execution and

Then safely called again ("re-entered") before its previous invocations
complete execution

CS370: Operating Systems L21.22
Dept. Of Computer Science, Colorado State University

Reentrant Code [2/2]

Non-self-modifying

Does not change during execution

Two or more processes can:

(1) Execute same code at same time
(2) Will have different data

Each process has:

Copy of registers and data storage to hold the data

CS370: Operating Systems L21.23
Dept. Of Computer Science, Colorado State University

Shared Pages

System with N users

Each user runs a text editing program

Text editing program
150 KB of code
50 KB of data space

40 users
Without sharing: 8000 KB space needed
With sharing : 150 + 40 x 50 = 2150 KB needed

CS370: Operating Systems L21.24
Dept. Of Computer Science, Colorado State University

Shared Paging

0
1 Data 1
e 3 2 Data 3
ed 2 4 / Page Tables 3 od 1
Data 1|| 1 5
ed 1 3
6 ed 3
Process P, ed 2 4
7 Data 2
ed 3 6
8
ed 1 3 Data 2 7 9
d 2
° : Process P,
ed 3 6
Page n
Data 3|| 2
Physical Memory
Process P4
CS370: Operating Systems L21.25

Dept. Of Computer Science, Colorado State University

Shared Paging

Other heavily used programs can be shared

Compilers, runtime libraries, database systems, etc.

To be shareable:
(1) Code must be reentrant

(2) The OS must enforce read-only nature of the shared
code

CS370: Operating Systems L21.26
Dept. Of Computer Science, Colorado State University

PAGE SIZES

Paging and page sizes

On average, V2 of the final page is empty

Internal fragmentation: wasted space

With n processes in memory, and a page size p

Total np/2 bytes of internal fragmentation

Greater page size = Greater fragmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.28

But having small pages is not necessarily
efficient

Small pages mean programs need more pages
Larger page tables

32KB program needs
4 8KB pages, but 64 512-byte pages

Context switches can be more expensive with small pages

Need to reload the page table

CS370: Operating Systems L21.29
Dept. Of Computer Science, Colorado State University

Transfers to-and-from disk are a page at a time

Primary Overheads: Seek and rotational delays

Transferring a small page almost as expensive as transferring a big
page

64 x 15 = 960 msec to load 64 512-bytes pages

4 x 25 = 100 msec to load 4 8KB pages

Here, large pages make sense

CS370: Operating Systems L21.30
Dept. Of Computer Science, Colorado State University

Overheads in paging:
Page table and internal fragmentation

Average process size = §
Page size = p

Size of each page entry = ¢
Pages per process = s/p

se/p: Total page table space

Total Overhead = se/p + p/2

—> < —

Page table overhead Internal fragmentation loss

CS370: Operating Systems L21.31
Dept. Of Computer Science, Colorado State University

Looking at the overhead a little closer

Total Overhead = se/p p/2

Increases if p is small

* Optimum is somew

™~

here in between

* First derivative wit
-se/p’ + % =0
p= \2se

n respect to p

i.e. p? = 2se

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

Increases if p is large

L21.32

Optimal page size: Considering only page size and

internal fragmentation

P = sqrt(2se)
s = 128KB and ¢=8 bytes per entry

Optimal page size = 1448 bytes
In practice we will never use 1448 bytes

Instead, either 1K or 2K would be used
Why? Pages sizes are in powers of 2 i.e. 2%

Deriving offsets and page numbers is also easier

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.33

Pages sizes and size of physical memory

As physical memories get bigger, page sizes get larger as well

Though not linearly

Quadrupling physical memory size rarely even doubles page size

CS370: Operating Systems L21.34
Dept. Of Computer Science, Colorado State University

STRUCTURE OF THE PAGE TABLE

Typical use of the page table

Process refers to addresses through pages’ virtual address
Process has page table

Table has entries for pages that process uses

One slot for each page

Irrespective of whether it is valid or not

Page table sorted by virtual addresses

CS370: Operating Systems L21.36
Dept. Of Computer Science, Colorado State University

Paging Hardware: Paging is a form of dynamic

relocation

Page
number

CPU

Logical offset

Physical
_\égsresiﬁyr// Address

Page

N
”

£000..000
—~ A
£111..111
P -

Frame f

S —

il

Page Table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L21.37

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L21.38
Dept. Of Computer Science, Colorado State University

