CS 370: OPERATING SYSTEMS
[MEMORY MANAGEMENT]

Computer Science

Colorado State University

Instructor: Louis-Noel Pouchet
Spring 2024

** Lecture slides created by: SHRIDEEP PALLICKARA

Topics covered in this lecture

Structure of Page tables
Hierarchical Paging
Hashed Page Tables

Inverted Page Tables

Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.2

STRUCTURE OF THE PAGE TABLE

Typical use of the page table

Process refers to addresses through pages’ virtual address
Process has page table

Table has entries for pages that process uses

One slot for each page

Irrespective of whether it is valid or not

Page table sorted by virtual addresses

CS370: Operating Systems L22.4
Dept. Of Computer Science, Colorado State University

Paging Hardware: Paging is a form of dynamic

relocation
T
Page Page
number [;.. offset Physical
Address
Address £000..000
CPU —‘IT d £)d H Frame f
A

£111..111

P -
Page Table
CS370: Operating Systems L22.5

Dept. Of Computer Science, Colorado State University

Structure of the Page Table
B

01 Hierarchical Paging

1 Hashed Page Tables

0 Inverted Page Tables

CS370: Operating Systems L22.6
Dept. Of Computer Science, Colorado State University

Hierarchical Paging

Logical address spaces: 232 ~ 2°4
Page size: 4KB = 22x 2'10= 212

Number of page table entries?

Logical address space size/page size

232/212 = 220 = 1 million entries

Page table entry = 4 bytes
Page table for process = 22°x 4 = 4 MB

CS370: Operating Systems L22.7
Dept. Of Computer Science, Colorado State University

Issues with large page tables
Cannot allocate page table contiguously in memory

Solution:

Divide the page table into smaller pieces

Page the page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.8

Two-level Paging
N

Page number Page offset

20 12

32-bit logical address

CS370: Operating Systems L22.9
Dept. Of Computer Science, Colorado State University

Two-level Paging
N

Outer Inner
Page Page Page offset
10 10 12

32-bit logical address

CS370: Operating Systems L22.10
Dept. Of Computer Science, Colorado State University

Address translation in two-level paging
-

P| P | d

P Actual Physical address
P2 Physical memory
frame
d
Track pages Outer page
table

of page-table

Page of page table

CS370: Operating Systems L22.11
Dept. Of Computer Science, Colorado State University

HASHED PAGE TABLES

Hashed page tables

An approach for handling address spaces > 232

Virtual page number is hashed

Hash used as key to enter items in the hash table

The value part of table is a linked list

Each entry has:
(1) Virtual page number
(2) Value of the mapped page frame

(3) Pointer to next element in the list

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.13

Searching through the hashed table for the frame

humber
R

o Virtual page number is hashed

Hashed key has a corresponding value in table

® Linked List of entries

1 Traverse linked list to

Find a matching virtual page number

CS370: Operating Systems L22.14
Dept. Of Computer Science, Colorado State University

Hash tables and 64-bit address spaces

Each entry refers to several pages instead of a single page

Multiple page-frame mappings per entry
Clustered page tables

Useful for sparse address spaces where memory references are non-
contiguous (and scattered)

CS370: Operating Systems L22.15
Dept. Of Computer Science, Colorado State University

INVERTED PAGE TABLES

Inverted page table

Only 1 page table in the system

Has an entry for each memory frame

Each entry tracks
Process that owns it (pid)

Virtual address of page (page number)

CS370: Operating Systems L2217
Dept. Of Computer Science, Colorado State University

Inverted Page table

CPU

Logical Physical
Address I Addresls 1000..000
>pid| p | d i|dp——
| > 4
i111.111

searchl

Frame i

pid | p

Page Table\ Stored based on frames

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

L22.18

Profiling the inverted page table

Decreases the amount of memory needed

Search time increases

During page dereferencing

Stored based on frames, but searched on pages

Whole table might need to be searched!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.19

Other issues with the inverted page table

Shared paging

Multiple pages mapped to same physical memory

Shared paging NOT possible in inverted tables
Only 1 virtual page entry per physical page

Stored based on frames

CS370: Operating Systems L22.20
Dept. Of Computer Science, Colorado State University

x86-64

Intel: IA-64 ltanium

Not much traction

AMD: x86-64
Intel adopted AMD’s x86-64 architecture

64-bit address space: 2% (16 exabytes)

Currently x86-64 provides
48—Dbit virtual address
Page sizes: 4 KB, 2 MB, and 1 GB
4-level paging hierarchy

CS370: Operating Systems L22.21
Dept. Of Computer Science, Colorado State University

ARM architectures

iPhone and Android systems use this

32-bit ARM tevel poa
-level paging
4 KB and 16 KB pages —
1 MB and 16 MB pages
$\\\\1—1eve1 paging

There are two levels for TLBs:
A separate TLB for data
Another for instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.22

SEGMENTATION

In our discussions so far ...

Virtual memory is one-dimensional

Logical addresses go from 0 to some max value

Many problems can benefit from having two or more separate virtual
address spaces

CS370: Operating Systems L22.24
Dept. Of Computer Science, Colorado State University

A compiler has many tables that are built up as

compilation proceeds

Source Text

Symbol table

Names and attributes of variables

Constants Table

Integer and floating point constants

Parse tree

Syntactic analysis of program

Stack

Procedure calls within the compiler

—
Grows continuously
as compilation
proceeds

P

Grows and shrinks
} in unpredictable ways

during compilation

CS370: Operating Systems

Dept. Of Computer Science, Colorado State University

L22.25

One dimensional address space with growing tables

-*

Address space

being used Address space allocated to

the constant table

Free

CS370: Operating Systems L22.26
Dept. Of Computer Science, Colorado State University

One dimensional address space with growing tables

-*

Symbol table has BUMPED INTO
the source text table

Address space

being used Address space allocated to

the constant table

Free

CS370: Operating Systems L22.27
Dept. Of Computer Science, Colorado State University

Options available to the compiler

Say that compilation cannot continue

Not cool

Play Robin Hood

Take space from tables with room

Give to tables with little room

CS370: Operating Systems L22.28
Dept. Of Computer Science, Colorado State University

What would be really cool ...

Free programmer from having to manage expansion and contraction
of tables

CS370: Operating Systems L22.29
Dept. Of Computer Science, Colorado State University

But how?

Provide many completely independent address spaces

Segments

A segment has linear sequence of addresses

0@ to max

CS370: Operating Systems L22.30
Dept. Of Computer Science, Colorado State University

Other things about segments
Different segments can and do have different lengths

Segments grow and shrink independently without affecting each other
Size increase: something pushed on stack segment

Size decrease: something popped off of stack segment

CS370: Operating Systems L22.31
Dept. Of Computer Science, Colorado State University

Users view memory as a collection of variable-sized

seg ments
]
‘ stack |
. Segment5
SegmentO Parse
tree
Segment4
. ‘ Constants \

Segmentl

Segment2

CS370: Operating Systems L22.32
Dept. Of Computer Science, Colorado State University

Segmentation

Logical address space is a collection of segments

Segments have name and length

Addresses specify
Segment name

Offset within the segment

Tuple: <segment-number, offset>

CS370: Operating Systems L22.33
Dept. Of Computer Science, Colorado State University

Segmentation Addressing Example

stack
Symbol
table Segment5
Seg'men to0 Parse
tree
Segment4
Source
text Constants
Segmentl
gmen Segment2

Limit Base

1000 1400
400 6300
400 4300
1000 3200

1000 4800

Hh wN=—=O0

CS370: Operating Systems

1400

2400

3200

4300

4700
4800

5800

6300
6700

Segment 0

Segment 3

Segment 2

Segment 4

Segment 1

Dept. Of Computer Science, Colorado State University

Segmentation Hardware

cu —|s |d

Logical
Address Segment Table

Physical
Address

TRAP: Addressing Error

CS370: Operating Systems L22.35
Dept. Of Computer Science, Colorado State University

Rationale for Paging and Segmentation

Get a large linear address space without having to
buy more physical memory

PAGING

Allow programs and data to be broken up into
logically independent address spaces

Aids Sharing AND Protection

Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.36

Comparison of Paging and Segmentation
——

How many linear address
spaces are there?

1 Many

Can total address space YES YES

exceed physical memory

Can procedures and data be
distinguished and protected NO YES
separately?

Can fluctuating table sizes NO YES
be accommodated?

CS370: Operating Systems L22.37
Dept. Of Computer Science, Colorado State University

Comparison of Paging and Segmentation

Should the programmer be

between users facilitated?

aware the the technique is NO YES
being used?
Is sharing of procedures NO YES

Why was this technique
invented?

To allow programs and data
to be broken up into logically
independent address spaces
and to allow sharing and
protection

To get a large linear
address space without
having to buy more
physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.38

Segmentation with Paging

Multics: Each program can have up to 256K independent segments

Each with 64K 36-bit words

Intel Pentium
16K independent segments
Each segment has 10° 32-bit words

Few programs need more than 1000 segments, but many programs need

large segments

CS370: Operating Systems L22.39

Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORY

Memory Management: Why?

Main objective of system is to execute programs

Programs and data must be in memory (af least partially) during
execution

To improve CPU vutilization and response times
Several processes need to be memory resident

Memory needs to be shared

CS370: Operating Systems L22.41
Dept. Of Computer Science, Colorado State University

Requiring the entire process to be in physical

memory can be limiting
——

o Limits the size of a program

To the size of physical memory

-1 BUT the entire program is not always needed

CS370: Operating Systems L22.42
Dept. Of Computer Science, Colorado State University

Situations where the entire program need not be
memory resident

Libraries
Code to handle rare error conditions

Data structures are often allocated more memory than they need

Arrays, lists ...

Rarely used features

CS370: Operating Systems L22.43
Dept. Of Computer Science, Colorado State University

What if we could execute a program that is
partially in memory?

Program is not constrained by amount of free
memory that is available

Each program uses less physical memory

So, more programs can run

Less I/O to swap programs back and forth

CS370: Operating Systems L22.44
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory
N

max {Function parameters,
return addresses,
and local variables}

{Memory allocated dynamically
during runtime}

{Global variables}

Low {Program code}

CS370: Operating Systems L22.45
Dept. Of Computer Science, Colorado State University

Logical view of a process in memory

L EEEEE——————,
max

Requures actual physical space
ONLY IF heap or stack grows

low

CS370: Operating Systems L22.46
Dept. Of Computer Science, Colorado State University

Sparse address spaces

Virtual address spaces with holes

Harnessed by
Heap or stack segments

Dynamically linked libraries

CS370: Operating Systems L22.47
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9 edition.
John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

Andrew S Tanenbaum. Modern Operating Systems. 4% Edition, 201 4. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

CS370: Operating Systems L22.48
Dept. Of Computer Science, Colorado State University

