
CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

CS 370: OPERATING SYSTEMS

[MEMORY MANAGEMENT]

Computer Science
Colorado State University

L22.1

** Lecture slides created by: SHRIDEEP PALLICKARA
Instructor: Louis-Noel Pouchet
Spring 2024

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.2

Topics covered in this lecture

¨ Structure of Page tables
¤ Hierarchical Paging
¤ Hashed Page Tables
¤ Inverted Page Tables

¨ Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

STRUCTURE OF THE PAGE TABLE
L22.3

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.4

Typical use of the page table

¨ Process refers to addresses through pages’ virtual address

¨ Process has page table

¨ Table has entries for pages that process uses
¤ One slot for each page

n Irrespective of whether it is valid or not

¨ Page table sorted by virtual addresses

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.5

Paging Hardware: Paging is a form of dynamic
relocation

CPU p d

f

f d

p

Logical
Address

Physical
Address

f000…000

f111…111

Page
number

Page
offset

Page Table

Frame f

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.6

Structure of the Page Table

¨ Hierarchical Paging
¨ Hashed Page Tables
¨ Inverted Page Tables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.7

Hierarchical Paging

¨ Logical address spaces: 232 ~ 264

¨ Page size: 4KB = 22x 210= 212

¨ Number of page table entries?
§ Logical address space size/page size
§ 232/212 = 220 ≈ 1 million entries

¨ Page table entry = 4 bytes
¤ Page table for process = 220 x 4 = 4 MB

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.8

Issues with large page tables

¨ Cannot allocate page table contiguously in memory

¨ Solution:
¤ Divide the page table into smaller pieces

n Page the page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.9

Two-level Paging

Page offsetPage number

20 12

32-bit logical address

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.10

Two-level Paging

Page offset

12

32-bit logical address

Inner
Page

1010

Outer
Page

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.11

Physical memory
frame

Page of page table

Outer page
table

Address translation in two-level paging

p1 p2 d

p2

p1

d

Actual Physical address

Track pages
of page-table

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

HASHED PAGE TABLES
L22.12

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.13

Hashed page tables

¨ An approach for handling address spaces > 232

¨ Virtual page number is hashed
¤ Hash used as key to enter items in the hash table

¨ The value part of table is a linked list
¤ Each entry has:

① Virtual page number
② Value of the mapped page frame
③ Pointer to next element in the list

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.14

Searching through the hashed table for the frame
number

¨ Virtual page number is hashed
¤ Hashed key has a corresponding value in table

n Linked List of entries

¨ Traverse linked list to
¤ Find a matching virtual page number

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.15

Hash tables and 64-bit address spaces

¨ Each entry refers to several pages instead of a single page

¨ Multiple page-frame mappings per entry
¤ Clustered page tables

¨ Useful for sparse address spaces where memory references are non-
contiguous (and scattered)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

INVERTED PAGE TABLES
L22.16

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.17

Inverted page table

¨ Only 1 page table in the system
¤ Has an entry for each memory frame

¨ Each entry tracks
¤ Process that owns it (pid)
¤ Virtual address of page (page number)

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.18

Inverted Page table

CPU pid d i d

Logical
Address

Physical
Address

i000…000

i111…111

Page Table

Frame i

pid | p

search

p

Stored based on frames

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.19

Profiling the inverted page table

¨ Decreases the amount of memory needed

¨ Search time increases
¤ During page dereferencing

¨ Stored based on frames, but searched on pages
¤ Whole table might need to be searched!

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.20

Other issues with the inverted page table

¨ Shared paging
¤ Multiple pages mapped to same physical memory

¨ Shared paging NOT possible in inverted tables
¤ Only 1 virtual page entry per physical page

n Stored based on frames

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.21

x86-64

¨ Intel: IA-64 Itanium
¤ Not much traction

¨ AMD: x86-64
¤ Intel adopted AMD’s x86-64 architecture

¨ 64-bit address space: 264 (16 exabytes)

¨ Currently x86-64 provides
¤ 48–bit virtual address
¤ Page sizes: 4 KB, 2 MB, and 1 GB
¤ 4-level paging hierarchy

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.22

ARM architectures

¨ iPhone and Android systems use this
¨ 32-bit ARM

¤ 4 KB and 16 KB pages
¤ 1 MB and 16 MB pages

2-level paging

1-level paging

There are two levels for TLBs:
 A separate TLB for data
 Another for instructions

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

SEGMENTATION
L22.23

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.24

In our discussions so far …

¨ Virtual memory is one-dimensional
¤ Logical addresses go from 0 to some max value

¨ Many problems can benefit from having two or more separate virtual
address spaces

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.25

A compiler has many tables that are built up as
compilation proceeds
¨ Source Text

¨ Symbol table
¤ Names and attributes of variables

¨ Constants Table
¤ Integer and floating point constants

¨ Parse tree
¤ Syntactic analysis of program

¨ Stack
¤ Procedure calls within the compiler

Grows continuously
as compilation
proceeds

Grows and shrinks
in unpredictable ways
during compilation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.26

One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to
the constant table

Address space
being used

Free

Program has an exceptional
number of variables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.27

One dimensional address space with growing tables

Symbol
Table

Source
text

Constant
table

Parse
tree

Call
stack

Address space allocated to
the constant table

Address space
being used

Free

Symbol table has BUMPED INTO
the source text table

Program has an exceptional
number of variables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.28

Options available to the compiler

¨ Say that compilation cannot continue
¤ Not cool

¨ Play Robin Hood
¤ Take space from tables with room
¤ Give to tables with little room

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.29

What would be really cool …

¨ Free programmer from having to manage expansion and contraction
of tables

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.30

But how?

¨ Provide many completely independent address spaces
¤ Segments

¨ A segment has linear sequence of addresses
§ 0 to max

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.31

Other things about segments

¨ Different segments can and do have different lengths

¨ Segments grow and shrink independently without affecting each other
¤ Size increase: something pushed on stack segment
¤ Size decrease: something popped off of stack segment

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.32

Users view memory as a collection of variable-sized
segments

Symbol
table

Segment0

stack

Segment5

Source
text

Segment1
Constants

Segment2

Parse
tree

Segment4

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.33

Segmentation

¨ Logical address space is a collection of segments

¨ Segments have name and length

¨ Addresses specify
¤ Segment name
¤ Offset within the segment

¨ Tuple: <segment-number, offset>

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.34

Segmentation Addressing Example

Symbol
table

Segment0

stack

Segment5

Source
text

Segment1
Constants

Segment2

Parse
tree

Segment4 Limit Base
0 1000 1400

Segment 0
1400

2400

Segment 1
6300
6700

Segment 2
4300

4700

Segment 33200

Segment 44800

5800

1 400 6300
2 400 4300
3 1000 3200
4 1000 4800

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.35

Segmentation Hardware

s dCPU

s

Logical
Address

Physical
Address

Segment Table

limit base

+

TRAP: Addressing Error

NO

YES
<

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.36

Rationale for Paging and Segmentation

¨ Get a large linear address space without having to
buy more physical memory
¤ PAGING

¨ Allow programs and data to be broken up into
logically independent address spaces
¤ Aids Sharing AND Protection

n Segmentation

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.37

Comparison of Paging and Segmentation
Consideration Paging Segmentation

How many linear address
spaces are there?

1 Many

Can total address space
exceed physical memory

YESYES

Can procedures and data be
distinguished and protected
separately?

YESNO

Can fluctuating table sizes
be accommodated?

NO YES

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.38

Comparison of Paging and Segmentation
Consideration Paging Segmentation

Should the programmer be
aware the the technique is
being used?

NO YES

Is sharing of procedures
between users facilitated?

YESNO

Why was this technique
invented?

To allow programs and data
to be broken up into logically
independent address spaces
and to allow sharing and
protection

To get a large linear
address space without
having to buy more
physical memory

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.39

Segmentation with Paging

¨ Multics: Each program can have up to 256K independent segments
¤ Each with 64K 36-bit words

¨ Intel Pentium
¤ 16K independent segments
¤ Each segment has 109 32-bit words
¤ Few programs need more than 1000 segments, but many programs need

large segments

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

VIRTUAL MEMORY
L22.40

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.41

Memory Management: Why?

¨ Main objective of system is to execute programs

¨ Programs and data must be in memory (at least partially) during
execution

¨ To improve CPU utilization and response times
¤ Several processes need to be memory resident
¤ Memory needs to be shared

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.42

Requiring the entire process to be in physical
memory can be limiting

¨ Limits the size of a program
¤ To the size of physical memory

¨ BUT the entire program is not always needed

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.43

Situations where the entire program need not be
memory resident

¨ Libraries

¨ Code to handle rare error conditions

¨ Data structures are often allocated more memory than they need
¤ Arrays, lists …

¨ Rarely used features

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.44

What if we could execute a program that is
partially in memory?

¨ Program is not constrained by amount of free
memory that is available

¨ Each program uses less physical memory
¤ So, more programs can run

¨ Less I/O to swap programs back and forth

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.45

Logical view of a process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.46

Requires actual physical space
ONLY IF heap or stack grows

Logical view of a process in memory

stack

heap

data

text

max

low

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.47

Sparse address spaces

¨ Virtual address spaces with holes

¨ Harnessed by
¤ Heap or stack segments
¤ Dynamically linked libraries

CS370: Operating Systems
Dept. Of Computer Science, Colorado State University

L22.48

The contents of this slide-set are based on the
following references
¨ Avi Silberschatz, Peter Galvin, Greg Gagne. Operating Systems Concepts, 9th edition.

John Wiley & Sons, Inc. ISBN-13: 978-1118063330. [Chapter 8]

¨ Andrew S Tanenbaum. Modern Operating Systems. 4th Edition, 2014. Prentice Hall.
ISBN: 013359162X/ 978-0133591620. [Chapter 3]

